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Foreword

Despite a relatively short existence, bioinformatics has always seemed an unusually

multidisciplinary field. Fifteen years ago, when sequence data were still scarce and

only a small fraction of the power of today’s pizza-box supercomputers was available,

bioinformatics was already entrenched in a diverse array of topics. Database devel-

opment, sequence alignment, protein structure prediction, coding and promoter site

identification, RNA folding, and evolutionary tree construction were all within the

remit of the early bioinformaticist.1,2 To address these problems, the field drew from

the foundations of statistics, mathematics, physics, computer science and, of course,

molecular biology. Today, predictably, bioinformatics still reflects the broad base on

which it started, comprising an eclectic collection of scientific specialists.

As a result of its inherent diversity, it is difficult to define the scope of bioinformatics

as a discipline. It may be even fruitless to try to draw hard boundaries around the field.

It is ironic, therefore, that even now, if one were to compile an intentionally broad

list of research areas within the bioinformatics purview, it would often exclude one

biological discipline with which it shares a fundamental basis: Genetics. On one hand,

this seems difficult to believe, since the fields share a strong common grounding in

statistical methodology, dependence on efficient computational algorithms, rapidly

growing biological data, and shared principles of molecular biology. On the other

hand, this is completely understandable, since a large part of bioinformatics has

spent the last few years helping to sequence a number of genomes, including that of

man. In many cases, these sequencing projects have focused on constructing a single

representative sequence—the consensus—a concept that is completely foreign to the

core genetics principles of variability and individual differences. Despite a growing

awareness of each other, and with a few clear exceptions, genetics and bioinformatics

have managed to maintain separate identities.

Geneticists needs bioinformatics. This is particularly true of those trying to identify

and understand genes that influence complex phenotypes. In the realm of human

genetics, this need has become particularly clear, so that most large laboratories

now have one or two bioinformatics ‘specialists’ to whom other lab members turn

for computing matters. These specialists are required to support a dauntingly wide

assortment of applications: typical queries for such people might range from how to
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find instructions for accessing the internet, to how to disentangle a complex database

schema, to how to optimize numerically intensive algorithms on parallel computing

farms. These people, though somewhat scarce, are essential to the success of the

laboratory.

With the ever-increasing volume of sequence data, expression information and

well characterized structures, as well as the imminent genotype and haplotype data on

large and diverse human populations, genetics laboratories now must move beyond

singular dependence on the bioinformatics handyman. Some level of understanding

and ability to use bioinformatics applications is becoming necessary by everyone

in the lab. Fortunately, bioinformaticians have been particularly successful in de-

veloping user-friendly software that renders complex statistical methods accessible

to the bench scientists who generated and should know most about the data being

analysed. To further these analyses, ingenious software applications have been con-

structed to display the outcomes and integrate them with a host of useful annotation

features such as chromosome characteristics, sequence signatures, disease correlates

and species comparisons3. With these tools freely available and undergoing contin-

ued development, mapping projects that make effective use of genetic and genomic

information will naturally enjoy greater success than those less equipped to do so.

Simply put, genetics groups that cannot capitalize on bioinformatics applications

will be increasingly scooped by those who can.

The emerging requirement of broader understanding of bioinformatics within

genetics is the focus of this text, as easily appreciated by a quick glance at the title.

Equally obvious is that geneticists are the editors’ target audience. Still, one might

ask ‘toward what specific group of geneticists is this text aimed?’ The software and

computational backbone of bioinformatics is shared most noticeably with the areas of

statistical and population genetics, so the statistical specialists would seem a plausible

audience. By design, however, this text is not aimed at these specialists so much as at

those with broader backgrounds in molecular and medical genetics, including both

human and model organism research. The content should be accessible by skilled

bench scientists, clinical researchers and even laboratory heads. Computationally, one

needs only basic computing skills to work through most of the material. Biologically,

appreciation of the problems described requires general familiarity with genetics

research and recognition of the inherent value in careful use of in silico genetic and

genomic information.

By necessity, the bioinformatics topics covered in this text reflect the diversity of

the field. In order to obtain some order in this broad area, the editors have focused on

computer applications and effective use of available databases. This concentration on

applications means that descriptions of the statistical theory, numerical algorithms

and database organization are left to other texts. The editors have intentionally

bypassed much of this material to emphasize applications in widespread use—the

focus is on efficient use, rather than development, of bioinformatics methods and

tools.
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The data behind many of the bioinformatics tools described here are rapidly

changing and expanding. In response, the software tools and databases themselves

tend to be (infuriatingly) dynamic. A consequence of this fluid state is that learning

to use existing programs by no means guarantees a knack for using those in the

future. Thus, one cannot expect long-term consistency in the tools and data-types

described here (or in most any other contemporary bioinformatics text). By learning

to use current tools more effectively, however, geneticists can not only capitalize on

technology available, but perhaps engage more bioinformaticians in the excitement of

genetics research. Bringing bioinformatics to geneticists is a crucial first step towards

integrating the kindred fields and characterizing the frustratingly elusive genes that

influence complex phenotypes.

Lon R. Cardon

Professor of Bioinformatics

Wellcome Trust Centre for Human Genetics

University of Oxford

1. Doolittle, R. F. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences

(University Science Books, Mill Valley, California, 1987).

2. von Heijne, G. Sequence analysis in molecular biology: Treasure trove or trivial pursuit

(Academic Press, London, 1987).

3. Wolfsberg, T. G., Wetterstrand, K. A., Guyer, M. S., Collins, F. S. & Baxevanis, A. D. A user’s

guide to the human genome. Nature Genetics 32 (suppl) (2002).
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Preface

I say ‘locus–locus’ instead of ‘gene–gene’ because if you work in human genetics long

enough, you realize that you may never have a gene. But you learn not to let that

put you off.

Peter A. Holmans

Making sense of the results of a genetic experiment is a challenge on any level.

Writing a book about the use of bioinformatics to achieve this goal might seem like

a somewhat vainglorious exercise. Individual perceptions of what is constituted by

bioinformatics vary widely. However, in the context of this book, bioinformatics

seeks to illuminate biological function, while disease genetics, our primary focus,

is essentially about understanding biological dysfunction. With this in mind, please

think of bioinformatics as a tool for improving the understanding of genetics.

Since the first edition of this book, the reasons for thinking this way have

become more compelling. Human disease genetics is rapidly becoming a high-

throughput activity, and that means that making sense of a genetic experiment

now means making sense of millions of data points. Again this underlines the

need for genetics-focused bioinformatics. Quite simply, we need the informatics to

manipulate and analyse data on this scale, and we need the bio to make sense of

it all in the holistic biological system that is a human being.

This book could not have been realised without the insightful contributions of all

the chapter authors. I really feel they have helped to make this book worthy of both

the bio and the informatics monikers. I would also like to send my warmest thanks

to Ian C. Gray, who co-edited the first edition with me, for providing helpful input

and support on this edition. All the exciting science you see here would not exist

without the incredibly dedicated team at Wiley, who have always kept things on

track, including Joan Marsh, Andrea Baier, Fiona Woods, Kate Pamphilon and Emilie

McDonough. I have a day job besides editing books, and so I would also really like to

thank Philippe Sanseau and David Searls at GSK for giving me the time, encourage-

ment and support to get this done. Finally, I would like to thank my wife, Aruna, for

her constant love, support, encouragement and superior punctuation. Without her,

I would not have had the will or punctuation skills to complete this magnum opus.

Michael R. Barnes

August 2006, Harlow, UK
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Glossary of Bioinformatics

BLAST (Basic Local Alignment Search Tool) A tool for identifying sequences in a

database that match a given query sequence. Statistical analysis is applied to

judge the significance of each match. Matching sequences may be homologous to,

or related to, the query sequence. There are several versions of BLAST:

� BLASTP compares an amino-acid query sequence with a protein-sequence

database.� BLASTN compares a nucleotide query sequence with a nucleotide-sequence

database.� BLASTX compares a nucleotide query sequence translated in all reading frames

with a protein-sequence database.� TBLASTN compares a protein query sequence with a nucleotide sequence database

dynamically translated in all reading frames.� TBLASTX compares the six-frame translations of a nucleotide query sequence with

the six-frame translations of a nucleotide-sequence database.

BLAT (BLAST-Like Alignment Tool) BLAT might superficially appear to be like

BLAST, also being a tool for detecting subsequences that match a given query

sequence; however, BLAT and BLAST have a number of differences. BLAT was

developed at the UCSC; it searches the human genome by keeping an index of the

entire genome in memory. The index consists of all non-overlapping 11-mers

except for repeat sequences. A BLAT search of the human genome will quickly find

sequences of 95 per cent and greater similarity of length of at least 40 bases. It

may miss more divergent or shorter sequence alignments (see the UCSC FAQ for

more details on this tool: http://genome.ucsc.edu/FAQ.html).

CDS Coding sequence.
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Contig map A map depicting the relative order of overlapping (contiguous)

clones representing a complete genomic or chromosomal segment.

DAS (distributed annotation system) A protocol for browsing and sharing

genome sequence annotations across the Internet, allowing users to search and

compare annotations from several sources. Ensembl provides a DAS reference

server giving access to a wide range of specialist annotations of the human

genome (for more detail, see http://www.ensembl.org/das/).

Data mining The ability to query very large databases in order to satisfy a

hypothesis (‘top-down’ data mining), or to interrogate a database in order to

generate new hypotheses based on rigorous statistical correlations (‘bottom-up’

data mining).

Domain (protein) A region of special biological interest within a single protein

sequence. However, a domain may also be defined as a region within the

three-dimensional structure of a protein that may encompass regions of several

distinct protein sequences that accomplish a specific function. A domain class is

a group of domains that share a common set of well-defined properties or

characteristics.

Electronic PCR (ePCR) An electronic process analogous to laboratory-based

PCR. Two primers are used to map a sequence feature (such as a single nucleotide

polymorphism). To validate the position, both primers must map in the same

vicinity spanning a defined distance, effectively producing an electronic PCR

product.

Expressed sequence tag (EST) A short sequence read from an expressed gene

derived from a cDNA library. Databases storing large numbers of ESTs can be used

to gauge the relative abundance of different transcripts in cDNA libraries and the

tissues from which they are derived. An EST can also act as a physical tag for the

identification, cloning and full-length sequencing of the corresponding cDNA or

gene.

FASTA format FASTA (Fast-All), originally devised for Lipman and Pearson’s

sequence alignment algorithm, is one of the simplest and most widely accepted

formats for sequences, taking the form of a simple header preceded by a greater

than (>) sign and sequence on the following line; e.g. >sequence id

gataggctgagcgatgcgatgctagctagctagc.

Golden path The term applied to the first and subsequent assemblies of the

human genome.

Hidden Markov model (HMM) A joint statistical model for an ordered sequence

of variables. The result of stochastically perturbing the variables in a Markov chain

(the original variables are thus ‘hidden’), whereby the Markov chain has discrete
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variables that select the ‘state’ of the HMM at each step. The perturbed values

can be continuous and are the ‘outputs’ of the HMM. An HHH is equivalently a

coupled mixture model where the joint distribution over states is a Markov chain.

HHHs are valuable in bioinformatics because they allow a search or alignment

algorithm to be trained by unaligned or unweighted input sequences, and

because they allow position-dependent scoring parameters such as gap penalties,

thus more accurately modelling the effects of evolutionary events on sequence

families.

Homology (strict) Two or more biological species, systems or molecules that

share a common evolutionary ancestor (general), or two or more gene or protein

sequences that share a significant degree of similarity, typically measured by the

amount of identity (in the case of DNA), or conservative replacements (in the

case of protein), that they register along their lengths. Sequence ‘homology’

searches are typically performed with a query DNA or protein sequence to

identify known genes or gene products that share significant similarity and

hence might clarify the ancestry, heritage and possible function of the query

gene.

in silico (biology) (literally, computer mediated) The use of computers to

simulate, process, or analyse a biological experiment.

NCBI National Center for Biotechnology Information, Washington, DC, USA.

Open reading frame (ORF) Any stretch of DNA that potentially encodes a

protein. ORFs begin with a start codon and end with a termination codon. No

termination codons may be present internally. The identification of an ORF is the

first indication that a segment of DNA may be part of a functional gene.

Orthologue/paralogue Paralogues are genes related by duplication within a

genome. Orthologues retain the same function in the course of evolution, whereas

paralogues evolve new functions, even if these are related to the original one.

Perl (Practical Extraction and Report Language) Perl is relatively

straightforward up to a certain level, and this has facilitated its development as

the primary language of biological computing.

Relational database A database that follows E. F. Coddı́s’ 11 rules, a series of

mathematical and logical steps for the organization and systemization of data into

a software system that allows easy retrieval, updating and expansion. A relational

database management system (RDBMS) stores data in a database consisting of

one or more tables of rows and columns. The rows correspond to a record (tuple);

the columns correspond to attributes (fields) in the record. RDBMSs use

structured query language (SQL) for data definition, data management, and data

access and retrieval. Relational and object-relational databases are used

extensively in bioinformatics to store sequence and other biological data.
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Secondary structure (protein) The organization of the peptide backbone of a

protein that occurs as a result of hydrogen bonds, such as alpha helix or beta

pleated sheet.

Sequence tagged site (STS) A unique sequence from a known chromosomal

location that can be amplified by PCR. STSs act as physical markers for genomic

mapping and cloning.

Single nucleotide polymorphism (SNP) A DNA sequence variation resulting

from substitution of one nucleotide for another.

Structured query language (SQL) A type of programming language used to

construct database queries and perform updates and other maintenance of

relational databases. SQL is not a fully fledged language that can create

stand-alone applications, but it is powerful enough to create interactive routines

in other database programs.

Substitution matrix A model of protein evolution at the sequence level

resulting in the development of a set of widely used substitution matrices. These

are frequently called Dayhoff, MDM (mutation data matrix), BLOSUM or PAM

(percent accepted mutation) matrices. They are derived from global alignments of

closely related sequences. Matrices for greater evolutionary distances are

extrapolated from those for lesser ones.

Tertiary structure (protein) Folding of a protein chain via interactions of its

side-chain molecules, including formation of disulphide bonds between cysteine

residues.

UCSC (University of California, Santa Cruz) An excellent genome browser.

UTR (untranslated region) The non-coding region of an mRNA transcript

flanking either side of the open reading frame.
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1
Bioinformatics Challenges for
the Geneticist

Michael R. Barnes1

1Bioinformatics, GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK

1.1 Introduction

The first edition of this book was published in February 2003, and now it is reasonable

to say that expectations in the field of human genetics are higher than ever. Research-

funding bodies, such as the US National Institutes of Health (NIH) and the Wellcome

Trust, are intensifying their focus on initiatives to study the genetic basis of complex

diseases. Why is this happening? It would appear that genetics research is experiencing

something equivalent to an alignment of the constellations. Quite simply, 6 years after

the first draft, and 3 years after the completion of the genome, we have the HapMap

to complement the genome, and we have technologies to genotype rapidly hundreds

of thousands of single nucleotide polymorphisms (SNPs). Everything seems to be in

the right place to make a real leap in our understanding of the genetic determinants

of complex diseases. Clearly, there could not be a better time to publish the second

edition of this book!

To call this new edition of Bioinformatics for Geneticists, the second edition is

probably a misnomer, as this implies a great deal of continuity with the first. Generally,

as is reflected by the field of genetics itself, this is not the case. The challenges for

human genetics have changed almost beyond recognition between 2003 and July

2006, the date that this second edition went to press. In 2003, precisely 50 years after

the landmark discovery of the structure of DNA, the entire human genome sequence

was completed in a final, polished form. This fully indexed but semi-intelligible

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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‘book of life’ immediately began to serve as a valuable framework for integration of

genetic and biological data. However, knowledge of the genome sequence did not

immediately clarify the nature and structure of human genetic variation. While in

terms of genome function, our understanding in 2003 was mainly limited to the

25 000 or so genes that we could determine encoded within the sequence, today

(July 2006), with the help of HapMap, a human haplotype map, we have a much

better understanding of the structure and complexity of genetic variation. Knowledge

of variation and improvements in genotyping technology have led to a dramatic

scaling up of genotyping experiments, generating in turn unprecedented volumes of

genotyping data. While, in terms of function, our knowledge of the human genome

is now enhanced by knowledge of at least 13 other vertebrate genomes, we are also

clarifying previously unrecognized but numerous genomic elements, such as non-

coding micro-RNA (miRNA). We are beginning to realize that these elements may

be just as important as the coding RNA component of the genome. Finally, our

understanding is starting to expand beyond the genome to the epigenome – heritable

changes other than those in the DNA sequence. All these factors add up to a complete

transformation of the genetic landscape. To address this, the second edition of this

book has also undergone a complete transformation, adding many new authors and

chapters and just a few critical, but completely revised chapters from the first edition.

Altogether, we hope these new contributions will address the lion’s share of the newer

and long-standing challenges that face the human geneticist.

1.2 The role of bioinformatics in genetics research

The function of bioinformatics is now essential to the effective interrogation of

genetic and genomic data as well as most other biological data. This makes expertise in

bioinformatics a prerequisite for effectiveness in genetics. Expertise in bioinformatics

is no mystery; the right bioinformatics tools, coupled with an enquiring mind and

willingness to experiment (key requirements for any scientist, bioinformatician or

not), can yield confidence and competence in handling bioinformatics data in a very

short space of time. The objective of this book is not to provide an exhaustive guide to

bioinformatics; other texts fulfil this role. Instead, it is intended as a specialist guide

to help the human geneticist navigate the Internet to some of the best tools and

databases for the job; that is, linking and associating genes with diseases and genetic

traits. In this chapter, we give a flavour of the many processes in human genetics

where bioinformatics can have a major impact, and refer to subsequent chapters for

greater detail.

1.2.1 Gaining understanding of genetic traits

The process of understanding a genetic trait typically proceeds through three stages:

first, recognition of the disease state or syndrome, including assessment of its
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hereditary character; second, discovery and mapping of the related polymorphism(s)

or mutation(s); and third, elucidation of the biochemical/biophysical mechanism

leading to the disease phenotype. Each of these stages proceeds with a variable de-

gree of laboratory investigation and data analysis, often by bioinformatics methods.

Both activities are complementary, bioinformatics without laboratory work is a sterile

activity just as laboratory work without bioinformatics can be futile and inefficient.

In fact, these two sciences are really one, genetics and genomics generate data, and

bioinformatics allows efficient storage, access and analysis of the data – together, they

constitute the most efficient manifestation of genetic research in action.

1.3 Genetics in the post-genome era

In the broadest sense, bioinformatics in a genetic research context covers the following

aspects:� knowledge management and expansion� data management, integration and mining� mastering genes, genomes and genetic variation data� genetic study design and analysis� determination of function (moving from candidate genes to disease alleles)� analysis at the genetic and genomic data interface.

These categories are quite generic and could apply to most fields of biology, but

are clearly applicable to genetics. Both genetics and bioinformatics are essen-

tially concerned with asking the right questions, generating and testing hypothe-

ses, and organizing and interpreting large numbers of data to detect biological

phenomena.

1.3.1 Knowledge management and expansion

Genetics, as the innate code of an organism, largely defines biology. Consequently,

few areas of biological research call for a broader background in biology than genetic

research. This background is tested to the extreme in the selection of candidate genes

to test for involvement in a disease process, or in identifying candidates from the

results of a genome scan. Candidate genes need to be chosen and prioritized by

many criteria. Often biological links may be very subtle. Candidate gene interactions

might be considered similar to human interactions, bringing to mind the famous

‘six degrees of separation’ concept from an experiment by social psychologist Stanley
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Figure 1.1 Approaches moving from linked or associated genes to validated disease genes.

Chapters detailing each aspect are indicated

Milgram in 1967, which suggested that two random US citizens are connected, on

average, by a chain of six acquaintances. For example, a candidate gene may regulate

a gene that regulates a gene that, in turn, may act upon the target disease pathway.

Faced with the complexity of relationships between genes, geneticists must be able to

expand pathways and identify complex cross-talk between pathways. As this process

can extend almost interminably to the point that virtually every gene is a candidate

for every disease, knowledge management is important to help weigh up evidence

to prioritize genes for either initial analysis or follow-up.

Geneticists can rarely afford to be authorities on every disease that they study, nor

can they expect to know the details of all gene and pathway interactions. Therefore,

bioinformatics and effective use of disease biology resources on the Web are needed

for quick evaluation of the role of each candidate and its related pathways with respect

to the target phenotype. Figure 1.1 illustrates some of the areas to be effectively

utilized by geneticists to formulate the questions that need to be asked to move from

candidate genes to disease genes. These areas of biology are touched on directly or

indirectly throughout this book, so chapters that may help to formulate and perhaps

answer these questions are indicated in the figure.

Literature, as an embodiment of (almost) all prior knowledge, is the most power-

ful resource to support this process, but it is also the most complex and confounding
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data source to search. To expedite this process, some databases have been con-

structed that attempt to encapsulate the available gene/disease-focused literature,

such as Online Mendelian Inheritance in Man (OMIM) (http://www.ncbi.nlm.nih.

gov/entrez/query.fcgi?db=OMIM). These centralized data resources can often be very

helpful for gaining a quick overview of an unfamiliar pathway or gene, but inevitably

one needs to re-enter the literature to build up a fuller picture and to answer the ques-

tions that are most relevant to the target phenotype or gene. The Internet is also an

excellent resource to help in this process; this probably makes the ubiquitous search

engine Google (http://www.google.com) one of the most powerful bioinformatics

tools. Well-chosen Google keywords can usually return highly relevant information

or links to tools and databases that contain information being sought, while Google

Scholar (http://scholar.google.com/) can offer even more focused results. We offer

pointers throughout this book to effective literature-searching strategies, and to some

of the best tools and databases related to genes, proteins, pathways and disease biol-

ogy on the Internet, but regular Google searches are also necessary to keep abreast

of the latest tool and database developments.

1.3.2 Data management, integration and mining

Efficient application of knowledge relies on well-organized data. Dependent on sta-

tistical analysis, genetics is also highly dependent upon good data, increasingly in

very large volumes. Accessing available data, particularly in bulk, is often the biggest

informatic frustration for geneticists. In Chapter 2 of this book, dealing with data

entry and manipulation, and taking the first steps in software coding, we have tried to

give some pointers for overcoming some of these frustrations. Generally, we focus on

accessing data from public databases and some of the more lightweight methods of

analysing data in locally installed databases with Perl and similar coding languages.

Methods of industrial-scale genetic data curation and analysis, in the form of either

‘off the shelf ’ or custom-built laboratory information-management systems (LIMS),

belong to a specialist area beyond the scope of this book.

1.3.3 Mastering genes, genomes and genetic variation data

A key problem that frequently hinders effective genetic data mining is the localization

of data in many independent databases rather than a few centralized repositories. A

clear exception to this is SNP data, which have now coalesced around a single central

database – dbSNP at NCBI (Sherry et al., 2001). This may have helped to stimulate

the genetics research community to complete the HapMap (International HapMap

Consortium, 2003), which has enabled the comprehensive characterization of linkage

disequilibrium (LD) and haplotype relationships between SNPs in four population

samples. As mentioned earlier, HapMap is revolutionizing genetic analysis, but this
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resource is not without caveats, so we provide a comprehensive review addressing

some of these issues in Chapter 3.

Perhaps with the exception of dbSNP, most database development in bioinformat-

ics has not been implicitly designed for geneticists; instead, genomic databases and

genome viewers have generally been developed to aid the annotation of genes and

the human genome. Of course, such data are vital for genetics, but this development

may explain why the available tools often appear to lack important functionality for

the geneticist. One has to make use of what functionality is available, although some-

times this means using tools in ways that were not originally intended (for example,

many geneticists use BLAST to identify sequence primer homology in the human

genome, but few realize that the default parameters of this tool are entirely unsuited

for this task). We will attempt to address these issues throughout this book and of-

fer practical methods to get the most value from existing tools wherever possible.

In Chapter 4, we examine the use of human genome browsers for genetic research.

Tools such as Ensembl and the UCSC human genome browser annotate important

genetic information on the human genome, including SNPs, microsatellites and, of

course, genes and regulatory regions. User-defined queries place genes and genetic

variants in their full genomic context, giving very detailed information on nearby

genes, promoters or regions conserved between species, including a number of verte-

brate species that now have complete genome sequences. Sometimes this bewildering

wealth of information might even be seen as a hindrance to the clear understanding

of gene function. Therefore, in Chapter 5, we discuss defining the boundaries and

full complexity of a gene from all available data so that genetic analysis can effectively

evaluate it.

It is hard to overstate the value of genomic information for genetics. For example,

cross-species genome comparison is invaluable for the analysis of function, as inter-

species sequence conservation is generally thought to be restricted to functionally

important gene or regulatory regions. This makes comparative genome analysis one

of the most powerful tools for identifying potential regulatory regions or undetected

genes. Chapter 6 deals with this whole area in detail, while several other chapters in

this book cover related tools and databases to support these approaches (see Chapters

12 and 16).

1.3.4 Genetic study design and analysis

Despite the recent improvements in the throughput of genetic and genomic tech-

niques, the genes that contribute to the most common human diseases are still elusive.

By contrast, the identification of genes mutated in rare single-gene disorders (so-

called Mendelian or monogenic disorders) is now relatively straightforward if suitable

kindreds are available. The identification of the genes responsible for a plethora of

monogenic disorders is one of the genetics success stories of the late 1980s and the

1990s; genes identified include, to name but a few, CFTR (cystic fibrosis; Riordan
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et al., 1989), Huntingtin (Huntington’s disease; Huntington’s Disease Collaborative

Research Group, 1993), Frataxin (Friedreich’s ataxia; Campuzano et al., 1996) and

BRCA1 in breast and ovarian cancer (Miki et al., 1994). Some evidence suggests

that an understanding of Mendelian phenotypes may also help to identify genes in-

volved in complex disease; for example, PPARγ variants have been implicated in both

monogenic and complex forms of type II diabetes (Altshuler et al., 2000b; Savage

et al., 2003). Therefore, Chapter 7 addresses some of the unique issues raised during

the process of identifying monogenic disease gene mutations.

Unfortunately, identification of genes with a role in complex (i.e. multigenic)

disease has been far less successful. Notable examples are the involvement of APOE

in late-onset Alzheimer’s disease (Saunders et al., 1993) and the role of NOD2 in

Crohn’s disease (Hugot et al., 2001). However, genes for most of the common complex

diseases remain elusive. Our ability to detect disease genes is often dependent on the

analysis method applied. Methods for the identification of disease genes can be

divided neatly into two broad categories, linkage and association. Although many

common principles apply to both of these study types, each approach has distinct

informatics demands, which are reviewed in detail in Chapter 8.

Unlike single-gene Mendelian diseases, complex genetic diseases are caused by the

combined effect of multiple polymorphisms in a number of genes, often coupled

with environmental factors. The successes of linkage analysis in the rapid identifi-

cation of Mendelian disease genes have spawned large-scale efforts to track down

genes involved in the more common complex disease phenotypes. Unfortunately,

these efforts have been largely unsuccessful to date, mainly because each gene with

phenotypic relevance is thought to make a relatively small contribution to disease

susceptibility. These small effects are likely to be below the threshold of detection by

linkage analysis in the absence of unfeasibly large sample sizes (Risch, 2000; Wang

et al., 2005; see Chapter 18).

Association studies have three main advantages over linkage studies for the anal-

ysis of complex disease: (i) case-control cohorts are generally easier to collect than

extended pedigrees; (ii) association studies have greater power to detect small ge-

netic effects than linkage studies, a clear example being the insulin gene, which shows

extremely strong association with type 2 diabetes, but very weak linkage (Spielman

et al., 1993); (iii) LD typically stretches over tens of kilobases rather than several

megabases (Reich et al., 2001), allowing focus on much smaller and more manageable

loci. Among other reasons (discussed in Chapter 8), this is because an association-

based approach exploits recombination in the context of the entire population, rather

than within the local confines of a family structure.

Of course, this last point is the other side of the double-edged sword of marker

density and resolution mentioned in the context of linkage analysis above. The trade-

off is reduced range over which each marker can detect an effect, resulting in a

need for increased marker density, scaling up to a genome-wide requirement of

hundreds of thousands of SNPs. In terms of technical requirements, the new ultra-

high-density, oligonucleotide-based SNP genotyping panels address these increased
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needs (Matsuzaki et al., 2004). But, unfortunately, there is another trade-off, which

is a dramatically increased level of testing, leading to a very high number of chance

associations (see Chapter 18 for detailed discussion of these issues).

The distinct issues that linkage and association studies of complex diseases each

raise can be addressed to varying degrees by bioinformatics analysis. In the case

of linkage studies, the very large regions identified call for rigorous prioritization

of genes and markers for further analysis based on biological rationale and disease

understanding. In the case of association analysis, the problems stemming from lack

of power and issues of multiple testing can also be ameliorated by filtering results

with different forms of rationale. Whichever method is employed, comprehensive

informatics input at each stage can contribute to the quality, efficiency and outcome of

a study. Chapters 8 and 10 review the elements of experimental design and statistical

analysis that can help to address intrinsically some of these issues, while Chapters

9 and 18 address in detail the bioinformatics approaches that can be used to define

a locus or series of genome-wide associations, allowing a logical and systematic

approach to marker and gene selection, prioritization, and subsequent genetic and

biological analysis. This can simultaneously reduce the cost and complexity of a

project and improve the chances of successfully discovering a phenotype-genotype

correlation.

1.3.5 Moving from candidate genes to disease alleles

Ultimately, the biologist requires evidence of a change in function to support a

hypothetical genetic association; bioinformatics has a role to play here, too. For

example, DNA variants that alter subsequent amino-acid sequences can be checked

for potential functional consequences by a range of software tools (Chapters 11

and 13). Similarly, a thorough bioinformatics characterization of putative regulatory

elements can give an indication of the possible impact of polymorphisms on splicing

and expression levels (Chapter 12). Finally, our understanding of the functional

elements of the genome is still expanding; the most startling example of this is our

knowledge of miRNA. This large class of small, non-coding RNAs was almost unheard

of when the first edition of this book appeared (July 2003). Now, however, miRNAs

are recognized as one of the major regulatory gene families in eukaryotic cells (Kim

and Nam, 2006). We hope Chapter 14 atones for the shocking omission of coverage

of this important domain of biology in the first edition!

1.3.6 Analysis at the genetic and genomic data interface

The final section of this book addresses some of the emerging issues that geneticists

face as the mature fields of genomics and genetics become increasingly closely inter-

faced, mainly through the complementary application of microarray technology to
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some of the most complex genetic problems. Chapter 15 presents a general overview

of the microarray as a genomics platform and some of the issues that may arise in

dealing with data from this technology. Chapter 16 addresses one of the most exciting

applications of microarray technology – analysis of gene expression as a quantitative

trait. Studies in mice are identifying genetic variants that influence a wide range of

gene-expression phenotypes; these are, in turn, identifying complex transcriptional

regulatory modules that may be megabases away from the gene(s) being regulated (Li

et al., 2006). Similar studies are also yielding results in man. For example, Stranger

et al. (2005) performed a genome-wide quantitative trait analysis of 630 genes in

the Caucasian HapMap cell lines. Using HapMap genotypes, they identified many

regions with statistically significant associations between specific SNPs and expres-

sion variation in the HapMap lymphoblastoid cell lines after correcting for multiple

tests. Their results suggest that regulatory polymorphism is widespread in the hu-

man genome, not necessarily in the immediate 5′ region of genes. Such studies will

significantly enhance our ability to annotate the non-coding part of the genome and

interpret functional variation.

Another key application of oligonucleotide microarray technology is in the field

of oncology. Chapter 17 reviews some of the distinct bioinformatics challenges that

face geneticists studying cancer or, more appropriately, cancer genomes – each with

its own unique array of point mutations, copy-number alterations and gross chro-

mosomal changes.

Genome-wide association studies are perhaps the area of genetics where mi-

croarray technologies are making the biggest impact. The new generation of SNP-

genotyping arrays, which allow simultaneous testing of hundreds of thousands of

SNPs, is revolutionizing genome-scan analysis and the search for genes that influ-

ence common genetic traits. A number of major studies are now under way, and

many more are in planning, to perform association scans with LD to detect risk-

associated variants in large population-based sample collections (Thomas et al.,

2005; http://www.ncbi.nlm.nih.gov/WGA/). However, these studies are also creating

problems for geneticists on an unprecedented scale. The foremost among these issues

is probably type I error (false-positive association) due to multiple testing. More than

ever, effective bioinformatics is required to help to filter and prioritize the outputs

of these genome-wide scans. Chapter 18 examines these issues in detail and suggests

some potential bioinformatics solutions for this entire area of research.

In the final chapter of this book, Chapter 19, we address one of the key end points

of genetics research – the development of new drugs and therapeutics. This domain of

genetics research was inexplicably missing from the first edition of this book, despite

being so close to the heart of its editors and most of the contributors! The development

of new therapeutics is often cited as one of the primary objectives of a genetic study,

but, unfortunately, so far there have been very few published examples of genetic

associations being translated into drugs, although this may already be changing

(Roses et al., 2005). Aside from drug discovery, genetics is also being used to clarify

the basis of the observed interindividual variability in drug response, the nascent
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field of pharmacogenetics. We expect that the study of pharmacogenetics will expand

further, as it is seen increasingly as a requirement for drug development by regulatory

authorities, such as the US Food and Drug Administration (FDA) (Woodcock, 2005),

and as public-domain databases are established to collect pharmacogenetic data

(Gurwitz et al., 2006). Bioinformatics has a great deal to offer genetics focused either

on drug discovery or drug response. Both usually involve finite ‘universes’ of genes; in

the case of drug discovery, it is the druggable components of the genome (Hopkins

and Groom, 2002), and in the case of pharmacogenetics, it is genes known to be

involved in drug absorption, dissemination, metabolism or excretion (collectively

known as ADME genes).

1.4 Conclusions

On behalf of all the contributors, we sincerely hope this book will help geneticists to

design and carry out effective genetic analyses. Effective bioinformatics can have a real

impact on the success of laboratory research, but it is not intended as a replacement

for the laboratory process. Misconceptions regarding the power of bioinformatics

as a stand-alone science are perhaps among the biggest mistakes that bioinformatics

specialists can make and may even explain a degree of prejudice against bioinfor-

matics, which is perceived by some as an ‘in silico’ science with little basis in reality.

Taken to an extreme and without both a balanced understanding of the application

of software tools and a good appreciation of basic biological principles, this is exactly

what bioinformatics can be; but where bioinformatics proceeds as part of ‘wet’ and

‘dry’ cycles of investigation, both processes are stronger as a result.

1.4.1 New opportunities for the geneticist

Another criticism of bioinformatics also reveals a possible strength. Bioinformatics

scientists often need to be generalists, covering a vast knowledge domain. This rarely

allows time for the development of in-depth expertise in more than a very limited

range of areas; however, it does offer great opportunities to spot potential synergies

between different research domains. Genetics has the potential to affect just about

every area of biology, so it might be worth highlighting a few of these for particular

attention.

Epigenetics – ‘It’s the Epigenome, stupid!’

Good advice to any geneticist. During the 1992 US presidential campaign, James

Carville, an adviser to Bill Clinton, decided that the push for the presidency needed

focus. Drawing on electoral research, he came up with a simple focus for the
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campaign. At every opportunity, James Carville wrote four words – ‘IT’S THE ECON-

OMY, STUPID!’ – on a whiteboard for Bill Clinton to see every time he went out to

speak.

Clearly, this worked for Bill Clinton, so it might just work for genetics. Epigenetics

represents a secondary inheritance system that has so far been the subject of very lim-

ited investigation. Epigenetics is concerned with the study of heritable changes other

than those in the DNA sequence and encompasses two major modifications of DNA or

chromatin: DNA methylation and post-translational modification of histones (Cal-

linan and Feinberg, 2006). These modifications are critical regulatory cues, making

DNA more or less accessible to DNA-binding proteins. Preliminary evidence suggests

that epigenetics is something that geneticists must think about in their genetic analy-

sis. Flanagan et al. (2006) demonstrated evidence of significant epigenetic variability

in human sperm cells, suggesting that epigenetic patterns can be efficiently transmit-

ted across generations, possibly influencing phenotypic outcomes in health and dis-

ease. DNA methylation profiles are complex and dynamic, and can vary with develop-

mental stage, tissue type, age, the alleles’ parent-of-origin, and phenotype or disease

state. This fits very well with many of the observed characteristics of diseases such as a

defined or variable age of onset, variable penetrance, and variable tissue distribution.

In the absence of an entire chapter on this rapidly expanding area, Chapter 9 sug-

gests some approaches that might help to incorporate this information into genetic

analysis. A full chapter on epigenetics is a definite requirement for the third edition

of this book, by which time the Human Epigenome Project (Rakyan et al., 2004) will

be complete, and consideration of epigenetics may have become an integral part of

the way that geneticists work.

The HapMap – it’s more than LD

Apologies for the flippancy, but the data generated by the HapMap really are more

than LD. For example, it can clarify the demographic history and evidence of selection

in human populations (Voight et al., 2006) and of previously undetected regulatory

relationships and gene networks (Petkov et al., 2005). All of these properties make

the HapMap no less important as a resource than the human genome sequence

itself. Further investigations of these alternative applications are well under way, and

they can be effectively monitored by a simple PubMed search using ‘HapMap’ as a

keyword.

Let us not forget the ‘unknown unknown’ elements of the genome

Obviously, we will not find this category of genomic elements annotated any-

where in Ensembl or the UCSC genome browser, but they are undoubtedly im-

portant (http://en.wikipedia.org/wiki/Unknown unknown). The potential value of
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these elements is informed by former members of this class, miRNAs being one

of the most notable. Ten years ago, we had no idea that miRNAs existed, but to-

day we know of more than 300 in man, and their role in global gene regulation

appears to be critical (see below). But how can we identify these elements? Com-

parison of genomes between species is one way to highlight evolutionarily con-

strained (putatively functional) but otherwise unknown elements in the genome (see

Chapter 6). But as miRNA are also illustrating, not all functional elements are con-

served; for example, miRNA target sites show limited conservation between mouse

and human genomes. This illustrates that, for example, the huge differences between

mice and man may be due to genomic elements of which we are still completely

ignorant.

miRNA!

We missed them the first time, but we are not going to let this happen again. MiRNAs

appear to be a critical element of gene regulation that genetics needs to account for.

Once the reader has finished Chapter 14, boring old 3′ UTR SNP associations will

never seem the same again.

How much do we really know about gene regulation?

Just as our knowledge of the role of miRNA is revealing unknown mechanisms of

gene regulation, the identification of cis-acting expression quantitative trait loci is

starting to challenge the dogma of our knowledge of the promotion of gene expres-

sion (Chapter 16). Knowledge that regulatory control or promoter elements may be

located more than a megabase away from a gene obviously makes genetic analysis

potentially very difficult. This makes detailed bioinformatics characterization of ge-

netic association data all the more important. Tools such as GeneNetwork.org are

starting to address some of these issues, but this is still an area that all geneticists

should watch closely.

Carriage return

These are just a few of the issues that geneticists may have to address in the next few

years. In this introduction, we have briefly examined ways in which genetics can be

assisted by bioinformatics; we now invite the reader to more detailed coverage of

each of these areas in the remaining chapters of this book.
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2.1 Introduction

Geneticists must learn to program: for efficiency, to avoid introducing errors into

data, and to make simple what would otherwise be unfeasible. If a geneticist were

to learn just one programming language, Perl would be an excellent choice; it is

especially valuable for the manipulation of text files, which are the input and output

of most statistical genetic software.

Our ability to learn from data relies upon the accuracy and integrity of such data.

Thus, it is critical that data be stored and managed with great care. The continual

growth in the size and complexity of genetic data has led to an increasing need for a

formal approach to data management.

Many data are in the form of a rectangle: many individuals measured at many

variables. Genetic data, however, are generally of more complex form, including

pedigree information and genetic maps. Moreover, no standard data format has

emerged, nor does there exist a comprehensive statistical genetic software package.

The analysis of genetic data generally requires the use of multiple computer programs,

each having a unique data input format.

A fundamental task in statistical genetic analyses is thus the manipulation of

data files in order to conform to the variety of input formats required by the va-

riety of software tools that must be used. Such data manipulation is cumbersome,

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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time-consuming, and error-prone, if not impossible, without the ability to program

in a language like Perl. Programming also provides the ability to automate analyses

and to perform computer simulations.

In this chapter, we describe the essential issues in the management and manip-

ulation of genetic data, focusing on the case of human linkage data, although the

basic principles apply to all types of data. Towards the end of the chapter, we provide

some sample snippets of Perl code, to give the reader a flavour of the language and to

emphasize certain features of Perl that are especially valuable for this type of work.

We include examples of code with some trepidation, as we fear that readers will run

in fright from learning to program. And so we hope that if the code frightens readers,

they will ignore it, initially, and focus on the essential ideas. But we also hope that

readers will be persuaded by our argument that geneticists must learn to program

(or hire a programmer).

2.2 Basic principles

We begin with a brief set of guiding principles for the manipulation of genetic data.

Our goals are, first, to maintain the integrity of the data; second, to be as efficient as

possible; and third, to ensure that results are reproducible.

2.2.1 Never modify data ‘by hand’

If certain genotypes are to be removed as likely to be in error, create a file of such, and

write a program that creates a new version of the data with those genotypes removed.

If the data must be reformatted for a particular software package, do not edit the

files directly; write a program to do so. Why? One then avoids the introduction of

errors, results can be easily reproduced, and the process can be automated so that, if

the primary data should change, essentially no further effort must be expended to

get back to the same point. Moreover, the computer program provides a record of

what was done.

We would like to emphasize the value of command-line programs over point-and-

click programs for this reason. Pointing and clicking can be useful for the occasional

user of software, or for preliminary, interactive analyses, but if automation is needed,

pointing and clicking is far too cumbersome, and if the analysis is to be repeated (and

it usually is), how much easier is the repeated run of a program than repeated pointing

and clicking!

2.2.2 Be organized; keep notes

When one leaves the laboratory and sits down in front of a computer, the importance

of a laboratory notebook should not be forgotten. The procedures in data analysis



OTE/SPH OTE/SPH

JWBK136-02 February 16, 2007 15:10 Char Count= 0

2.2 BASIC PRINCIPLES 19

are not unlike those of a laboratory experiment: there are often many steps to be

taken and many choices to be made at each step. Careful account must be taken of

the particular steps and the particular choices, so that the results obtained may be

understood, trusted, and reproduced. Such organization requires the investment of

some effort, but this is made in order to minimize future effort.

Computer programs can serve as a useful record of one’s analyses. However, it

is often the case that multiple short programs are written, and that each includes

some flexibility (and, indeed, we will emphasize the importance of both of these

features subsequently). And so further notes on the particulars of one’s analyses will

be desired. If copious printouts are to be avoided, a short electronic notebook might

be recommended.

It is unfortunate that statisticians have not adopted the laboratory notebook tra-

dition, especially given the growth in the size and complexity of their computer

simulations. (Statisticians’ simulation results are notoriously irreproducible.) We

hope that they soon do.

2.2.3 Reuse code

Few tasks are performed just once in a career, and so in writing a computer program,

one should consider the possibility that it may be of some use in the future. Programs

should be written in a modular and reasonably general form, and explanations

(‘comments’) should be included in order to clarify any aspects of the program that

are not obvious.

One must balance current versus future effort. If a program is written that is quite

specific to the current task, it cannot be reused without modification. If the program

is made somewhat more general (so that, for example, file names and parameter

values are specified on the command line rather than within the program), there is a

greater chance that it will be reused without modification in the future. But to write

the program in more complete generality may require considerably more current

effort without any guarantee that the added features will ever be put to use.

Modularity of software can increase the chance that one’s programming effort will

be put to future use. All of one’s tasks might be solved by a single long, strung-out

program, but it is unlikely that the same long sequence will be required unchanged

in the future. If the long program is split into many small, independent modules, it

is much more likely that some individual module will be of future use, unchanged.

Documentation of software is critical, even for code that is intended only for

the programmer’s own use. Think of yourself 3 months or 3 years hence; will you

remember what you did and be able to modify or fix your code? That the program

is written with some clarity is as important as proper documentation. If extensive

explanations are required, perhaps it is best that the code be rewritten so that its

use is more transparent. It is important that the documentation describe not only

the operation of the program, but also the assumptions that the program makes about

the input data. It is all too easy to write a program, that relies on a particular feature
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of a data set (for example, that the records are sorted, or that the columns in the data

file are in a particular order). If the software is subsequently reused on new data that do

not have this feature, the results will be incorrect. Ideally, programs should perform

extensive checking of any input data, particularly if the programs are intended for

reuse, but further comparisons of input and output data are recommended to ensure

that the data have not become garbled due to some subtle change in data format.

2.2.4 There’s probably an easier way, but . . .

The first priority in programming should be to write code that works. There are

generally many approaches to any program; do not concern yourself initially (if at all)

with finding the optimal solution. Another trade-off arises here: time to construct the

program versus time to run the program. For tasks in data manipulation, efficiency

of computation is seldom of much importance. First solve the problem. If it is later

seen to be important to reduce computation time, seek a more optimal solution, but

retain your initial solution as a benchmark.

2.3 Data entry and storage

Data seldom begin their life within a computer; ideally, they are transmitted directly

from the measuring instrument to the computer. If data are to be entered into the

computer by hand, it is best done independently by at least two people, in order to

reduce the possibility of errors. Any discrepancies between the two data sets may be

checked against the original data.

Data sets of small or moderate size can reasonably be stored in an office spreadsheet

program, such as Microsoft Excel. It is best to insert a value in every cell, using a

standardized code (such as NA) in any cells for which the data are missing, rather

than leave some cells empty. Empty cells are ambiguous: was the value missing, or

was an error in data entry made? It is best not to use special fonts (such as boldface)

or colours to encode important information, as such codes will be difficult to extract

from the software. Consistency in the coding throughout the data will, of course,

simplify its later use.

We routinely receive data as Excel files, but convert them to comma- or tab-

delimited text files prior to their use, as such text files are easily manipulated via

computer programs and are generally needed for input into statistical genetic soft-

ware. For much of our work, it is sufficient to maintain the data in such text files.

The increasing size and complexity of genetic data argue for the abandonment

of Excel or other spreadsheets as a solution for data storage, especially as Excel is

limited in the number of columns (256) and rows (about 65 000) that are allowed.

We continue to use plain text files for storing extremely large data sets (e.g. genotype

data on 500K SNPs), but for complex data (particularly for the maintenance of
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multiple projects whose data may be pooled, or for a project with a large number

of individuals measured at many phenotypes longitudinally), a formal database may

be preferred. The choice of database software depends on the size and complexity

of the data (as well as the budget). For smaller projects, open-source solutions, such

as MySQL or PostgreSQL, can work very well. For very large collections of data,

however, it might be better to use one of the commercial offerings, such as Oracle or

Sybase. In any case, if data storage and handling requirements are such that a database

is required, it will generally be necessary either to hire a dedicated employee who is

proficient in the design, implementation, and maintenance of databases, or to buy a

complete solution where the database application has already been developed. The

advantage of the latter solution is that these packages generally come with support

from the supplier. The disadvantage is the cost, which in many cases can be substantial

(although the cost of hiring a database programmer for the first solution must not

be forgotten).

We hope it is unnecessary to emphasize that all data should be backed up regularly

(and automatically), with backups kept off site so that, should a catastrophe occur,

minimal data are lost.

2.4 Data manipulation

The analysis of genetic linkage data involves a sequence of tasks: verify and correct

relationships between individuals, identify and resolve genotyping errors, identify

and resolve errors in the phenotypes and any covariates, and perform the actual

analysis. Sometimes one may then conduct computer simulations to assess the per-

formance of the statistical methods or to obtain P values that properly account for

test multiplicity.

As the different tasks involve the use of different programs, and as each such

program may have its own data input format, the central problem concerns the

manipulation of the data files to conform to the necessary input formats. The program

Mega2 (Mukhopadhyay et al., 2005) can be useful in this regard: once the data are

put into Mega2, the program can be used to create files conforming to most, if not

all, statistical genetic software of interest. We, however, have not made use of Mega2,

but instead have written our own Perl programs to convert data between formats.

It is essential, for the manipulation of genetic data files, to define a single standard

format for one’s work. For almost every linkage project we are involved in, the primary

data arrive in a unique format. One might be tempted to write new Perl programs

to convert data from each such format into that needed for each analysis program of

interest. If we are involved in 20 projects and there are 12 analysis programs we wish

to use, we would then need to write 240 different Perl programs. A better approach

is to define our own standard format, and write Perl programs to convert data from

that format to each of the 12 analysis programs, and then for each project, we write

just one Perl program to convert the data to our standard form. With 20 projects
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and 12 analysis programs, we then have 32 Perl programs. And for each additional

project, we write just one new Perl program, rather than 12.

A second important use of Perl in genetics is the automation of analyses. A partic-

ularly important example of this concerns single-marker linkage analysis (so-called

two-point analysis), in which each of about 400 markers is investigated, one at a

time, for linkage to a putative disease gene. We are aware of cases in which an in-

vestigator created, ‘by hand’, 400 input files (one for each marker), and then ran a

linkage program 400 times, again ‘by hand’, writing down the one or two numbers

that characterize the results for each marker. The problem with this approach should

be obvious. More important than the enormous waste of effort is that the manual

manipulation of data files, and the transcription of the results, can be extremely

error-prone. With proficiency in Perl, it is a simple matter to write a program that

reads all of the genetic data, steps through the markers one at a time, creates the

required input files, runs the linkage program and extracts the essential pieces of

information, and finally produces a table of the results for all markers.

Finally, Perl is extremely valuable for performing computer simulations with other

genetic software, either to explore the performance of an analysis method or to

obtain P values that make proper adjustment for the multiplicity of tests performed.

This task is much like that of automating analyses: one simulates data (either with

Perl or someone else’s program), sends it through an analysis program, extracts

the interesting bits from the output, and repeats the entire process many times. The

greatest advantage of Perl for simulations is in the extraction and tabulation of the

one or two interesting numbers at each replicate from the copious output produced

by most analysis programs. This approach can be applied to essentially any statistical

genetic software.

2.5 Examples of code

In this section, we provide some examples of Perl code, in order to give the reader a

flavour of the language and to emphasize certain features of Perl that are especially

useful for our work. We are unsure of the value of this section for a reader with no

prior Perl programming experience; such readers may wish to skip this section.

Perl programs are generally run from a terminal window in Mac OS X or Unix,

or from a command shell in Windows. The Perl interpreter will be pre-installed in

Mac OS X and most Unix distributions. A Windows version of Perl may be obtained

from http://www.activestate.com/ActivePerl.

2.5.1 The traditional first example

A traditional first example, and closest to the simplest possible Perl program, is

displayed in Figure 2.1. This program simply prints ‘Hello, world!’ to the screen. The
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#!/usr/bin/perl -w

print("Hello, world!\n");

Figure 2.1 A simple but complete Perl program

first line is necessary for Unix and MacOS, and indicates where the Perl interpreter is

located. The -w indicates that the Perl interpreter should provide warnings regarding

various constructions in Perl that, while being strictly legal, are more likely than not

to be errors.

The second line prints the desired phrase. Note that \n is the ‘newline’ character.

The semicolon indicates the end of the Perl statement.

One must create a text file containing the above code. To run the program in Unix

or MacOS, the file must be made ‘executable’, by typing, from a terminal window,

chmod +x filename, where filename is the name of the file. The program is then

run by typing the name of the file. In Windows, chmod is not needed. Instead, the

program file must be given a name of the form filename.pl. The program is

then run from a command shell by typing the name of that file or by typing perl

filename.pl.

2.5.2 Combining marker data

A common issue in genetic data manipulation is the combination of genotype data

from multiple input files. In an extreme case, one may be confronted with a single file

for each genetic marker. In Figure 2.2, we present a Perl program for reading all files

in a directory in order to combine genotype data. We are imagining here that there

is a single directory containing one file for each marker, with each file having a name

like D10S1123.txt, where D10S1123 is the marker. The files are in LINKAGE PRE

format, that is to say, each line contains the family identifier, individual identifier,

dad, mom, sex, and disease status and then the two alleles for that subject at that

marker. The aim of the first program is to read in all of the data, to store them in such

a way that we can easily work with them. This may not appear so useful in itself, but

we will show in subsequent examples how the program can be extended to perform

recoding of marker alleles, estimation of allele frequencies and generation of input

files for the LINKAGE programs.

The first line is the usual first line for a Perl program. The second and third lines

instruct Perl to be stricter in terms of what it accepts and to issue warnings for unsafe

code. This is highly recommended, as without these it is very easy to make errors

that can be very difficult to detect.

The main inconvenience of this is that it is now necessary to declare each variable

before use using the my command. For example, in line 5, my $dir declares that $dir
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers);
while(my $file=readdir(DIR)) {

next unless $file =˜ /(.+)\.txt$/;
10 my $mark = $1;

push @markers, $mark;
my $idx = $#markers;
my $infile = "$dir/$file";
open IN, $infile or die "Cannot open $infile:$!\n";

15 my $line = 0;
while(<IN>) {

$line++;
my @v=split;
if(@v<8) {

20 print "Short line at $line!\n";
next;

}
my ($fam,$ind,$father,$mother,$sex,$status,$g1,$g2)=@v;
my $id="$fam\_$ind";

25 $ped{$ind} = [$fam,$ind,$father,$mother,$sex,$status];
$gtypes{$ind}[$idx] = "$g1 $g2";

}
close IN;

}

Figure 2.2 A Perl program to read data from all data files with a .txt extension

is a scalar variable, indicated by the dollar sign, which is here assigned the character

string data. The content will be just the bit between the double quotation marks.

The advantage of having Perl enforce pre-declaration of variables is that it is very easy

to mistype a variable name, and, by default, Perl will not complain but silently create

a new variable with the mistyped name. This can lead to some extremely subtle and

difficult to track down bugs in programs. For all but very short programs, therefore,

it is generally advised to follow the practice here of adding the use strict; and

use warnings; statements to the start of your programs.

In line 6, we open a directory using a ‘directory handle’ DIR. This allows us, from

line 8, to ‘loop’ through each file in the directory; within this while loop, we read one

file name at a time from the directory until there are no files remaining to be read.

Note that if the opendir command fails, the die statement will be executed, which

stops the program and prints the message Could not open directory $dir:

$!. The variable $dir is expanded in the message to give the value we assigned in

line 5. The odd-looking variable $! is a system variable, which gives the last error

message from a system command, in this case opendir.
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In line 9, we use pattern matching to check that the file name ends in .txt;

otherwise, that file is skipped. (This is important, because the directories ‘ . ’ and ‘ . . ’

will be included, but should be skipped.) The code for the pattern matching is a bit

complicated at first glance. The first thing to note is that a period (.) matches any

character and a plus sign (+) means one or more of the previous match. To match a

literal period, it is necessary to escape the period with a backslash. The dollar sign at

the end of the pattern matches the end of the string. If we ignore the brackets for the

moment, the code in line 9 will therefore match one or more characters terminated

by .txt. The brackets around the first part .+ direct Perl to store the part of the

input string which matched this part of the pattern, and store it in the variable $1,

which is assigned to the variable $mark in line 10.

In line 11, the marker name is appended to the end of an array of all marker names,

@markers. The @ symbol indicates an array: an ordered list of values, indexed by 0,

1, 2, . . . . The index of the last item in an array is given by $#name of array, so line

12 sets $idx to the index of the last marker added, i.e., the current marker.

In line 13, $infile is assigned the full file name: the directory name followed by

a / followed by the simple part of the file name. Note how we can use variables inside

a quoted string, and they will be expanded to give the resulting string. We then open

this file in line 14, producing a ‘file handle’, IN.

In line 15, we initialize the variable $line to zero; this will be used to track the

line number of the input file, so that errors can be reported.

From line 16, we loop through each line in the input file. In a similar way to the

while loop starting at line 8, this loop will exit when there are no more lines to be

read.

In lines 17–18, we increment the line number and split the line into fields separated

by white space (any combination of non-printing characters such as spaces or tabs),

storing the results in the array @v. Lines 19–22 then check that there are at least eight

columns of data; if there are fewer, we print an error message and skip to the next

line.

In line 23, we assign the contents of the array @v to the individual variables, $fam,

$ind, etc.

In lines 24–26, we store the information on the individuals’ parents and sex, using

‘hashes’. (This is rather difficult for beginning Perl programmers, but hashes are

extremely valuable for this sort of work, as we will see in the next example.) A hash

is like an array, but the hash is keyed by an arbitrary character string rather than

indexed by numbers 0, 1, 2, . . . . Here we create a unique identifier for an individual

by concatenating the family and individual identifiers together with an underscore

character between them in line 24. Note here that we escape the underscore after

$fam because otherwise Perl would take it as part of the variable name. We then

store the pedigree information and genotype information in lines 25–26 keyed by his

unique identifier. Note that for the genotype, we also index with the variable $idx

(from line 8), which indicates which marker we are working on. We use braces {} for

the variable $id and square brackets [] for the marker index at line 26 to indicate
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to Perl that $id should be treated as a hash key and $idx should be treated as a

conventional numeric index. It is not important to understand the details of how the

data are stored in lines 25–26; the key point is that with the individuals’ identifiers,

we can access their pedigree information and genotype data.

We could avoid using hashes if we could assume that the same individuals appear

in each input file in the same order. We could then just index the data by the line

number. However, it is not always safe to make this assumption; in general, it is safer

to use hashes.

At line 28, the input file has all been read in, so we close the file, and continue with

the next file, if present.

2.5.3 Recoding alleles

The program in Figure 2.2 would be more useful if it could do some basic data ma-

nipulation. One such manipulation that is often required is allele recoding. Many

programs for genetic analysis expect marker alleles to be coded from 1 up to the

number of alleles present. The raw data, however, rarely come in this form. Mi-

crosatellite data come as allele sizes such as 180 or 225, and SNP data typically come

as a series of nucleic acid codes (A, C, G or T). It is simple to use hashes in Perl to

recode alleles, and this is a good illustration of the power of hashes. The strategy is to

use the original allele code as the key to the hash. We can use this to check whether

a numeric code has already been assigned to this allele and, if not, assign it the next

available code.

In Figure 2.3, we provide a modification of the program in Figure 2.2 which

will enable the program to recode the marker alleles into consecutive numeric codes

starting from 1. The key additions are from lines 26–37. We start at line 26 by checking

that the first allele is non-zero. (Zero typically indicates a missing value.) We then

check whether this allele has already been encountered for this marker by checking

the array @recode, which is indexed by the marker index $idx and the allele $g1.

If not, then at line 28 we assign the next available code for this marker (stored in

the array @n alleles, and then at line 29 we change the original allele code to the

numeric code. The same procedure is then followed for the second allele $g2. Note

that doing this procedure without hashes would be a much more complex operation

involving sorting and searching through the list of marker alleles.

2.5.4 Estimating allele frequencies

Another useful function of the program is to estimate allele frequencies, as most

genetic analysis programs require these, and good estimates matched with the data set

are not always available. In this case we can obtain allele estimates by simply counting

the alleles in observed individuals. While marker allele frequencies are best estimated

on the basis of unrelated individuals, such as the founding individuals in a set of

pedigrees, genotypes of such founders are sometimes not available, and simple allele
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers, @n_alleles, @recode);
while(my $file=readdir(DIR)) {

next unless $file =˜ /(.+)\.txt$/;
10 my $mark = $1;

push @markers, $mark;
my $idx = $#markers;
my $infile = "$dir/$file";
open IN, $infile or die "Cannot open $infile:$!\n";

15 my $line = 0;
while(<IN>) {

$line++;
my @v=split;
if(@v<8) {

20 print "Short line at $line!\n";
next;

}
my ($fam,$ind,$father,$mother,$sex,$status,$g1,$g2)=@v;
my $id="$fam\_$ind";

25 $ped{$ind} = [$fam,$ind,$father,$mother,$sex,$status];
if($g1 != 0) {

if(!$recode[$idx]{$g1}) {
$recode[$idx]{$g1} = ++$n_alleles[$idx];

}
30 $g1 = $recode[$idx]{$g1};

}
if($g2 != 0) {

if(!$recode[$idx]{$g2}) {
$recode[$idx]{$g2} = ++$n_alleles[$idx];

35 }
$g2 = $recode[$idx]{$g2};

}
$gtypes{$ind}[$idx] = "$g1 $g2";

}
40 close IN;

}

Figure 2.3 A Perl program to read data from all data files with a .txt extension and recode

marker alleles

counting provides unbiased estimates, without the great computational effort that

can be required to account for the relationships between individuals (Broman, 2001).

Since we have already recoded the alleles to consecutive numbers in the previous

example, it is simple to add a section to the program in Figure 2.3 to accumulate allele

count information and to estimate allele frequencies. Figure 2.4 contains a snippet of

Perl code which should go at the end of the previous program. It will estimate allele

frequencies, and store them in the double indexed @freq so that $freq[$i][$j]

will have the estimated frequency of allele $j of marker $i.



OTE/SPH OTE/SPH

JWBK136-02 February 16, 2007 15:10 Char Count= 0

28 CH 2 MANAGING AND MANIPULATING GENETIC DATA

1 my (@freq, @count);
for my $ind(keys %ped) {

my $gt = $gtypes{$ind};
for my $i(0..$#markers) {

5 my $g=$$gt[$i] || "0 0";
my @all=split " ",$g;
for my $j(0..2) {

if($all[$j]) {
$freq[$i][$all[$j]]++;

10 $count[$i]++;
}

}
}

}
15 for my $i(0..$#markers) {

my @fq=@{$freq[$i]};
for my $j(1..$#fq) {

$fq[$j] /= $count[$i];
}

20 }

Figure 2.4 A snippet of Perl for calculating marker allele frequencies

The first line of the snippet simply declares the arrays @freq and @count, where

the former was described in the previous paragraph, and the latter will keep a count

of the number of alleles observed for a given marker.

In line 2, we loop through all individuals for whom we have pedigree information,

that is, every individual we read in previously, and then in line 4 we loop through the

genotypes for each marker for this individual. If an individual did not appear in all

of the input files, some of the genotypes will be undefined, and attempting to work

with them will give a warning. We avoid this in line 5 by using the string ‘0 0’ for

any undefined genotype.

In line 6, we split the genotype on spaces to get the two alleles, and in lines 7–12

we loop through the two alleles, accumulating the counts for all non-zero alleles,

and a total count for the marker. After this, it is just necessary to loop through each

marker, and for each allele at each marker, and divide the allele counts by the total

number of counts for that marker. This is done in lines 15–20.

We can see that the logic of the frequency estimation is very simple, but it is so

simple because we have already recoded the alleles numerically, using hashes in the

previous example. If we had not done this, the operation would have been much

more complicated.

2.5.5 Automating single-marker analyses

Now that we have the alleles recoded and have obtained allele frequency estimates,

there are many things we could do. For example, we could print out the number
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1 my @lod;
for my $i(0..$#markers) {

my $datfile = "datafile.dat";
open OUT, ">$datfile" or die "Cannot open $datfile for writing: $!\n";

5 print OUT "2 0 0 5\n0 0.0 0.0 0\n 1 2\n";
print OUT "1 2 # Trait locus (2 alleles)\n";
print OUT "0.999 0.001 # Disease allele frequency\n";
print OUT "1 # Liability class\n";
print OUT "0.0 0.0 1.0 # Recessive model\n";

10 print OUT "3 $n_alleles[$i] # $markers[$i]\n";
my @fq=@{$freq[$i]};
print OUT join (" ",@fq[1..$#fq]),"\n";
print OUT "0 0\n0.0\n";
print OUT "1 0.05 0.45 # Recombination varied, increment, last value\n";

15 close OUT;
my $pedfile = "pedfile.pre";
open OUT, ">$pedfile" or die "Cannot open $pedfile for writing: $!\n";
for my $ind(keys %ped) {

my $p = $ped{$ind};
20 print OUT join ("\t",@$p);

my $gt = $gtypes{$ind}[$i] || "0 0";
print OUT "\t$gt\n";

}
close OUT;

25 my $results_file = "tempout.txt";
system("makeped $pedfile pedfile.dat n > $results_file");
system("unknown >> $results_file");
system("mlink >> $results_file");
open IN, $results_file or die "Cannot open $results_file for input: $!\n";

30 my $theta;
while(<IN>) {

if(/ˆTHETAS\s+(\S+)/) {
$theta=$1;

} elsif(/LOD SCORE =\s+(\S+)/) {
35 $lod[$i]{$theta} = $1;

print "$markers[$i]\t$theta\t$1\n";
}

}
close IN;

40 }

Figure 2.5 A snippet of Perl for running MLINK for each of many markers

of observations per marker, and obtain estimates of the success rate per marker.

We could equally well count the number of observations per individual, and check

whether a particular DNA sample appears to have worked less well than others. These

are all important steps in the quality control of the genotyping process. We are not

going to go into more details about these analyses, but instead we will finish with

a demonstration of how we could use the previous examples to automate single-

marker (i.e. two-point) linkage analysis with MLINK from the LINKAGE (Lathrop

et al., 1984) or FASTLINK (Cottingham et al., 1993) packages.

The snippet of Perl in Figure 2.5 should go at the end of the previous examples

in order to function properly. We first declare the array @lod, which will store the

calculated LOD scores for each marker at each theta value. We loop over all possible

markers (line 2), and then write the necessary information to a locus data file (lines
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3–15), and a pedigree file (lines 16–24). In line 4, the greater-than sign in ‘>$datfile’

is used to open the file for writing (as opposed to reading, as in Figure 2.2). In lines

13 and 20, join is used to write out each element of an array, in turn separated by a

space character at line 13, and a tab character at line 20.

In lines 26–28, system is used to request the operating system to execute the

specified commands; this is where the real work is done. Note that a greater-than

sign is used to have the program output sent to a file, and two greater-than signs

together indicate that the output should be appended to the file, rather than replace

the file.

In the remainder of this Perl snippet, we read through the output of MLINK,

pulling out the LOD score at each recombination fraction, and store this information

in a hash. Hence we can run MLINK for each marker, one at a time, and distil and

assemble the few essential numbers from its profuse output, which can then be

written to a file, or form a part of subsequent calculations, as, for example, in the

calculation of heterogeneity LOD scores.

We congratulate readers who have persevered through the sample Perl code and

our brief explanations. We hope that several of the techniques and idioms that we

have demonstrated in these examples can be adapted by readers for use in more

general situations. While the code looks quite complicated, the language is not as

difficult to learn as it may appear, and the great power that comes from knowledge

of Perl well justifies the effort that must be made to acquire it.

2.6 Resources

There are numerous books on Perl; we recommend those published by O’Reilly:

Learning Perl (Schwartz et al., 2005) for the novice, Programming Perl (Wall et al.,

2000) as a reference, and Perl Cookbook (Christiansen and Torkington, 2003) for

recipes encompassing many common tasks. These books, plus a couple of others,

may be purchased together on a CD at a very good price: the Perl CD Bookshelf.

There are numerous online tutorials on Perl; links to some are available at

http://www.biostat.jhsph.edu/∼kbroman/perlintro. This web page also contains a

sample Perl program for genetic data manipulation, with line-by-line explanations.

The Cold Spring Harbor Laboratory (CSHL) held a bioinformatics course in au-

tumn 2004 that included a great deal on Perl programming; all of the lecture notes

are available online at http://stein.cshl.org/genome informatics.

Enormous amounts of useful Perl code may be obtained from the Comprehen-

sive Perl Archive Network (CPAN) at http://cpan.perl.org. The CSHL lecture notes

(mentioned above) provide good explanations of how to find and install code from

CPAN. The reader may also be interested in Bioperl (http://www.bioperl.org): Perl

tools for bioinformatics and genomics research, mostly for sequence data. Readers

interested in the use of Perl for sequence data may wish to look at Tisdall (2001,

2003). Moorhouse and Barry (2004) will also be of interest.
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Mega2 (Mukhopadhyay et al., 2005), a program to facilitate the handling of genetic

linkage data, is available at http://watson.hgen.pitt.edu/register.

2.7 Summary

The ever-increasing size and complexity of genetic data has led to an increasing need

for geneticists to learn computer programming. As the most fundamental task for

the genetic data analysis involves the manipulation of data files, proficiency in a

computer language, such as Perl, with which such manipulation of text files is most

natural, is recommended. For large, complex data sets, the use of a formal database,

such as MySQL, in place of spreadsheet software, such as Microsoft Excel, may be

important for the maintenance of data integrity and fidelity. Never modify data by

hand, be organized and keep notes, and plan for the future but get the job done.

Learn Perl!
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3
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3.1 Introduction

Since its inception in 2002, the International HapMap Project (International HapMap

Consortium, 2003; 2005) has generated a vast number of data describing patterns

of DNA sequence variation (linkage disequilibrium (LD)) in man. These data can

be used to assist researchers in the mapping of loci affecting disease, drug response

and other human traits. In addition, the data serve as a resource for research in other

more general aspects of population genetics, such as investigations of population

structure (Weir et al., 2005) or aiding the identification of regions that may have

been subject to evolutionary pressure in different populations (Nielsen et al., 2005),

and in molecular genetics, as in the identification of sequence elements associated

with regional variations in recombination rate (Smith et al., 2005). In this chapter, we

will review the approaches to downloading and viewing of these data and provide an

overview of factors affecting the choice of SNPs for genotyping in association studies.

3.1.1 Historical background

The unveiling of the first draft of the human genome in June 2000 (Yamey, 2000)

enabled a rapid acceleration in research aimed at identifying the genetic variation

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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underlying human traits. The availability of a comprehensive reference sequence

and the concomitant annotation of the human transcriptome permitted researchers

engaged in mapping disease genes and other traits to identify more easily polymor-

phisms located within candidate genes or chromosomal regions identified through

linkage studies. The availability of the human genome sequence and the continuing

expansion of publicly available repositories of polymorphism data such as dbSNP

(Sherry et al., 2001), coupled with advances in chemistry and technology in rela-

tion to both sequencing and genotyping (and their associated cost reductions), have

allowed genetic studies to be performed more efficiently and enabled researchers

to tackle more complex problems. Nevertheless, until recently, the majority of hu-

man genetic variation was either unknown or poorly characterized, and an in-depth

study of a candidate gene or region typically required a considerable investment of

both time and financial resource in order to locate, characterize and select relevant

polymorphisms for genotyping.

During 2001, some key observations regarding the structure of the human genome

were published. Of these, two are particularly illustrative of the thinking in the period

immediately preceding the initiation of the International HapMap Project. Firstly,

within closely linked regions extending over tens to hundreds of kilobases (kb), the

diversity of haplotypes (the alleles present on a single chromosome at a number of

neighbouring polymorphic sites) was observed to be limited. It was hypothesized that

the limited diversity within such ‘haplotype blocks’ was a result of a punctuation of the

genome by recombination hotspots (Daly et al., 2001). Secondly, it was observed that

within regions of limited haplotype diversity a reduced number of polymorphisms

(haplotype tag single-nucleotide polymorphisms (htSNPs)) were capable of defining

the genetic variation present (Daly et al., 2001; Johnson et al., 2001; Patil et al., 2001).

Together, these observations led to hopes that, by the application of marker selection

based upon haplotype patterns across the human genome, studies of association

between genetic variants and human traits might be made much more cost-efficient

than previously proposed. For limited regions, it was feasible to characterize genetic

variation by re-sequencing and then implement ‘tagging’ methodology. However, in

order to apply tagging in a cost-effective manner on a larger scale, a comprehensive

map of human genetic polymorphisms and the interrelationships between their

alleles (a haplotype map) would need to be generated. To this end, the International

HapMap Project was officially initiated in October 2002, with the aim of generating

a freely available haplotype map of the human genome (the HapMap), to provide a

resource for researchers attempting to identify genes involved in human phenotypic

variations such as complex diseases and responses to drugs and environmental factors

(International HapMap Consortium, 2003).

3.1.2 Subjects, SNP selection and genotyping

The volunteer subjects selected for HapMap genotyping comprised samples from

four populations, summarized in Table 3.1. It is important to note that the naming
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Table 3.1 Recommended population descriptors and abbreviations

Population descriptor Abbreviation Subjects

Han Chinese in Beijing, China (CHB) 45 unrelated individuals

Japanese in Tokyo, Japan (JPT) 45 unrelated individuals

Yoruba in Ibadan, Nigeria (YRI) 30 parent–offspring trios

CEPH* (Utah residents with ancestry (CEU) 30 parent–offspring trios

from northern and western Europe)

*Centre d’Etude du Polymorphisme Humain

convention chosen for the populations from which the samples were ascertained

was not idly conceived, and its underlying rationale is based on cultural, ethical

and scientific considerations. The International HapMap Consortium recommend

that, to avoid over generalization, the full population descriptor (Table 3.1) be sup-

plied in any article before any use of shorthand such as ‘Yoruba’, ‘Japanese’ or the

three-letter abbreviations, and all authors who refer to HapMap data in their pub-

lications should adhere carefully to the latest guidelines and naming conventions

(http://www.hapmap.org/citinghapmap.html). Where the JPT and CHB samples are

analysed together, it is recommended that the term ‘analysis panel’ be used (Inter-

national HapMap Consortium, 2005).

The criteria used to assign membership to the populations are briefly described

on the project website as follows: ‘For the Yoruba, donors were required to have

four of four Yoruba grandparents. For the Han Chinese, donors were required to

have at least three of four Han Chinese grandparents. For the Japanese, donors

were simply told that the aim was to collect samples from persons whose ancestors

were from Japan. The criteria used to assign membership in the CEPH population

have not been specified, except that all donors were residents of Utah.’ Additional

background information on the populations is available via the project website. For

researchers wishing to perform their own laboratory-based work on these panels,

DNA samples and cell cultures for all the subjects genotyped in the project are

available via the Human Genetic Cell Repository at the Coriell Institute for Medical

Research (http://ccr.coriell.org/nigms/products/hapmap.html).

In phase I of the project, the aim was to achieve genotyping of SNPs at an ap-

proximate spacing of 5 kb across the human genome. At the outset of the project,

the publicly available data describing the identity, validation status and frequency

of SNPs was insufficient for the construction of such a map, and an extensive SNP

discovery effort was undertaken. SNPs selected for genotyping in phase I were delib-

erately biased toward those with minor allele frequencies greater than 5 per cent, and

SNPs in coding regions were prioritized within each 5 kb bin (International HapMap

Consortium, 2005). In addition to the overall target of an average spacing of 5 kb,

the selection of SNPs in phase I was augmented in 10 of the 500-kb regions stud-

ied as part of the ENCODE ( ENCyclopedia of DNA Elements) project (ENCODE

Project Consortium, 2004). These regions were re-sequenced in 48 unrelated subjects
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(16 YRI, 16 CEU, eight CHB and eight JPT), and genotyping was attempted for all

SNPs whether novel or publicly available in dbSNP.

The genotyping was conducted as a multicentre, international effort using a range

of technology platforms. The target of one SNP per 5 kb was reached in March 2005

(one SNP per 279 bp was achieved in the ENCODE regions), and a final phase I

data freeze made available in June 2005 (public release no. 16c.1). These data have

been comprehensively described (International HapMap Consortium, 2005) and

comprise 1 007 329 SNPs that were both polymorphic in each of the three analysis

panels (YRI, CEU and CHB + JPT) and passed quality-control (QC) filters.

A second phase of the project, aimed at increasing the density of genotyped SNPs,

has subsequently been completed in a remarkably short period of time. The combined

phases I and II data (public release no. 19, October 2005) comprised QC-filtered

genotypes for between 3 806 920 and 3 903 524 SNPs in each of the four populations. A

small proportion of SNPs (31 000) have subsequently been excluded in the remapping

to NCBI Build 35 coordinates (public release no. 20, January 2006). The latest data

releases represent an average density of approximately one SNP per kb and provides

greater coverage of rare SNPs (less than 5 per cent minor allele frequency) that were

biased against during the phase I SNP ascertainment.

3.2 Accessing the data

When the International HapMap Project was initiated, it was decided that data would

be released into the public domain as quickly as possible after their generation.

However, it was initially protected by a licence to prevent users from filing patents

that would restrict use of the data by others and, as an unavoidable consequence,

this prevented the incorporation of the data into other public databases and tools.

In December 2004, a decision was made to lift the licence restrictions, making the

data freely available to all users for any purpose (http://www.genome.gov/12514423).

Following this decision, HapMap data has become available via a number of different

sources. More information about the HapMap data release policy can be found at

http://www.hapmap.org/datareleasepolicy.html.

3.2.1 Downloading HapMap data

Genotype data, allele and genotype frequencies, LD data, phase information, SNP

assay details, protocol and sample documentation are available for download from

the primary sources: the HapMap website (http://www.hapmap.org) and its Japanese

mirror site (http://hapmap.jst.go.jp). Novel SNPs identified by the HapMap Project

have been submitted to the public domain variation databases dbSNP and JSNP,

and the data incorporated into Ensembl and the UCSC Generic Genome Browser

(Table 3.2).
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Table 3.2 Examples of publicly available databases incorporating HapMap data

Examples of HapMap

Database information available Reference URL

HapMap Primary data source (Thorisson et al., 2005) http://www.hapmap.org

mirrored at

http://hapmap.jst.go.jp

dbSNP Individual genotypes (Sherry et al., 2001) http://www.ncbi.nlm.

Allele and genotype nih.gov/SNP

frequencies

LD plots

JSNP Genotype frequencies (Hirakawa et al., 2002) http://snp.ims.u-tokyo.ac.jp

Ensembl Individual genotypes (Hubbard et al., 2005) http://www.ensembl.org/

Allele and genotype index.html

frequencies

LD plots

Tag SNP identification

UCSC Genome Recombination rates (Kent et al., 2002) http://genome.ucsc.edu

Browser and hotspots hotspots

Sequencing coverage

and allele frequencies

in ENCODE regions

A user’s guide to the International HapMap Project website has recently been

published (Thorisson et al., 2005) and should be referred to for more details of the

data and tools incorporated. Here we provide a brief summary of the three main

routes for accessing individual genotype data from the HapMap website: bulk down-

load, the Generic Genome Browser and HapMart. All routes can be accessed from

http://www.hapmap.org/. All data downloaded from the HapMap site use refSNP

identifiers (reference SNP identifiers assigned to non-redundant clusters of varia-

tions within dbSNP).

Bulk download

Bulk download can be used either to obtain the complete HapMap data set or data

sets for specific chromosomes and populations. Three versions are available: non-

redundant, redundant-filtered and redundant-unfiltered. The non-redundant data

set eliminates duplicate genotypes (generated from sample duplicates within a plate

or where a SNP has been genotyped in the same population by more than one

centre) and records that fail QC filters. In the redundant-filtered data set, duplicate

genotypes are retained, but records that fail QC filters are removed. The redundant-

unfiltered data set is the unprocessed genotype data, in which records that fail QC



OTE/SPH OTE/SPH

JWBK136-03 February 16, 2007 15:13 Char Count= 0

40 CH 3 THE HapMap – A HAPLOTYPE MAP OF THE HUMAN GENOME

filters are retained but flagged. All data are in a text format, arranged with one row per

SNP and one column per individual/genotype and item of supporting information

(chromosome, position, genome build, assay ID, strand, etc.).

The Generic Genome Browser (GBrowse)

The Generic Genome Browser (Stein et al., 2002) is incorporated into the website and

can be used to select a region of interest for download by searching for a chromosomal

position, gene or SNP. Individual genotype data, allele and genotype frequency data,

LD data and tag SNP data can be downloaded in text format. Downloaded genotype

data is in the same format as the bulk download data and can be opened directly in

a locally installed copy of HaploView (Barrett et al., 2005).

HapMart

HapMart has been developed by BioMart (Gilbert, 2003) and enables the retrieval of

genotype data, frequency data or assay details for HapMap SNPs. Filters allow data

to be retrieved by population, minor allele frequency, monomorphic status, gene

location, refSNP identifier, chromosomal region, gene name and ENCODE region.

Fields to be exported can be specified and, in addition to standard text formats,

Excel-formatted output is also supported.

3.2.2 Viewing HapMap LD data

As previously described, the Generic Genome Browser incorporated into the project

website can be used to select regions of interest for data download. The browser can

also be used to visualize LD plots of HapMap data with the integrated HaploView

software (Barrett et al., 2005), which can be configured to display D′, r 2 or LOD score

values between markers. Data for multiple populations can be viewed simultaneously

(Figure 3.1). In addition to displaying LD plots, the browser can also be configured

to display haplotypes generated by the PHASE program (Stephens and Donnelly,

2003) or to run the Tagger software (de Bakker et al., 2005) for the selection of tag

SNPs (see Section 3.3.2). HapMap LD data can be viewed alongside a variety of other

features, including Entrez genes and RefSeq mRNAs. Additionally, it is possible to

upload one’s own annotations and share these with colleagues and collaborators.

The integration of the web-based Generic Genome Browser with software such

as HaploView, Tagger and PHASE offers a range of functionality that may satisfy

many small- or medium-scale project needs, without the necessity to implement

local databases and tools. If large-scale projects are contemplated, users may find

it advantageous to download the data and manipulate them locally (the Generic
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Figure 3.1 The Generic Genome Browser with incorporated HaploView LD plots and Entrez genes
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Table 3.3 Examples of software for viewing linkage disequilibrium

Software Reference URL

GOLD (Graphical overview (Abecasis and Cookson, http://www.sph.umich.edu/csg/

of linkage disequilibrium) 2000) abecasis/GOLD

GOLDsurfer (Pettersson et al., 2004) http://www.umbio.com (part of

Evince graphical software package)

HAPLOT (Gu et al., 2005) http://info.med.yale.edu/genetics/

kkidd/ programs.html (incorporates

HaploView)

HaploView (Barrett et al., 2005) http://www.broad.mit.edu/mpg/

haploview/index.php

JLIN (Java LINkage http://www.genepi.com.

disequilibrium plotter) au/projects/jlin

LDheatmap (R package) http://stat-db.stat.sfu.ca:8080/

statgen/research/LDheatmap

Marker (Forton et al., 2005) http://www.gmap.net/marker

PowerMarker (Liu and Muse, 2005) http://statgen.ncsu.edu/

powermarker/index.html

SNPAnalyzer (Yoo et al., 2005) http://www.istech.info/istech/

board/login form.jsp

Genome Browser, HaploView, Tagger and PHASE are among the freely available

software applicable for this purpose). Of course, even for small-scale projects, if the

user has a specific preference or need for an alternate LD viewer (Table 3.3) or tag

SNP selection algorithm (Section 3.3), or wishes to perform other manipulations,

data will need to be obtained via one of the methods described in Section 3.2.1.

3.3 Application of HapMap data in association studies

3.3.1 Direct and indirect association studies

The key factors required in genetic association studies that are likely to identify

genuine loci contributing to complex traits include (i) sample collections that are

adequately powered to detect the likely effect size expected to be exhibited by an

individual genetic component; (ii) sample ascertainment that is relatively free from

biases (such as population substructure in case-control studies which can lead to false

associations); and (iii) availability of a well-ascertained and suitably powered sample

collection in which initial findings are replicable. Ideally, findings from genetic asso-

ciation studies should also be supported by functional data, demonstrating the role

of the genetic variant in question (Editorial, 1999; Cardon and Bell, 2001). However,

even in the presence of adequately powered sample collections (and assuming a
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genuine locus resides in the gene/region studied), the likelihood of detecting an

association can be heavily influenced by the choice of markers.

The choice of markers in association studies may be driven by the hypothesis that

the variant studied is, itself, likely to influence a trait through influence on protein

structure, expression levels or patterns, etc. (the direct approach), or by the hypoth-

esis that the variant studied may be in LD with a functional variant (the indirect

approach). Both approaches have certain advantages and disadvantages. In the direct

approach the bias toward variants with a likely functional consequence typically

results in a vastly reduced genotyping burden. However, the likely function of a given

variant is not always easily predicted. At this time, this is especially true for variants

affecting regulation of expression; as such, there is no guarantee of including all the

potentially relevant polymorphisms in a study, even in a well-characterized region.

In the indirect approach, no prior hypothesis is required in relation to the function

of variants. The objective is, instead, to capture as much of the common genetic

variation as possible. Although an informed selection of SNPs is used to keep geno-

typing costs within affordable limits, the more comprehensive nature of the indirect

approach typically results in a greater genotyping burden than the direct approach.

In reality, most association studies performed represent a combination of both ap-

proaches. For example, in studies in which the indirect approach dominates, marker

selection is often deliberately biased toward, or supplemented with, variants with

clear potential for functional effects. Conversely, from the results of an association

study motivated by the direct approach, it would not be possible without further

research to establish whether an observed association was due to the variant geno-

typed, or was the result of LD with some other variant that had not previously been

recognized as relevant.

There can be no doubt that the HapMap data are a valuable resource for the design

of association studies motivated by the direct approach. For researchers working

on the premise of the common disease/common variant hypothesis, coverage of

common variation is comprehensive. For less frequent variants, although coverage is

incomplete, genotyping was attempted for all SNPs annotated within dbSNP as non-

synonymous. Overall, the project has delivered data on a staggering number of novel

SNPs, many of which may be hypothesized to have a putative function and, therefore,

be eligible for selection in such a study. However, one of the primary drivers for the

HapMap Project was to inform, and make more efficient, the selection of SNPs on

the basis of LD in indirect association studies. Therefore, it is the use of the HapMap

data in the context of indirect association studies that will form the subject of the

remainder of this section.

3.3.2 The use of LD to inform SNP selection

Within the framework of an indirect approach, a key factor affecting the power

of an association study is the level of correlation between the markers selected for
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genotyping (tag SNPs) and un-genotyped markers. Correlation is often characterized

by the coefficient of determination, r 2 (Hill and Robertson, 1968), which describes

the proportion of information at one variant that may be captured by another single

variant. If an individual variant is predicted by a group of variants, such as haplotypes

or genotype data at multiple SNPs in which haplotypes are not resolved (unphased

genotypes), the notation generally used is R2 (Chapman et al., 2003; Clayton et al.,

2004), although, for convenience, r 2 is used in some publications to describe both

univariate and multivariate coefficients of determination. Both have the attractive

property of having a direct relationship with statistical power. For example, if (for

a given effect size, allele frequency and mode of inheritance) N individuals were

required to achieve 80 per cent power to detect an effect at a directly genotyped

causal SNP, then N/r 2 individuals would be required to achieve the same power via the

indirect method, given the r 2 between the genotyped marker and the ungenotyped

causal variant (Pritchard and Przeworski, 2001).

Univariate (pairwise) correlations between SNPs are exploited by programs such

as ldSelect (Carlson et al., 2004) and CLUSTAG (Ao et al., 2005) to identify tag SNPs.

ldSelect evaluates pairwise r 2 and forms ‘bins’ of SNPs, each of which has an r 2 greater

than a user-specified threshold with one or more SNPs within that bin. Within each

bin, ldSelect distinguishes between tag SNPs (those which are, in isolation, capable

of capturing all the other SNPs in the bin at the specified level of r 2) and ‘other’ SNPs

(those which may be captured by any of the tag SNPs in the bin, but are themselves

not capable of capturing all SNPs in the bin). Hence, from the ldSelect output, one

tag SNP is sufficient to capture the known variation within each bin.

Initially, the selection of tag SNPs was based on multivariate relationships and

oriented toward the identification of SNPs that were, in combination, able to dis-

tinguish between the limited numbers of haplotypes observed within a region of

strong LD (Johnson et al., 2001); hence, the term ‘haplotype tag SNP’ (htSNP) was

applied. In common with many other publications, we will use here the more general

term ‘tag SNP’ to describe any SNPs chosen to capture information at other SNPs,

regardless of whether the methodology is haplotype based or not. Originally, the

criterion optimized during selection was a measure termed ‘percentage of diversity

explained’ (PDE), which provided an estimate of the fraction of total haplotype

diversity captured if only the tag SNPs were genotyped (Johnson et al., 2001). If

later association analyses are to be primarily focused on haplotypes as the ‘unit of

inheritance’ which entails risk of a particular trait, this criterion is in many ways

adequate. However, the PDE measure did not fully describe the ability of a set of tag

SNPs to predict allele frequencies at individual ungenotyped loci. To facilitate the

association testing of ungenotyped variants on a marker-by-marker basis, many of

the subsequent developments of multivariate tagging methodology have focused on

selecting tag SNPs either by the optimization of R2-based metrics (or other measures

of ‘informativeness’ which describe the accuracy of prediction), or by considering

power more directly (Chapman et al., 2003; Weale et al., 2003; Clayton et al., 2004;

Halldórsson et al., 2004a; de Bakker et al., 2005; Rinaldo et al., 2005).
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Within this group of methods, differences exist in the way the alleles at ungeno-

typed loci are predicted, which (in addition to utilizing pair-wise relationships) can

be via estimation of tag SNP haplotype frequencies or, more directly, obtained from

multiple tag SNP allele frequencies without the need to resolve phase. Although the

criteria used by these methods are oriented toward optimizing the prediction of alleles

at ungenotyped loci, the selection methods used do not necessarily preclude the eval-

uation of association of a region in global tests (here we define global tests as haplotype

analyses or multivariate tests of unphased genotypes that simultaneously evaluate

the association of a given region, as opposed to on a marker-by-marker or single

haplotype basis). It is important to note, however, that if global tests are to be per-

formed, an element of dependency on local LD (block) structure will be introduced

(see below under ‘Performance of HapMap-derived tags in other populations’).

In addition to R2-based multivariate tag SNP selection methods aimed at predict-

ing individual variants, R2-based metrics have also been applied in the prediction

of haplotypes, whereby the correlation between the haplotypes estimated from data

including all SNPs and those estimated from a restricted set of tag SNPs is evaluated

(Stram, 2004). Although primarily oriented toward the evaluation of haplotypes

as the inherited risk factor, as in the original description of haplotype tagging, the

use of R2 values as criteria during selection makes evaluation of the likely power of

association testing easier to assess than that of measures such as PDE.

Spectral decomposition/principal components analysis has been proposed by

some authors as a means of tag SNP selection (Meng et al., 2003; Horne and Camp,

2004; Lin and Altman, 2004). Although correlation matrices underlie such proce-

dures, the choice of tag SNPs is based on the closeness of their relationship with a

subset of eigenvectors (mathematical abstractions formed from weighted contribu-

tions of SNPs) that best describe the data. Other methods include those in which the

haplotype diversity captured is evaluated on the basis of entropy (Nothnagel et al.,

2002; Ackerman et al., 2003; Hampe et al., 2003; Sebastiani et al., 2003). As noted

elsewhere (Halldórsson et al., 2004b), the power to detect association that is likely to

be achieved by entropy-based tag SNPs may be difficult to assess without additional

evaluations unless the termination criteria used during the search is one where all

information is retained.

The range of proposed methods for tag SNP selection is by no means limited

to those described above. The development and fine-tuning of algorithms by mul-

tiple research groups has resulted in the availability of numerous software imple-

mentations, a selection of which are represented in Table 3.4. Details of additional

software may be found in published reviews of tagging approaches, such as that of

Halldórsson et al. (2004b). Despite the apparently bewildering choice of tag selec-

tion approaches, the majority can be characterized by one (or some combination)

of three broad categories: methods that are dependent on pair-wise, multivariate-

phased (haplotypic) or multivariate-unphased correlations. Multivariate approaches

(phased or unphased) may be further classified into those primarily oriented toward

global association tests (e.g., the criteria used assess the ability of tags to evaluate
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Table 3.4 Examples of available software for Tag SNP selection

Software Reference URL

BEST (Sebastiani et al., 2003) http://genomethods.org/best/

CLUSTAG (Ao et al., 2005) http://hkumath.hku.hk/web/link/

CLUSTAG/CLUSTAG.html

eigen2htSNP (Lin and Altman, 2004) http://htsnp.stanford.edu/PCA/

ENTROPY (Ackerman et al., 2003) http://www.well.ox.ac.uk/∼rmott/SNPS/

MLRtagging http://alla.cs.gsu.edu/∼software/tagging/

tagging.html

HapBlock (Zhang et al., 2005) http://www.cmb.usc.edu/msms/HapBlock/

Also incorporated in HAPLOT (Table 3.3)

Haploblockfinder (Zhang and Jin, 2003) http://cgi.uc.edu/cgi-bin/kzhang/haplo

BlockFinder.cgi

Hclust.R (Rinaldo et al., 2005) http://wpicr.wpic.pitt.edu/WPICCompGen/

hclust.htm

HtSNP2 (Chapman et al., 2003; http://www-gene.cimr.cam.ac.uk/clayton/

Clayton et al., 2004) software/stata/

htSNPer (Ding et al., 2005) http://www.chgb.org.cn/htSNPer/

htSNPer.html

ldSelect (Carlson et al., 2004) http://droog.gs.washington.edu/

ldSelect.html

SNPSpD (Nyholt, 2004) http://genepi.qimr.edu.au/general/daleN/

SNPSpD/

SNPtagger (Ke and Cardon, 2003) http://www.well.ox.ac.uk/∼xiayi/haplotype/

index.html

STAMPA (Halperin et al., 2005) software on request from the authors

Tagger (de Bakker et al., 2005) http://www.broad.mit.edu/mpg/tagger/

Also implemented in HaploView (Table 3.3)

Tag’n’Tell http://snp.cgb.ki.se/tagntell/

TagIT (Weale et al., 2003) http://www.genome.duke.edu/resources/

computation/software

TagSNPs (Stram et al., 2003) http://www-rcf.usc.edu/∼stram/

tagSNPs.html

simultaneously the diversity of a defined region in a single test) and those oriented

toward the inference of alleles at individual ungenotyped loci. Several of the available

software implementations enable more than one class of approach to be pursued.

For example, the prediction of ungenotyped SNPs (via either phased or unphased

multivariate data) or the maximization of haplotype diversity captured is possible

with htSNP2, whereas Tagger enables the capture of ungenotyped SNPs by either

pair-wise correlations or pair-wise correlations supplemented with haplotype-based

predictions for greater efficiency, and also includes various options for approaches

oriented toward capturing haplotypes for either specific or exhaustive testing.

It is beyond the scope of this chapter to review each of the available selection

strategies and software in detail. Informative overviews of tag selection algorithms

and some of their technical properties have been published (Halldórsson et al., 2004b;
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Ke et al., 2005), and many of the papers in which approaches are originally described

provide comparisons with other methods. Despite differences in the identity of the

tag SNPs selected, the amount of genetic variation captured by different methods

may be similar provided sufficiently high thresholds for quality criteria are specified

(Ke et al., 2005). However, aside from another obvious consideration, namely, the

number of tag SNPs selected by a given approach, there are a number of theoretical

factors that may influence the choice of algorithm and the manner in which it is most

reliably applied in different scenarios.

Relevance of the statistical methods used to test for association

Association analyses of SNPs on a marker-by-marker basis have the advantage of

minimal degrees of freedom, whereas global haplotype analyses have a larger num-

ber of degrees of freedom, but may be advantageous at loci where more than one

variant in a region is contributing to the trait under study; for example, in the pres-

ence of strong haplotype-specific (cis) effects. Previously, haplotype analyses were

also partly motivated by the fact that the majority of genetic variation was unidenti-

fied. Where disease alleles have arisen on, and been maintained as part of, ancestral

haplotypes, these analyses were considered more likely to detect association at unob-

served variants, or observed variants with which the correlation with the genotyped

markers was unknown. With the rapidly increasing knowledge of common human

genetic variation and its correlation structure, and with an increase in the density of

markers typically genotyped, the rationale for global haplotype analyses may become

somewhat eroded with respect to the presence of unidentified or poorly characterized

common variation, although such tests may still be advantageous in the detection of

unobserved rare variants with strong genetic effects (de Bakker et al., 2005). How-

ever, the study of unobserved rare variants by haplotype analyses can be problematic;

many of the haplotypes identified may not capture rare variants, and the number

of degrees of freedom in global tests (or the number of tests if each haplotype is

evaluated individually) may be greatly increased. Although the better prediction of

rare alleles may sometimes offset the increase in degrees of freedom or number of

tests (and the power may be increased), these factors will often negatively affect the

power to detect common variants (de Bakker et al., 2005). Other potential prob-

lems relating to the study of rare variants are discussed below. Global analyses based

upon unphased genotype data (Chapman et al., 2003; Halperin et al., 2005) also

have greater degrees of freedom than single locus analyses, although typically less

than the corresponding haplotype-based tests. The loss in predictive ability which

would otherwise be gained by the resolution of haplotype phase should often be

compensated for by the reduced degrees of freedom, generally resulting in a more

powerful test of association (Chapman et al., 2003). Such analyses have the added ad-

vantage that dominance effects (deviation from the additive effects usually assumed

in haplotype analyses) may be easily allowed for (Chapman et al., 2003; Clayton
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et al., 2004). A further implication of exclusively pursuing either global haplotype

or unphased multivariate analyses is that the number of tests performed is fewer

than when considering SNPs on a marker-by-marker basis, influencing the extent to

which multiple testing corrections, if applied, will affect results.

Currently, there is some uncertainty in the field as to which approach to associ-

ation testing is likely to be the most powerful. The performance of each is likely to

vary depending on the characteristics of the locus to which they are applied, such as

allele frequency, strength of effect and presence or absence of interactions. The ap-

proach taken is, therefore, largely determined by the assumptions made by individual

research groups. Nevertheless, the type of association analyses intended is an impor-

tant prior consideration when choosing a method by which to choose tag SNPs, as

mismatching of selection and analysis strategies is likely to result in unintended loss

of information and, therefore, power.

Clearly, tag selection approaches oriented toward characterizing haplotype diver-

sity are primarily applicable to subsequent estimation and global testing of haplo-

types. Numerous tag selection approaches are applicable to subsequent marker-by-

marker testing, including pair-wise approaches and multivariate (either haplotype

or unphased genotype) approaches optimized for inferring alleles at ungenotyped

SNPs. Of course, multiple testing considerations aside, there is nothing preventing

the data from tag SNPs chosen with a view to marker-by-marker analyses being

used in additional global haplotype analyses. Similarly, tag SNPs chosen to describe

haplotype diversity are often also tested individually for association. Nevertheless, in

order to help extract maximum value from the genotyping performed, it is beneficial

to decide in advance what the primary analysis strategy will be, and to choose an

approach in which tag selection is made by appropriate criteria.

General limitations of tagging methodology

The general limitations of tagging methodology should be considered, and, in light of

this, researchers may, under certain circumstances, wish to modify the criteria applied

during tag SNP selection. One of the potential pitfalls of tagging methodology is the

possibility of differences in LD patterns between the samples in which the tags are

selected (the training set) and those in which the association study is conducted

(the study population). This potential problem may be characterized by two main

issues; inaccuracies in the estimates of LD within the training set itself and genuine

differences in LD patterns between the population from which the training set is

sampled and the study population. The latter is a key issue in the generalization of

HapMap LD to other populations, which several studies have tried to address (see

below under ‘Performance of HapMap-derived tags in other populations’).

The finite size of training sets means that LD measures have a degree of un-

certainty due to sampling error, and this increases with decreasing allele frequency.

Additionally, owing to indeterminate phase, haplotype frequencies are almost always
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inferred rather than observed directly from genotype data. From extended pedigree

data, or when applying an expectation-maximization (EM)-based algorithm to unre-

lated subjects within regions of little recombination, estimated haplotype frequencies

can be highly accurate (Stram, 2004). However, this will not always hold true in at-

tempting to estimate the frequency of rare haplotypes, such as may be encountered

in the presence of weak LD (which may occur simply as a consequence of consider-

ing numerous SNPs in an overextended region) or in the presence of missing data

(Forton et al., 2005). Furthermore, a bias in estimates of LD can occur under these

circumstances. Some, or many, rare haplotypes present in the population are likely

to remain unobserved in small training sets and, as a consequence, LD is more likely

to be overestimated than underestimated (Stram, 2004). This can result in situations

where the tag SNP selection appears to capture ungenotyped SNPs with a high degree

of accuracy in the training set, but weaker LD in the study population means that the

achieved power is less than intended. These errors and biases (and the likely absence

of an adequate surrogate if exclusively pair-wise methods are used) pose problems

for the tagging of observed rare variants (Weale et al., 2003; Carlson et al., 2004;

Schulze et al., 2004; Ahmadi et al., 2005).

Using the TagIT method (Weale et al., 2003) with a training set of 64 individu-

als (approximately equivalent to the number of independent subjects in either the

HapMap CEU or YRI trios), one study reports that approximately 90 per cent of

variants with allele frequencies of at least 20 per cent, and approximately 80 per cent

of variants with allele frequencies between 5 per cent and 20 per cent, are well repre-

sented by the tag SNPs chosen, but below the 5 per cent threshold the performance of

tags begins to decline more rapidly (Ahmadi et al., 2005). In the same study, a train-

ing set of 32 individuals (smaller than that available for either the HapMap CHB or

JPT samples) was also evaluated, and it performed almost as well. Thus, for common

variants, although studies based on HapMap data are likely to be reasonably robust

to training set sample size effects, researchers should be wary of the reliability of LD

estimates relating to rare SNPs.

Performance of HapMap-derived tags in other populations

Aside from inaccuracies during estimation, genuine differences in LD between the

training set and study population may exist. The transferability of tags selected from

HapMap to study populations has already been the subject of a number of investiga-

tions. For example, a study of eight European populations indicated that although

CEU-derived tag SNPs performed well in a number of genes across all populations,

this was not a universal phenomenon; in certain regions of the genome, differences in

LD between some populations may sometimes result in loss of information (Mueller

et al., 2005). A study in which the performance of YRI-derived tags was assessed

in African-Americans also suggests that tag SNPs are not likely to generalize well

between these two populations, this observation being consistent with the high level
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of genetic diversity expected to be present across Africa as a whole (Sawyer et al.,

2005). Other studies have indicated that CEU-derived tag SNPs do appear to perform

well in other Caucasian populations, as when applied to a Finnish sample (Willer

et al., 2006), an Estonian sample (Montpetit et al., 2006) and Australians of mostly

northwest European ancestry (Stankovich et al., 2006). Other recent reports are also

encouraging regarding transferability to population isolates (Bonnen et al., 2006),

between the JPT and CHB analysis panel and Korean samples (Lim et al., 2006) and,

more generally, within continental groups (Gonzalez-Neira et al., 2006).

The number of different tagging strategies available, combined with the number

of populations between which it is possible to make comparisons and the fact that

differences in LD between any two given populations (potentially even those from

similar geographic regions (Liu et al., 2004) are likely to vary from one genomic

region to another, makes a comprehensive evaluation of the transferability of tag SNPs

selected by different methods a formidable task. Intuitively, we might expect that the

less efficient algorithms, which select more SNPs and therefore have more innate

redundancy, may identify more transferable sets of tags, whereas a highly aggressive

algorithm may select a very efficient set of tags that fit the training set perfectly

well but which may be sensitive to relatively minor differences in LD. However, the

situation is probably not so straightforward, as the performance of the tags is also

likely to depend on the underlying methods on which the means of prediction are

based. Owing to the scope and complexity of the issues, and the relatively recent

availability of comprehensive reference data such as those released in HapMap phase

II, we need a great deal of further study into the robustness of tag SNPs selected by

different tagging algorithms when transferring between populations.

The discrepancies that may occur between the LD observed in a training set and

that present in a study population will not always have a negative effect on the

power of an association study at all variants. It is, of course, possible that LD may

sometimes be underestimated in the training set due to sampling error, and, thus,

more information than anticipated is captured when tag SNPs are applied in the

study population. Similarly, it is possible that LD between certain sets of variants is

genuinely stronger in the study population than the training set. In general, the mean

proportion of information captured across a large number of variants is, however,

expected to be lower than the thresholds specified during tag SNP selection, partly

due to the upward bias of LD estimates in limited sample sizes and partly due to the

proximity of the thresholds generally applied to the upper bounding of (complete)

LD. Although the majority of studies indicate that if the training set and study

population are well matched, the level of information loss is likely to be acceptable,

researchers may, under certain circumstances, wish to increase the thresholds of

criteria applied during tag SNP selection. Such scenarios may include those where

doubts exist regarding the matching of the training set to the study population, or if

statistical power is perceived to be limited due to the study population sample size

but flexibility in genotyping capacity is available.
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Dependency of methods on haplotype block structure or physical distance

The dependency of the tag SNP selection method on either haplotype block defini-

tion or physical distance should also be considered. In general, the tag SNP selection

methods oriented toward global analyses of association require the presence of haplo-

type blocks to be taken into account. For instance, if a small genomic region selected

for study is divided by an LD breakpoint and there are three common haplotypes in

each of the resulting haplotype blocks, then there could be as many as nine haplotypes

across the region as a whole. The implications for global haplotype-based methods

are that association analyses are likely to lose power for the detection of common

variants, owing to the transition from two tests, each with two degrees of freedom,

to one test which may have as many as eight degrees of freedom. However, as dis-

cussed, there may be circumstances in which there are increases in power to detect

rare variants (de Bakker et al., 2005) or cis-interactions (see above under ‘Relevance

of the statistical methods used to test for association’). Indeed, it has been proposed

that long haplotypes may be used to search for rare variants and shorter haplotypes

be used for common variants (Lin et al., 2004). Although the likely distribution of

frequencies and risks conferred by variants relevant to human traits remains un-

certain (Wang et al., 2005), the popularity of the common disease/common variant

hypothesis and the difficulties involved in tagging rare variants has meant that a large

proportion of association studies are performed with common variants in mind. As

such, the definition of haplotype blocks and the subsequent choice and testing of tag

SNPs on a block-by-block basis is widely applied if global tests of association are to

be performed.

Not all multivariate methods have a dependency on LD block structure. Algorithms

oriented toward the testing of ungenotyped SNPs on an individual basis (either by

carefully selected tests of specific haplotypes or unphased genotype combinations),

as opposed to global testing, can circumvent such dependency (Weale et al., 2003;

Halldórsson et al., 2004a; de Bakker et al., 2005; Halperin et al., 2005), thus avoiding

the complex issue of how blocks should be delineated. Most boundaries of LD blocks

are not clearly defined and interblock LD, sometimes referred to as long-range LD, is

known to exist (Lawrence et al., 2005). As such, block definition is an imprecise science

and there are known dependencies on SNP density, sample sizes and ascertainment

biases in the frequencies of the SNPs (Schwartz et al., 2003; Wall and Pritchard,

2003). Many methods of block definition have been proposed, and results can vary

substantially even when applied to the same data (Schulze et al., 2004). Typically,

methods also allow the user to specify the thresholds of the parameters used in the

evaluation of block structure, creating yet more variability in the range of possible

results. The apparent lack of an optimal solution to block definition, and the fact that

block-independent tag selections may sometimes be more efficient owing to their

ability to exploit interblock correlation, make their use attractive, despite the potential

loss of some information that might otherwise only be captured in global analyses.
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Methods based solely on pair-wise correlations between SNPs are also considered to

be independent of prior block definition.

When applied in a limited region, such as a single candidate gene, block-

independent tag selection methods may often be applied with no regard to physical

distance. However, there is a potential pitfall when considering very large regions.

The finite number of possible arrangements of alleles in a training set of limited

size results in a situation in which it is possible to make observations of apparently

strong LD over very long physical distances which are, in fact, due entirely to chance.

For pair-wise methods, the probability of this event is relatively small except when

variants are rare. For multivariate methods, the chances of an algorithm identifying a

combination of SNPs that apparently have the ability to predict alleles at SNPs at any

position on a chromosome may be substantially increased, owing to the increased

number of possible arrangements of all alleles at different combinations of tag SNPs.

For this reason (aside from the previously outlined EM considerations and process-

ing burden when considering large regions), it is desirable to impose limits on the

physical distance over which block-independent (either pair-wise or multivariate)

tag selection algorithms operate. The tag selection algorithm incorporated into the

HapMap website (Tagger), which can exploit either pair-wise or multivariate corre-

lations, enables such a limitation on physical distance to be specified. An alternative

to specifying physical distance is to specify ‘neighbourhoods’, either by defining dis-

tance in terms of LD units and limiting selection to regions over which useful levels

of correlation are likely to be present (Morton et al., 2001; Maniatis et al., 2002), or

by taking the union of multiple putative LD blocks (Halldórsson et al., 2004a).

Processing burden

For studies of a limited number of candidate genes, almost all available methods are

capable of selecting tags within an acceptable time frame. For studies of large regions,

such as linkage peaks, whole chromosomes or genome-wide studies, the processing

time of some algorithms (reviewed in Halldórsson et al. (2004b)) can be a limiting

factor in their application, even when strict limits are imposed on the size of each

subset of data considered. In such situations, it may be more practicable to use

less intensive (possibly less efficient) algorithms or to make use of preselected tags

available via HapMart.

Summary of theoretical considerations

Given all of the factors discussed (including the variability in the frequency and mag-

nitude of effects of variants underlying human traits, variability in LD in different

regions and between different populations, and the fact that in some methods opti-

mizing performance for rare variants may reduce power to detect common variants
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and vice versa) and the interrelationships between them, there is currently no widely

recognized optimal solution to tag SNP selection that is universally applicable. As

such, judgements must be made on the part of individual research groups, which

will also be dependent on the exact size and characteristics of the study population

available and the assumptions made regarding the nature of the trait of interest. It is

probable that the Tagger program will be a popular choice, owing to its integration

with the HapMap data and a large degree of flexibility in the available modes of

tag selection, such as the prediction of either individual variants or haplotypes, the

choice of region delineation on the basis of physical distance or block boundaries,

and the ability to deal with data from related or unrelated individuals and to force

or exclude the selection of specified variants as tags.

Regardless of the software and options used, it is worth bearing in mind that the

level of information captured by different sets of tag SNPs is likely to converge as

the thresholds of evaluation criteria used during selection are increased (Ke et al.,

2005). Thus, choosing high values for thresholds may be more important than the

evaluation criterion itself (Halldórsson et al., 2004b). Where the information cap-

tured is comparable, the differences in the genotyping burden of each approach may

appear to be the most relevant deciding factor. However, by (i) ensuring that the

selection strategy exploits correlations in a manner consistent with the downstream

association analyses, (ii) considering whether the manner in which correlations are

exploited are likely to be robust to potential differences in LD between the relevant

populations and (iii) taking due account of either block structure or physical distance

as required by the chosen algorithm, it should be possible to minimize some of the

avoidable losses of power that may otherwise be encountered.

3.3.3 The use of HapMap data to aid the design
of fine-mapping experiments

If an initial observation of a trait association is considered sufficiently convincing to

warrant further study, the HapMap data may assist in determining the physical extent

of the relevant region in which the aetiological variant is likely to reside. Owing to

multiple solutions to block partitioning (Schwartz et al., 2003; Schulze et al., 2004)

and the possibility of long-range interblock correlations (Lawrence et al., 2005), the

accurate delineation of such a region is not likely to be straightforward, nor is it likely

to rely solely on apparent block structure. Nevertheless, by examination of pair-wise

r 2 values between the observed associated variant and surrounding markers in the

HapMap data, or by consideration of measures such as LD units (Maniatis et al.,

2002), it should be possible to impose some informed limits on the next stage of

fine mapping, which may, for example, involve genotyping of known markers within

the region and reassessing both association and LD, before undertaking in-depth

resequencing to exclude the presence of or identify novel variants for genotyping or

functional study. Some of the practical steps in this process are reviewed in Chapter 9.
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3.4 Future perspectives

There is little doubt that the HapMap project data has already had a major and ben-

eficial impact in facilitating genetic association studies, as well as helping to address

general questions regarding the LD structure of the human genome and enabling

inferences regarding demographic history. Current research, aimed at clarifying is-

sues such as the extent of LD differences between populations, and the reliability

of different tag selection strategies when transferring between such populations,

should facilitate greater understanding of the likely power that may be achieved in

tag-based association studies. A third phase of HapMap is planned in which geno-

typing of additional populations will be undertaken, and the data generated should

be highly informative in this respect. In-depth investigation of these issues should,

in future, allow us to achieve the desired balance between statistical power and geno-

typing efficiency in a more informed manner than before and, ideally, improve both

simultaneously.

Ultimately, the success of association studies based on HapMap LD data will not be

solely determined by the characteristics of the HapMap data, such as the identity and

number of samples in the training sets, SNP frequencies and density. The HapMap is

a facilitating component, and only if it is used in conjunction with adequate sample

sizes, well-defined case phenotypes, appropriate controls, carefully implemented tag

selection, association analyses and interpretation is it likely to lead to acceleration in

the identification of complex trait loci. If these other components of a well-designed

association study are not in place, or if the assumptions regarding the nature of

the genetic contribution to underlying biological processes are flawed, then any

limitations that may be perceived to be present in the HapMap data become largely

irrelevant (Clark et al., 2005). With the massively increased potential for large-scale

or genome-wide association studies also comes the potential for spectacular and

hugely expensive failures. It is important, therefore, that such studies are designed

and executed carefully with an appropriate focus on all relevant aspects of study

design if the impressive resource of information made available via HapMap is to be

utilized effectively (Clark et al., 2005; Hirschhorn and Daly, 2005; Wang et al., 2005).
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4.1 Introduction

The miraculous birth of the draft human genome sequence took place against

the odds. It was only made possible by parallel revolutions in the technologies

used to produce, store and analyse the sequence data, and by the development of

new, large-scale consortia to organize and obtain funding for the work (Watson,

1990). The initial flood of human sequence has subsided as the sequencing cen-

tres have sequenced genomes from other mammalian orders and beyond. The

steady progress of the cloned fragments of more than 1000 genomes toward a fin-

ished state can be observed in the Genomes OnLine Database (Liolios et al., 2006;

http://www.genomesonline.org/), but although we can examine these sequences in

public databases, we have yet to interpret them comprehensively. There is a need to

relate the raw sequence data to what we already know about genetics and biology

in general – this is the process of genome annotation. Preliminary annotation of a

genome is usually a semi-automated process, with human curators interpreting the

results of various computer programs. In practical terms, preliminary annotation

currently consists of determining the position of known markers, known genes and

repetitive sequence in combination with efforts to delineate the structure of novel

genes. Eventually, we would like to know much more, including the multifarious

interactions of the genome’s contents with one another and the environment, their

expression in the biology of the cell and their physiological roles. These additional

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)



OTE/SPH OTE/SPH

JWBK136-04 February 16, 2007 15:14 Char Count= 0

60 CH 4 ASSEMBLING A VIEW OF THE HUMAN GENOME

layers of annotation will come from the patient laboratory work of the next several

decades, but a prerequisite for this work is a complete (or nearly complete) genome se-

quence, and an accurate preliminary annotation that is available to the total scientific

community. This chapter will aim to describe the sources of freely available annota-

tion, their strengths, their shortcomings and some likely future developments.

4.2 Genomic sequence assembly

Any discussion of computational sequence annotation should begin with a consid-

eration of the sequence data itself. Genomic sequence data have traditionally come

from many sources: studies of transcribed sequences, studies of individual genes,

and genetic/physical markers from mapping studies. Over the past decade, we have

entered the era of large-scale efforts to sequence entire genomes, and the most abun-

dant sources of sequence have become the sequencing vectors from these efforts. In

practical terms, this has meant that we acquire many fragments, from a few hundred

bases to a few hundred kilobases in length, of a genome that must then be assem-

bled computationally to produce a continuous sequence. In the case of the human

genome, two unfinished ‘draft’ sequences were produced by different methods, one

by the International Human Genome Sequencing Consortium (IHGSC) and one by

Celera Genomics (CG).

The IHGSC began with a BAC (bacterial artificial chromosome) clone-based phys-

ical map of the genome (IHGSC, 2001). This map was constructed by digesting each

clone with restriction enzymes and deriving a characteristic pattern or fingerprint.

All of the fingerprints are then processed by a program called FPC (Soderlund et al.,

2000) that produces BAC clone contigs on the basis of the shared fragments in

their fingerprints (International Human Genome Mapping Consortium (IHGMC),

2001). A selection of clones from this map, covering the vast majority of the genome,

was then ‘shotgun sequenced’ (Sanger et al., 1982). The fragments of each clone were

then assembled into initial sequence contigs based upon overlaps between shotgun

sequencing reads. The collection of initial sequence contigs from a single clone makes

up the sequence data for a clone in GenBank. As more shotgun sequencing of the

clone is done, the initial sequence contigs are reassembled with the new sequences,

and the database sequence entry for the clone is updated accordingly. Gradually, the

initial sequence contigs increase in length and decrease in number, until the sequence

of the clone is finished and is represented by a single contig 100–200 kb in length. The

program used to assemble the initial sequence contigs is called Phrap (Green, unpub-

lished; http://bozeman.genome.washington.edu/index.html) and takes sequencing

quality estimates for each base into account. CG used the whole-genome shotgun

method where the entire genome is randomly fragmented and each of the cloned

fragments is sequenced (Venter et al., 2001). Sequences from these cloned fragments

are produced as mate-pairs: 150–800 bp sequencing reads from either end of the

clone with known relative orientation and approximate spacing. A mixture of clones

of different sizes was used: 2, 10, 50 and 100 kb. CG assembled their sequence data
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with that produced by the IHGSC and published an analysis of this early CG draft

genome assembly (Venter et al., 2001). In spite of the differences between the two

efforts to sequence the human genome, both groups had to address the fundamental

problem of assembling incomplete data. In both cases, the strategy was broadly to

merge overlapping sequences into contigs and then to order contigs relative to one

another using various types of mapping data.

The published IHGSC assembly was produced by the program GigAssembler

devised at the University of California at Santa Cruz (UCSC) (Kent and Haussler,

2001). GigAssembler began with initial sequence contigs from GenBank at a given

point (a ‘freeze’ data set). All sequences were repeat masked by the RepeatMasker

program (Smit and Green, unpublished; http://www.repeatmasker.org/) to highlight

known repetitive sequence. Within each IHGMC physical map contig (IHGMC,

2001), the initial sequence contigs from BAC clones belonging to it were assembled

into consensus ‘raft’ sequences using sequence overlaps between fragments. The first

joins were made between the best matching fragments. These rafts were ordered

and orientated relative to one another with bridging sequences from other sources

(mRNA, EST, plasmid and BAC end pairs) and FPC contig data. For instance, the 5′

end of a single mRNA may be found within one raft while the 3′ end matches another

raft. Repeated tracts of the letter ‘N’ were inserted between rafts to give a sequence

for each IHGMC map contig. The published version of the UCSC assembly and

all subsequent versions were made freely available online (http://genome.ucsc.edu/)

and helped to set the standard for public access to subsequent genome sequence data.

The CG draft genome assembly was carried out by a program described as a

‘compartmentalized shotgun assembler’ (CSA) (Huson et al., 2001), using both CG

sequence data and IHGSC initial sequence contigs from GenBank (as of 1 September

2000 for the published CG assembly) fragmented into smaller sequences a few hun-

dred base pairs long. The CSA began by comparing all CG mate-pair fragments with

all the initial sequence contig fragments and avoiding matches based upon repetitive

sequence. Repetitive sequence was identified by comparisons to a library of known

repeats (analogously to RepeatMasker) but also by additional procedures to detect

sequence likely to represent unknown repeat sequences. The mate-pair fragment

pairs matching more than one initial sequence contigs were then used as bridging

sequences to order and orientate the initial sequence contig fragments within and

between BAC clones. Essentially, the paired CG fragments are used as high-resolution

mapping data to reassemble both IHGSC BAC sequences and the broader genomic

regions they originate from. The result was a set of ‘scaffolds’ consisting of ordered,

oriented sequence contigs separated by gaps of estimated sizes. CG fragments not

matching IHGSC initial sequence contigs were also assembled with a different al-

gorithm (Myers et al., 2000) to give additional scaffolds containing sequence not

represented in IHGSC data. Scaffolds were then positioned relative to one another

based upon sequence overlaps and bridging mate-pair fragments. The derived order

of scaffolds was then manually curated to identify mistakes by examining sequence

alignments by eye and confirming or rejecting orders based on external physical

mapping data such as those from the IHGMC. Although originally there was only
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restricted access to this assembly, it was eventually deposited in the public sequence

databases.

A third assembly method, using repeat masked data from the IHGSC, was pro-

duced by the National Centre for Biotechnology Information (NCBI), using a compu-

tational protocol (NCBI, unpublished; http://www.ncbi.nlm.nih.gov/genome/guide/

build.html) based upon the BLAST algorithm (Altschul et al., 1997). The NCBI ap-

proach also began by finding an order for adjacent BACs, but in this case it was

derived from BAC sequence overlaps (detected with a variant of BLAST), fluores-

cence in situ hybridization (FISH) chromosome assignment, and STS content. The

sequence fragments from these overlapping BACs were then merged into consensus

‘meld’ sequences. As with the UCSC method, these melds were then ordered and

orientated, on the basis of ESTs, mRNAs and paired plasmid reads, before being

combined into a single NCBI genomic sequence contig with melds separated by runs

of the letter ‘N’. NCBI contigs were ordered and oriented relative to one another

according to matches to mapped STS markers and paired BAC end sequences.

Since the assembly protocols used by UCSC, CG and NCBI differed in terms of

the number and variety of input data and the algorithms used, it would have been

surprising if they gave identical assemblies as output. Of particular interest are the

relative rates of misassembly (sequences assembled in the wrong order and/or orien-

tation) and the relative coverage achieved by the three protocols. Unfortunately, the

UCSC group were alone in having published assessments of the rate of misassembly

in the contigs they produced. Using artificial data sets, they found that, on aver-

age, ∼10 per cent of assembled fragments were assigned the wrong orientation and

∼15 per cent of fragments were placed in the wrong order by their protocol (Kent

and Haussler, 2001). Two independent assessments of UCSC assemblies have come

to similar conclusions. Katsanis et al. (2001) examined various UCSC consecutive

draft genome assembly releases and reported that 10–15 per cent of EST sequences

identified within them appeared to be on wrongly assembled genomic sequences.

In agreement with this, Semple et al. (2002) observed 19 per cent and 11 per cent

of erroneously ordered marker sequences in two consecutive UCSC assemblies for

a ∼5.8 Mb region of chromosome 4. The latter study also found wide variation in

coverage (23–59 per cent of the available IHGSC sequence data included) and rates

of misassembly (2.08–4.74 misassemblies per Mb) between consecutive UCSC and

NCBI assemblies and the published CG assembly for the same region. These analyses

indicated that the lowest rate of misassembly was produced by the CG protocol,

followed by the UCSC and lastly the NCBI protocols. However, the CG protocol also

produced the lowest coverage, including only around half of the sequence data re-

cruited into the UCSC and NCBI assemblies. Olivier et al. (2001) compared orders of

TNG radiation hybrid map STSs produced by UCSC and CG protocols. They found

widespread differences, such that 36 per cent of TNG STS pairs were present in orders

that differed between UCSC and CG assemblies. The TNG order was consistent with

the CG assembly order slightly more often than with the UCSC assembly order. The

UCSC website provided a variety of comparisons of its assemblies to genetic, physical
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and cytogenetic mapping data, and these comparisons represented a useful resource

for users to assess the likely degree of misassembly in a region of interest. However,

subsequent genomes from other species have generally appeared without detailed

assessments of the quality of draft assemblies.

Unsurprisingly, it has been shown that differences between assemblies do indeed

result in differences in annotation. Semple et al. (2002) found variable amounts of

tandemly duplicated and interspersed repeat sequence between UCSC, NCBI and

CG assemblies and more striking differences in annotation were also identified by

Hogenesch et al (2001) between CG and UCSC assemblies. Hogenesch et al. (2001)

found large differences between the genes found in CG and UCSC assemblies, such

that more than a third of the genes identified in one assembly were not found in the

other. Thus, genomic sequence annotation can be only as good as the underlying

genomic sequence assembly, and, as we have seen, accurate assembly of draft sequence

fragments is far from error free. Genome assembly continues to be an important issue

for bioinformatics, since in spite of the availability of generally reliable assembly

algorithms (e.g., Batzoglou et al., 2002) nature has continued to surprise us. Certain

species have turned out to be unexpectedly polymorphic and can confound the most

sophisticated attempts to assemble them, as the sequencing of the sea squirt Ciona

savignyi has shown (Vinson et al., 2005).

After the publication of the publicly available human genome draft in 2001, the

IHGSC undertook the arduous task of ‘finishing’: producing a genome sequence

covering 99 per cent of the euchromatic regions sequenced to an accuracy of 99.99

per cent. On 14 April 2003, the IHGSC announced that this target had been reached;

leaving less than 400 persistent gaps where highly repetitive sequences evaded cur-

rent sequencing technology. A steady trickle of papers in the journal Nature has

marked the emergence of each finished human chromosome sequence, along with

the annotation describing its notable features. It now seems that a significant fraction

of the genome (perhaps 5 per cent) consists of large (>10 kb) duplicated segments

that share 90-98 per cent sequence identity. Regions containing such duplicated seg-

ments are notoriously difficult to assemble accurately and are found not only in

pericentromeric and subtelomeric regions but also across the rest of the genome,

including the gene-rich regions that sequence annotators are primarily interested

in (Eichler, 2001). A comparison of the completed sequence of chromosome 20

with the preceding public CG and UCSC draft assemblies of the same chromosome

identified ‘major discrepancies’ (Hattori and Taylor, 2001). These authors concluded

that the draft assemblies were probably confounded by large duplicated regions.

Such problems do not entirely disappear with ‘finished’ sequence, as the recent pub-

lication of human chromosome 8 has shown. This chromosome contains a large

region with an unexpectedly high mutation rate, and rich in segmental duplica-

tions, flanking a persistent assembly gap (Nusbaum et al., 2006). In the time be-

tween the publication of the draft human genome in 2001 and the present finished

chromosomes, we have entered the era of shallow genome sequencing. Although

the human and mouse genome projects sequenced each base at least seven times
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(7 × coverage), Craig Venter’s poodle warranted only 1.5× coverage (Kirkness et al.,

2003), and now more than 20 other mammals are being sequenced at 2× coverage

(http://www.genomesonline.org/). These data are intended only for comparative ge-

nomics, to shed light on novel functional regions conserved across mammals, and

would not be a good basis on their own for the detailed laboratory work required to

investigate gene function.

4.3 Annotation from a distance: the generalities

If some troublesome regions of the genome are set to continue as problems for

cloning, sequencing and assembling, this is a minor concern in comparison to the

comprehensive annotation of genomic sequence. At almost every level, computa-

tional annotation of genomic sequence is error prone and incomplete. Of course, the

aim of computational annotation, in common with much of bioinformatics, is to

provide a preliminary set of predictions that must then be tested by ‘wet’ laboratory

work. The aim is a rapid first-pass or ‘baseline’ annotation, as the most popular

genomic annotation resource Ensembl (Hubbard et al., 2002) puts it. From the com-

putational point of view, this enterprise is hugely successful: merely by considering

the statistical qualities of the raw sequence data, we can detect the presence of most

protein-coding human genes. We can then identify the presence of known, structural

domains within the conceptually translated products of these predicted genes and

make informed guesses about functional roles and subcellular localization. Looking

at a raw BAC sequence entry from GenBank, we may easily appreciate the scale of

these achievements, but the view from the wet laboratory bench can be different.

The broad success of computational gene prediction is little consolation to the bench

geneticist who has to sift through numerous artefactual exon predictions only to find

later that his gene of interest was not detected by any of the algorithms used. What is

broadly impressive to the bioinformaticist can be just plain wrong to those dealing

with specifics. In an excellent introduction to genomic sequence annotation, Lincoln

Stein has defined three hierarchical levels of annotation: (i) the most fundamental

nucleotide level; (ii) protein level; (iii) process level (Stein, 2001).

4.3.1 Nucleotide level

Nucleotide level is the point at which the raw genomic sequence is analysed and

forms the basis for subsequent levels of interpretation. The first step is to iden-

tify as many known genomic landmarks as possible; these are generally mark-

ers from previous mapping studies, repeats and known genes already in pub-

lic databases. This can be done quickly and accurately by a variety of programs.

Markers from previous genetic, physical and cytogenetic maps are placed upon

the genomic sequence by algorithms designed to find short, almost exact sequence
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matches, such as the ePCR program (Schuler, 1997; http://www.ncbi.nlm.nih.gov/

sutils/e-pcr/), BLASTN (Altschul et al., 1990), SSAHA (Ning et al., 2001;

http://www.sanger.ac.uk/Software/analysis/SSAHA/) and BLAT (Kent, 2002;

http://genome.ucsc.edu/cgi-bin/hgBlat?command=start). Identifying these mark-

ers is essential to allow the genomic sequence to be seen in relation to the pre-

vious, pre-genome sequence literature, such as that on human disease genet-

ics. The newest type of markers, single-nucleotide polymorphisms (SNPs), are

also identified in the sequence to facilitate the next generation of disease gene-

mapping studies. Similar algorithms, extended to incorporate information on gene

structure, are used to identify the positions of known mRNAs within the ge-

nomic sequence; examples of these are as follows: Spidey (Wheelan et al., 2001;

http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/), SIM4 (Florea et al.,

1998; http://bio.cse.psu.edu/) and est2genome, which is available from the EMBOSS

package (Rice et al., 2000; http://emboss.sourceforge.net/). Just as the efforts to

assemble genomic sequence take measures to identify and exclude repetitive se-

quence, an important part of annotation is to identify interspersed and simple

repeats. The most widely used program for this task is RepeatMasker (http://

www.repeatmasker.org/).

The central problem of nucleotide level annotation is the prediction of gene struc-

ture. Ideally, we would like to delineate correctly every exon of every gene, but in large,

repeat-rich eukaryotic genomes, liberally scattered with long genes with many exons,

this task has turned out to be more difficult than expected. Ab initio gene predic-

tion algorithms (that rely only on the statistical qualities of genomic sequence data)

identify most protein-coding genes reliably in prokaryotic genomes, but the task

is more complex in eukaryotic genomes (Burge and Karlin, 1998). Fundamentally,

the problem is gene density; whereas in prokaryotic genomes and yeast more than

two-thirds of the genome is protein-coding sequence, only a low percentage of the

human genome fits this description. Additional problems are added by overlapping

genes, alternatively spliced exons and the paucity of differences between intergenic

sequence and introns. The gene prediction literature is full of metaphors involving

needles and haystacks, and with good cause. The 13-Mb S. cerevisiae yeast genome

provides a sobering example; completed in 1996 and initially thought to contain

6274 genes, the sequence has provided a steady trickle of additional genes that had

been overlooked. Since publication of the yeast genome, a further 202 genes have

been discovered; most appear to have been missed because they are relatively short

or overlap a previously annotated gene on the opposite strand (Kumar et al., 2002).

At the same time, later analyses of these yeast sequences by a variety of statistical

analyses and comparative genomics approaches have suggested that several hundred

of the originally annotated genes may be spurious (Malpertuy et al., 2000; Zhang

and Wang, 2000).

This brings us to the use of sequence similarity in gene prediction. In practice,

genome annotators use a combination of information to make predictions of gene

structures: ab initio exon predictions (predictions of coding sequence made by a
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program on the basis of statistical measures of features such as codon usage, initia-

tion signals, polyA signals and splice sites), repetitive sequence content, and similarity

to expressed sequences and proteins. These different strands of evidence are usually

combined and evaluated by human annotators who use graphical interfaces, such as

those provided by ACEDB (Eeckman and Durbin, 1995; http://www.acedb.org/)

or Otter (Searle et al., 2004), to view all the evidence simultaneously. A recent

trend in gene prediction is the design of programs that automatically incorpo-

rate evidence based on sequence similarity into their predictions. Among the best

and most widely used ab initio algorithm is GENSCAN (Burge and Karlin, 1997;

http://genes.mit.edu/GENSCAN.html). Guigo et al. (2000) tested its success in ar-

tificially produced sequence data designed to mimic human BAC sequences. At the

same time, they tested algorithms that use sequence similarity to make their predic-

tions, such as GENEWISE (Birney et al., 2004; http://www.ebi.ac.uk/Wise2/). The

results showed a clear advantage to including evidence from sequence similarity

where the similarity was strong. In such cases, GENEWISE could correctly identify

98 per cent of coding bases present, while generating a comparatively low level of

artefactual exons (2 per cent) and missing 6 per cent of real exons. Where levels

of similarity were more modest, however, the performance of algorithms such as

GENEWISE declined to below that of GENSCAN. GENSCAN was found to identify

89 per cent of coding bases at the cost of a rather high level of artefactual exons

(41 per cent) and 14 per cent of real exons missed. Guigo et al.(2000) suggest that

the success of all the programs tested is expected to be lower in real genomic se-

quence. Another comparison of gene-prediction programs using D. melanogaster

genomic sequence identified similar levels of performance for the programs tested

and also indicated an advantage to algorithms including similarity-based evidence

in predictions (Reese et al., 2000). Shortcuts to the structures of many genes have

come from large collections of full-length mouse (Carninci et al., 2006) and human

cDNA sequences (Kikuno et al., 2002), which have grown rapidly over the last few

years. However, these collections are time-consuming and costly to produce; thus,

for most organisms, we must still wrestle with the problems of computational gene

prediction.

As we amass genomic sequence data from many organisms, the reach of compu-

tational annotation based upon sequence similarity is increasing. Methods aimed

at the prediction of non-coding features in the genome, such as regulatory regions

and non-coding RNAs (ncRNAs), are evolving rapidly. Whereas protein-coding ex-

ons have a distinctive statistical fingerprint, ncRNAs do not, or at least they do not

appear to from our present, limited knowledge of them (Eddy, 2001). For better un-

derstood classes of ncRNAs, such as tRNAs, prediction methods involving secondary

structure prediction have been successful (Lowe and Eddy, 1997), but for novel ncR-

NAs the only effective methods are based on comparative genomics (Rivas et al.,

2001). The great recent success story in ncRNA prediction has been for microRNAs

that inhibit translation of target genes by binding to their mRNAs (Bentwich, 2005),

but the majority of the RNA universe undoubtedly remains hidden. The same is true
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for novel regulatory sequences, where only a fraction of transcription factor-binding

sites have been identified to date (Wingender et al., 2001). Even incomplete, frag-

mentary sequence data from other organisms have been used with some success to

predict putative regulatory regions (Chen et al., 2001).

4.3.2 Protein level

Once we have a gene prediction that we believe, the next step is to assign a possible

function to the encoded protein; this is the central task of protein level annotation.

Most computationally assigned functions are derived from sequence similarity. A

pair of proteins that align along 60 per cent or more of their lengths with significant

similarity (e.g., E < 0.01 in a BLASTP search of a large public database) are very

likely to be homologous – that is, derived from a common ancestor. Such a pair of

sister proteins may be paralogues, derived from a duplication event, or orthologues,

which exist as a result of a speciation event. For every homologous pair identified in

this way, additional searches may verify that each member of the pair identifies the

other member as the best match within the organism of interest. This makes it likely

that the pairs identified are likely to be orthologues (Huynen and Bork, 1998), as is

desirable, since orthologues are likely to share the same function (Jordan et al., 2001)

whereas functional diversification between paralogues is thought to be common (Li,

1997). In most cases, this strategy of reciprocal sequence similarity searches to iden-

tify orthologues is successful (Chervitz et al., 1998) and is the rationale that underlies

the construction of the Clusters of Orthologous Groups of proteins (COGs) database

(Tatusov et al., 2000; http://www.ncbi.nlm.nih.gov/COG/). However, caution is nec-

essary when dealing with the results of such analyses. For example, a novel human

gene may be directly descended from a common ancestor of a yeast gene (in which

case the two genes are orthologues and are likely to share the same function), or it

may be descended from a duplicated sister yeast gene (and the two genes are really

paralogues) with a different function. Without a complete picture of the related fam-

ily of proteins we are dealing with, it can be difficult to decide. Definitive evidence

of orthology versus paralogy can come from comprehensive phylogenetic analysis,

but even then, with larger families and/or incomplete data, it can be difficult. As a

result, it is not uncommon to find mistaken computational predictions of function

that are not supported by further experiment (Iyer et al., 2001).

In the absence of any detailed knowledge about the evolutionary pedigree of

the protein under study, similarity may sometimes still imply functional simi-

larity. For example, two proteins only 30 per cent identical may share much of

their biochemistry but have different substrates (Todd et al., 2001). In spite of

their divergence, they may share a common functional domain. There are a vari-

ety of protein domain databases, and they are widely used in genome annotation.

For example, version 19 of the Pfam database contains 8183 domains that match

75 per cent of proteins in public sequence databases, with domains represented
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by alignments between regions of proteins containing them (Finn et al., 2006;

http://www.sanger.ac.uk/Software/Pfam/). Statistical models of these alignments

are constructed and searched against new protein sequences using the elegant

HMMER software package (Eddy, 1998; http://hmmer.wustl.edu/). The Interpro

database (Mulder et al., 2005; http://www.ebi.ac.uk/interpro/), which amalgamates

several databases (including Pfam) covering protein domains, families and func-

tional sites, is now a standard annotation source for each new draft genome se-

quence that appears. Interpro entries provide links to additional information in-

cluding functional descriptions, references to the literature and structural data.

Since the IHGSC draft genome publication, the EBI (European Bioinformatics

Institute; http://www.ebi.ac.uk/proteome/) has maintained and updated annota-

tion for the set of known and predicted proteins with Interpro, and their most

recent analyses match around 77 per cent of the proteins in public databases.

Thus, even our most strenuous efforts to gain clues to protein function, often

based upon rather distant homology, tell us nothing about a quarter of known

proteins.

4.3.3 Process level

Ultimately, the goal of genetics is to understand the relationship between genotype

and phenotype. There is a large gap between annotation at the nucleotide or protein

level and an understanding of how a given protein influences phenotype. Even in the

best case, with a known gene coding for a protein containing well-studied domains,

there are always questions that remain to be asked. How does the protein interact or

complex with other proteins? Where does it localize within the cell? Which cellular

processes and organelles is it involved with? In which tissues and at which devel-

opmental stages does it act? The answers to these questions provide process level

annotation. The most important applications of our knowledge about the human

genome are in medicine, to discover the variations and aberrations that underlie

disease. Process level annotation provides a rational way to select the best candi-

date genes for involvement in disease. For example, when it was first submitted to

GenBank in 1997, a certain gene (accession no. U80741) was annotated as ‘Homo

sapiens CAGH44 mRNA’ and ‘polyglutamine rich’. Due to the painstaking work of

Lai et al (2001) on a region associated with speech disorders, we now know this gene

as FOXP2, the first gene found to be involved in human language-acquisition disor-

ders. Before their work, FOXP2 appeared to be one of many transcription factors,

expressed in many tissues and best studied in D. melanogaster. With better process

level annotation, FOXP2 may have been identified earlier as a good candidate for

involvement in disease.

The main source of process level annotation is the scientific literature, but, even

with modern access through the Web, this literature is a twentieth-century re-

source unsuited to twenty-first-century needs. What we have is a dizzying array
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of terms for a single gene, function or process, and no accepted way of organising

this information. Added to this are all the vagaries and idiosyncrasies of human

language. What is needed is a structured resource with a limited number of terms

for genes and descriptions of their functions, organized so that it is easily pro-

cessed automatically by computer programs. An important initiative, the Gene On-

tology (GO) project, has provided a framework to achieve this (Gene Ontology

Consortium, 2001; http://www.geneontology.org/). GO consists of a hierarchical

set of structured vocabularies to describe the molecular functions, biological pro-

cesses, and cellular components associated with gene products. With the known

and predicted genes in a genome annotated by GO, we can retrieve quickly, for

example, all genes encoding transmembrane receptors, all genes involved in apop-

tosis, or all genes encoding products localized to the cytoskeleton. The hierarchi-

cal nature of GO means that subsets of these categories can also be retrieved,

such as all G-protein-coupled receptors within the transmembrane receptor cate-

gory. GO annotation was quickly adopted by databases for several model organ-

ism genomes, including the Saccharomyces Genome Database (Dwight et al., 2002;

http://genome-www.stanford.edu/Saccharomyces/), FlyBase (FlyBase Consortium,

2002; http://flybase.org/) and the Mouse Genome Database (Blake et al., 2002;

http://www.informatics.jax.org/). Often GO annotations are added to genes in these

databases manually by trained biologist curators browsing the scientific literature.

However, with the rapidly increasing number of completed genomes, this process

has become increasingly automated. Efforts continue to develop better software for

automatic extraction of information from the literature to be incorporated into the

GO annotation of a gene (Blaschke et al., 2005).

The scale of the problem of providing process-level annotation for every human

gene is prompting the development of large-scale technologies to generate data on

many genes at once. Large-scale parallel measurement of gene expression for entire

genomes is now possible and should give good data on the developmental timing

and tissue specificity of many human genes, from which it is possible to infer process

level annotation (Noordewier and Warren, 2001). An important step on the way

to designating the processes a protein is involved in is to define the proteins with

which it interacts, and work is well under way to elaborate the web of interacting

proteins and complexes that define the proteome in organisms from S. cerevisiae

(Gavin et al., 2002; Ho et al., 2002) to man (Rual et al., 2005). However, these high-

throughput methods are known to generate false-positives and false-negatives; that

is, they identify some artefactual interactions and miss some genuine interactions.

Thus, high-throughput technologies may eventually provide useful process-level an-

notation for many, if not most, human genes, but there will always be an indispensable

role for conventional, detailed laboratory studies of smaller scale. New databases and

analyses will be necessary to make sense of the network of genetic interactions that

underlie the phenotype. A good example is the Mouse Atlas and Gene Expression

Database Project (Baldock et al., 2001; http://genex.hgu.mrc.ac.uk/), which aims to

describe the patterns of gene expression responsible for the emergence of anatomical
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structure during mouse development. It will enable gene expression data to be viewed

in the context of three-dimensional embryo sections.

4.4 Annotation up close and personal: the specifics

Despite the difficulties and shortcomings in computational annotation discussed

above, several well-resourced groups have undertaken the task of compiling, main-

taining and updating freely accessible annotation for the entire human genome.

There are now three well-designed websites (Table 4.1) offering users the chance to

browse annotation of the draft human genome. All three sites offer a graphical inter-

face to display the results of various analyses, such as gene predictions and similarity

searches, for draft and finished genomic sequence. These interfaces are indispens-

able for rapid, intuitive comparisons between the features predicted by different

programs. For instance, one can see at once where an exon prediction overlaps with

interspersed repeats or a SNP. But the four sites are not equivalent; there are impor-

tant distinctions between them in terms of the data analysed, the analyses carried

out and the way the results are displayed.

4.4.1 Ensembl

Ensembl is a joint project between the EBI (http://www.ebi.ac.uk/) and the Wellcome

Trust Sanger Institute (http://www.sanger.ac.uk/). The Ensembl database (Hubbard

et al., 2002; http://www.ensembl.org/), launched in 1999, was the first to provide a

window on the draft genome, curating the results of a series of computational anal-

yses. Until January 2002 (Release 3.26.1), Ensembl used the UCSC draft sequence

assemblies as its starting point, but it is now based upon NCBI assemblies. The

Ensembl analysis pipeline consists of a rule-based system designed to mimic deci-

sions made by a human annotator. The idea is to identify ‘confirmed’ genes that are

computationally predicted (by the GENSCAN gene prediction program) and also

supported by a significant BLAST match to one or more expressed sequences or

proteins. Ensembl also identifies the positions of known human genes from public

sequence database entries, usually using GENEWISE to predict their exon structures.

The total set of Ensembl genes should therefore be a much more accurate reflection

of reality than ab initio predictions alone, but it is clear that some novel genes are

missed (Hogenesch et al., 2001). Of the many novel genes that are detected, some are

expected to be incomplete for two main reasons. Firstly, as we have seen, while GEN-

SCAN can detect the presence of most genes in a genomic sequence, it is substantially

less successful in predicting their correct exonic structures (as with other ab initio

gene predictions). Secondly, any prediction is entirely dependent upon the quality of

the genomic sequence, and where the sequence is gapped or wrongly assembled, the

missing exons may not be present for the software to find. However, in the finished
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Table 4.1 The websites referred to in the text

Site description URL

Genomic sequence assemblies

NCBI Human Genome Assemblies http://www.ncbi.nlm.nih.gov/Genomes/

UCSC Human Genome Assemblies http://genome.ucsc.edu/

Annotation browsers

Ensembl at EBI/Sanger Institute http://www.ensembl.org/

Human Genome Browser at UCSC http://genome.ucsc.edu/

Map Viewer at NCBI http://www.ncbi.nlm.nih.gov/mapview/

Data sources

ArrayExpress at EBI http://www.ebi.ac.uk/arrayexpress/

COGs database at NCBI http://www.ncbi.nlm.nih.gov/COG/

dbSNP at NCBI http://www.ncbi.nlm.nih.gov/SNP/index.html

DOTS at University of Pennsylvania http://www.allgenes.org/

Entrez Gene at NCBI http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db=gene

FlyBase http://flybase.org/

Genomes OnLine Database http://www.genomesonline.org/

GEO at NCBI http://www.ncbi.nlm.nih.gov/geo/

IHGMC FPC map at Washington http://genomeold.wustl.edu/cgi-bin/ace/

University in St Louis GSCMAPS.cgi?

InterPro at EBI http://www.ebi.ac.uk/interpro/

Mouse Genome Database at http://www.informatics.jax.org/

Jackson Laboratory

Mouse Atlas Database at MRC http://genex.hgu.mrc.ac.uk/

Human Genetics Unit

OMIM at NCBI http://www.ncbi.nlm.nih.gov/Omim/

Pfam at Sanger Institute http://www.sanger.ac.uk/Software/Pfam/

Proteome Analysis at EBI http://www.ebi.ac.uk/proteome/

RefSeq at NCBI http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html

Saccharomyces Genome Database at http://genome-www.stanford.edu/Saccharomyces/

Stanford University

UniGene at NCBI http://www.ncbi.nlm.nih.gov/UniGene/

Software

ACEDB at Sanger Institute http://www.acedb.org/

Acembly at NCBI http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/

index.html

Apollo at Ensembl http://www.fruitfly.org/annot/apollo/

BioMart http://www.biomart.org/

BLAST at NCBI http://www.ncbi.nlm.nih.gov/BLAST/

BLAT at UCSC http://genome.ucsc.edu/cgi-bin/hgBlat?

command=start)

DAS at Cold Spring Harbor Laboratory http://biodas.org/

EMBOSS at EMBnet http://emboss.sourceforge.net/

ePCR at NCBI http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi

GBrowse http://www.gmod.org/

Gene Ontology Consortium http://www.geneontology.org/

GENEWISE at EBI http://www.ebi.ac.uk/Wise2/

Continues overleaf
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Table 4.1 (continued)

Site description URL

GENSCAN at MIT http://genes.mit.edu/GENSCAN.html

HMMER at Washington University http://hmmer.wustl.edu/

in St Louis

Phrap at University of Washington http://bozeman.genome.washington.edu/index.html

RepeatMasker http://www.repeatmasker.org/

SIM4 at Pennsylvania State University http://bio.cse.psu.edu/

Spidey at NCBI http://www.ncbi.nlm.nih.gov/IEB/Research/

Ostell/Spidey/

SSAHA at Sanger Institute http://www.sanger.ac.uk/Software/analysis/SSAHA/

human and mouse genomes, where there are large full-length cDNA collections to

guide the hunt for genes, Ensembl should be very reliable.

From the beginning, many genomic features other than predicted genes were

included in Ensembl: different repeat classes, cytological bands, CpG island predic-

tions, tRNA gene predictions, expressed sequence clusters from the UniGene database

(Wheeler et al., 2002; http://www.ncbi.nlm.nih.gov/UniGene/), SNPs from the db-

SNP database (Sherry et al., 2001; http://www.ncbi.nlm.nih.gov/SNP/index.html),

disease genes found in the draft genome from the OMIM database (Online

Mendelian Inheritance in Man database; Wheeler et al., 2002; http://www.ncbi.nlm.

nih.gov/Omim/) and regions of homology to other draft genomic sequences. More

recent innovations have seen the annotation of a large range of non-coding RNAs

(ncRNAs) from the Rfam database (Griffiths-Jones et al., 2005) and predicted regu-

latory sites from the cisRED database (Robertson et al., 2006). There is much to do

in both of these emerging areas but even preliminary data have already given new

insights into mammalian biology: it seems there is high lineage specific expansion of

some ncRNA classes relative to protein-coding genes (Birney et al., 2006). Another

growing area of activity is in cataloguing the genetic variation present in human

populations as Ensembl reflects the progress of the International Haplotype Map

Project (Thorisson et al., 2005).

More speculative data, such as GENSCAN-predicted exons that have not been

incorporated into Ensembl-confirmed genes, may also be viewed. This means that

the display can be used as a workbench for the user to develop personalized an-

notation. For example, one may discover novel exons by finding GENSCAN exon

predictions which coincide with good matches to a fragment of the draft mouse

genome, or novel promoters by finding matches to the draft mouse genome that

occur upstream of the 5′ end of a gene. Once we have identified a gene of inter-

est, we can link to a wealth of information at external sites such as the Interpro

protein domains it encodes and its expression profile according to the SAGEmap

repository (Lash et al., 2000). Eventually, Ensembl aims to become a platform for

studies in comparative genomics, and already it is possible, while browsing the



OTE/SPH OTE/SPH

JWBK136-04 February 16, 2007 15:14 Char Count= 0

4.4 ANNOTATION UP CLOSE AND PERSONAL: THE SPECIFICS 73

human genome, to jump to a homologous region of another organism’s genome

via a match to a genomic sequence fragment. Substantial thought and effort have

evidently gone into the Ensembl site design. The result is certainly a user-friendly ex-

perience, and not just by the standards of computational biology. The Web interface

to the database achieves the laudable aim of providing seamless access to the human

genome. The user can sink down through cytogenetic ideograms of whole chromo-

somes, to large sequence contigs many megabases long and then to the single base pair

level. Along the way, a graphical display shows the relative positions of genes and other

features.

Figure 4.1 shows the Ensembl display for the genomic region around the FOXP2

gene mentioned earlier. The region is shown at three levels of resolution. The upper

panel shows the position of the region as a small red box on a cytogenetic ideogram

of chromosome 7. The middle panel shows an exploded view of this box, including

the structure of the draft genome assembly; the extent of synteny (conserved gene

order) with other organisms; the relative positions of various markers; and a simple

overview of the gene content. The bottom panel gives a detailed view of a subsection

(indicated again by a red box) of the middle panel. This detailed view is the business

end of the browser and is easily customized, via pull-down menus, to display any

desired combination of the available features. In Figure 4.1, the combination chosen

shows the positions of similarity to a variety of other vertebrate genomes (Rn is rat,

Pt is chimpanzee, Mm is mouse, Gg is chicken and Cf is dog) in relation to predicted

exons and similarities to protein and cDNA sequences, allowing a user to define non-

coding conserved regions that may be of regulatory importance. Using this display,

one could also select SNPs that have been shown to be genuine (‘genotyped SNPs’)

and that also lie outside repetitive sequences; both are important considerations for

PCR-based SNP assays.

Data retrieval is extremely well catered for in Ensembl, with text searches of all

database entries, BLAST searches of all sequences archived, and the availability of bulk

downloads of all Ensembl data and even software source code. Ensembl annotation

can also be viewed interactively on one’s local machine with the Apollo viewer (Lewis

et al., 2002; http://www.fruitfly.org/annot/apollo/).

4.4.2 The UCSC Human Genome Browser

The UCSC Human Genome Browser (UCSC) bears many similarities to Ensembl;

it, too, provides annotation of the NCBI assemblies, and it displays a similar array of

features, including confirmed genes from Ensembl. The range of features displayed

in UCSC (and Ensembl) often changes between releases, but usually there are addi-

tional features of UCSC that are not found in Ensembl, and vice versa. For example,

at the time of writing, UCSC includes predictions from a wider range of ab initio

gene-prediction programs. This could help the user to identify false-positives (i.e.,

artefactual exons) from particular programs, and concentrate on exons predicted by
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Figure 4.1 The genomic region around the FOXP2 gene according to Ensembl
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Figure 4.2 The genomic region around the FOXP2 gene according to the UCSC Human Genome

Browser. Generated using the UCSC Human Genome Browser, http://genome.ucsc.edu

more than one program that are most likely to be real. UCSC also currently indicates

regions with significant homology to the various vertebrate genomes as in Ensembl,

but it displays the data quite differently, using summary tracks to indicate over-

all conservation across several genomes (‘Conservation’ and ‘Most Conserved’ in

Figure 4.2). These UCSC-specific features can provide useful information when one

is dealing with gene predictions that are not well supported by similarity to expressed

sequence. Another useful feature of UCSC is the detailed description of the genomic

sequence assemblies. Graphical representations of the fragments making up a region

of draft genome can be displayed, showing the relative size and overlaps of each frag-

ment and also whether any gaps between fragments are bridged by mRNAs or paired

BAC end sequences. This means one can get an idea of the likely degree of misassem-

bly in a draft region. There are now a large number of data available from large-scale

gene expression studies, and public repositories have emerged for their curation,

such as the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)

and ArrayExpress at the EBI (http://www.ebi.ac.uk/arrayexpress/). At the moment,
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the UCSC is the browser which incorporates the largest number of this data.

Even recent developments such as transcriptome tiling data, derived from high-

resolution attempts to assay the level of transcription across chromosomes (Cheng

et al., 2005), are represented (‘Affy Txn Phase2’ in Figure 4.2). As in Ensembl,

efforts have been made to provide information on the putative regulatory ele-

ments of genes, and tracks can be displayed that indicate the ‘regulatory poten-

tial’ (King et al., 2005) and conserved transcription factor-binding sites across a

region.

In Figure 4.2, the genomic neighbourhood of the FOXP2 gene according to UCSC

is displayed. This provides the kinds of information available from the analogous

Ensembl display and some interesting additional data. At the top of the display,

there are indications of the size and cytogenetic band corresponding to the region.

Further down, one can compare the known FOXP2 transcripts with the patterns of

transcription seen in tiling array experiments. Notice that the known transcripts

do not map perfectly to the regions found to exhibit significant transcriptional

activity (the blue peaks in the ‘Affy Txn Phase2’ track). This may provide clues

to the relative abundance of certain transcripts from the FOXP2 gene. Moreover,

significant activity outside known exons may indicate undiscovered exons or other

regulatory RNA species. It is also notable that the number of cDNA sequences for

FOXP2 differs between Ensembl (Figure 4.1) and UCSC (Figure 4.2). This illustrates

another common problem: different annotation sources may be based upon different

sequence data, depending on what is available at the time and how the data are filtered.

As with Ensembl, the UCSC display of the region shows regions of homology to a

similar range of vertebrate genomes, but the conservation data are also summarized in

an intuitive graph (‘Conservation’). More importantly, a statistically valid indication

of the best conserved regions (‘Most Conserved’) is provided, using output from the

PhastCons program (Siepel et al., 2005). The relative scores of these regions (which

can also be displayed) would be a reasonable criterion to rank non-coding regions

for further study as regulatory elements.

Data retrieval at UCSC is facilitated by text and BLAT (Kent, 2002; a BLAST-like

algorithm) searches and bulk downloads of annotation or sequence data. Other com-

plementary tools at UCSC have extended the functionality of UCSC. For instance,

the Proteome Browser graphically displays protein properties such as hydropho-

bicity, charge and structural features across any publicly available protein sequence

(Hinrichs et al., 2006). As with Ensembl, the UCSC website has been well designed

and is sympathetic to the naive user, but the UCSC graphical interface is more Spar-

tan. If Ensembl is Disney, then UCSC is South Park. The positive side of this is that

UCSC will usually display a region on your local web browser more quickly than

Ensembl can. Both the Ensembl and UCSC interfaces offer users the ability to jump

between their respective views of a region, and so, when they are both annotating the

same version of the same NCBI assembly, they can easily be used as complementary

resources.
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4.4.3 NCBI Map Viewer

As a wider range of organisms are subject to genome sequencing, the problems of

dealing with draft sequence data have remained, but an additional task has arisen:

curation of the finished sequences representing each complete chromosome. This

task is undertaken at the NCBI in the form of Entrez Genome, the section of the

NCBI sequence retrieval system concerned with genomes and individual genome

assembly versions, and the sequences of individual whole genome shotgun reads are

also available.

As the name suggests, the NCBI Map Viewer (NMV; http://www.ncbi.nlm.nih.

gov/mapview/) evolved to allow graphical depictions of, and comparisons between,

a wide range of genetic and physical maps in parallel with NCBI draft and fin-

ished sequence contigs. The locations of genes, markers, and SNPs are indicated

on the assembled sequences. As with Ensembl, there is a NCBI analysis protocol

which aims to predict gene structures based upon EST and mRNA alignments with

the draft genome. This is carried out by a program called Acembly (unpublished;

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html), which aims to

derive gene structure from these alignments alone. The program also attempts

to give alternative splice variants of genes where its alignments suggest them.

These gene structures and transcripts end up as records in the NCBI RefSeq

database, which aims to compile a non-redundant, curated data set representing

current knowledge of known genes (Wheeler et al., 2002; http://www.ncbi.nlm.nih.

gov/entrez/query.fcgi?db=gene). Like the Ensembl protocol, many Acembly-

predicted structures (the NCBI estimate 42 per cent) are incomplete. These struc-

tures can be displayed alongside ab initio gene models, Ensembl-predicted genes,

and matching UniGene clusters to allow users to make their own conclusions about

the likeliest gene structure.

Figure 4.3 shows the FOXP2 gene as it appears in the NMV, which shows features

on a vertical rather than horizontal display. The familiar chromosome ideogram is

shown in the leftmost frame, followed by BLAST matches to four UniGene-expressed

sequence clusters (in the ‘HsUniG’ column). This gene is typical in having more

than one UniGene cluster representing it, particularly at the 3’ end, as ESTs are more

commonly sequenced from the 3′ ends of mRNAs. The next columns depict various

human cDNA sequence matches. SNPs from the NCBI dbSNP database are also

displayed (in the ‘Variation’ column) with susceptibility loci for various disorders

(the ‘Pheno’ column) from the NCBI OMIM database. In the right-most column, the

FOXP2 gene structure is displayed according to the NCBI RefSeq database model. In

contrast to the Ensembl and UCSC displays, it is not possible to depict comparative

genomics data or putative regulatory regions.

The NMV offers tabulated downloads of data, and it is possible to BLAST-

search genome assemblies (via the NCBI BLAST site: http://www.ncbi.nlm.nih.

gov/BLAST/) and view the matching regions with the NMV. All annotated genes
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Figure 4.3 The genomic region around the FOXP2 gene according to the NCBI Map Viewer

are connected to NCBI Entrez Gene, which provides links to associated information

such as related sequence accession numbers, expression data, known phenotypes and

SNPs.

4.5 Annotation: the next generation

In spite of difficulties with the quality of genomic sequence assemblies and the errors

and omissions of computational annotation, the browsers discussed above remain

extremely useful tools for the cautious biologist. They undoubtedly indicate the

presence of most coding sequence in a given fragment of genomic sequence and

indicate their location in the genome based on the best genomic sequence available.

In addition, they attempt to predict gene structures for novel genes and should

be accurate if the gene in question is known or has a close homologue which is

known. Most aspects of the analysis carried out are the subjects of active research,

and improvements in performance due to the inclusion of new sequence data and
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annotation software will continue. The downside of these developments is that all

annotation of genomic sequence is potentially in flux, and one should not assume

that the representation of a region will remain the same between different software

or data releases.

Although the finished human genome sequence is now the subject of curation

rather than successive draft sequence assemblies, annotation of these sequences is

still at a relatively early stage. Even at nucleotide level, there is much to be done, partic-

ularly in fully exploiting the data available from other genome-sequencing projects.

The cutting edge of nucleotide level annotation is in defining regulatory regions: tran-

scription start sites (TSSs), transcription factor-binding sites and promoter modules

(Werner, 2001). Here again, comparative genomics is already a rich source of infor-

mation, simply using local alignment programs’ output, as in Ensembl and UCSC.

At a higher level, gene expression is also regulated by the large-scale topology of

chromosomes, and annotation may eventually indicate features such as chromatin

structure, chromosome domains (genomic regions that bind histone modifying pro-

teins) and matrix attachment sites (regions that facilitate the organization of DNA

within a chromosome into loops). However, defining the genes whose transcription

is regulated from such features may be an insoluble problem computationally, since

they may regulate transcription from a given TSS, or from several different TSSs of

the same gene or multiple genes in a region.

At the protein and process levels of annotation, there is also progress, as, for

instance, in our ability to detect more remote homologies and gain clues about

function. Homologous proteins, sharing a common three-dimensional structure

and function, need not share detectable, sequence similarity. There is therefore in-

creasing interest in annotation by similarity at the level of protein structure (Gough

and Chothia, 2002). The genome sequence has already changed the way we study

biology as we start to fill in the gaps between genetics, cellular function and devel-

opment. Rather than studying a particular gene or protein, we are increasingly able

to study all elements in a system of interest, a group of proteins that participate in

a complex, for example. We might start with a single protein and identify others

in the proteome that potentially interact with it, on the basis of the presence of

domains known to interact. In the process, we may discover previously unknown

connections with other complexes or biochemical pathways that can be included

in the annotation of the relevant sequences. Studies on this scale are prompting

the development of multidisciplinary groups that study the behaviour and pertur-

bation of entire biological systems: the new field of systems biology (Ideker et al.,

2001). Recent studies in computational systems biology seek to extend the reach of

our predictions beyond the human genome to the interactions with systems within

other organisms such as pathogens (Uetz et al., 2006). Over the next decade or two,

these efforts should provide a genome sequence with rich annotation that can be

browsed at the level of a gene’s genomic neighbourhood but also at the level of the

interactions, complexes and processes that it participates in and the phenotypes it

influences.
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This review has provided only a brief introduction to the fields of computational

draft genome assembly and annotation, but it should be evident that what has already

been achieved has involved innovations as great as those in the biotechnology that

led to the production of the sequence data itself. At the same time, problems remain

at every level and are the subjects of active research. As a result, many different groups

around the world are working on interpreting the data avalanche that is modern ge-

netics, and communication and comparison of results are often difficult. In response,

prominent members of the bioinformatics community (such as those behind En-

sembl and the UCSC) have steadily developed freely available generic tools to allow

the organization, display and exchange of annotation. The Distributed Annotation

System (DAS) (Dowell et al., 2001; http://biodas.org/) aims to provide a framework

for people to exchange data easily over the Web. Two other notable developments are

BioMart and GBrowse. The BioMart project (http://www.biomart.org/), originally a

spin-off from Ensembl, offers a generic data management system that allows complex

searches of biological data such as sequence annotation. The GBrowse project (Stein

et al., 2002; http://www.gmod.org/) has produced a generic genome browser that can

be customized to organize, display and query a new genome scale data set. These

tools promise a future without the current confusion of incompatible interfaces and

data formats, and an increase in the open exchange of data and ideas.
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5.1 Introduction

This chapter will describe ways to interrogate the human genome with the results of

genetic experiments in order to locate and delineate known genes. It will also describe

the assessment of evidence for genes that do not yet have experimental support and

some analytical choices that may reveal more about them. In addition to some general

aspects of gene detection, some specific examples will be worked through in some

detail. This illustrates technical subtleties that are not easy to capture at the overview

level. A caveat needs to be added here that many roads lead to Rome. Some particular

ways of hacking through the genome jungle are implicitly recommended by being

used for the examples in this chapter. They will also be restricted to public databases

and Web tools. These are the personal choices of the authors based on an assessment

of their availability and utility. Other experts may propose alternative routes to the

same information, using different public resources, locally downloaded datasets,

Unix-based tools, commercial software or subscription databases.

Genetic investigations are concerned with discerning the complex relationships

between genotype and phenotype. The statement that phenotype is determined by the

biochemical consequences of gene expression is equally obvious. However, the reason

for making this explicit is to recommend that those performing and interpreting

genetic experiments may find it more useful to conceptualize the gene as a cascade

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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of evidence that connects DNA to a protein product rather than abstract ideas about

what might constitute a gene locus. The idea of focusing on gene products also makes

it easier to design experiments to verify predicted transcripts and proteins. It must also

be remembered that many gene products are non-message RNA molecules, but they

will not be covered in this chapter (see Chapter 14 for a detailed review of this area).

Before describing the evidence used to classify gene products, we must define some

of the terminology encountered in the literature and database descriptions. These

are variously classified as known, unknown, hypothetical, model, predicted, virtual,

or novel. There are no widely accepted definitions of these terms, but their usage in

this chapter will be as follows. A known gene product is experimentally supported

and would be expected to give close to a 100 per cent identity match to a unique

genome location. The term ‘unknown’ is typically applied to gene products that

are supported experimentally, but lack any detectable homology or experimentally

determined function. The term ‘predicted’, also referred to as ‘model’ or ‘hypothetical’

by the NCBI, will be reserved for an mRNA or protein open reading frame (ORF)

predicted from genomic DNA. Virtual mRNAs will refer to constructs assembled

from overlapping expressed sequence tags (ESTs) that exceed the length of any single

component. The term ‘novel’ has diminishing utility and will simply refer to a protein

with no extended identity hits in the major protein databases.

5.2 Why learn to predict and analyse genes in the
complete genome era?

Might we question at the outset of this chapter the need for the geneticist to learn

the art of gene prediction and analysis? The answer to this question might sound a

little equivocal. There are certainly plenty of public resources available which offer

high-quality annotation and analysis of the gene complement of the human genome

(Table 5.1). Where possible, it is worth using these resources, because the results are

generally of high quality. However, there are caveats:

1. Most gene models are automated and therefore many are incomplete. By necessity,

data on human genes are generated by automated analysis methods based on gene

prediction and the combined evidence of existing mRNA, cDNA and EST data.

Going a step further to curate a gene taking in all the evidence can reveal extra in-

formation, including weaker evidence that automated processes necessarily miss.

2. Automating curation of splice variants is technically difficult. Information on splice

variants is particularly difficult to capture by automated efforts, especially if the

splice variant is evidenced only by ESTs.

3. Genes may be expressed only under very specific conditions. Genes with tight

regulatory mechanisms may be expressed transiently in very specific tissue

locations, developmental stages or cellular conditions, causing their expression

to be undetectable by standard methods.
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Table 5.1 Useful resources for gene finding and analysis

Site description URL

Genome-focused tools

Ensembl http://www.ensembl.org/

UCSC genome browser http://genome.ucsc.edu/

Map Viewer at NCBI http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map search

DAS – distributed annotation http://biodas.org/

Gene/transcript-focused tools

Entrez Gene http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

Unigene EST clusters http://www.ncbi.nlm.nih.gov/UniGene/

CCDS project http://www.ncbi.nlm.nih.gov/projects/CCDS/

RefSeq at NCBI http://www.ncbi.nlm.nih.gov/RefSeq/

TIGR Gene Index (http://www.tigr.org/tigr-scripts/tgi/T index.

cgi?species=human

Protein-focused tools

Proteome analysis at EBI http://www.ebi.ac.uk/proteome/

Uniprot http://www.uniprot.org

InterPro at EBI http://www.ebi.ac.uk/interpro/

International Protein Index http://www.ebi.ac.uk/IPI/IPIhelp.html

SWISS-2DPAGE database http://ca.expasy.org/ch2d/

Gene-prediction tools

GENEWISE at Sanger Institute http://www.sanger.ac.uk/Software/Wise2/

GENSCAN at MIT http://genes.mit.edu/GENSCAN.html

Fgenesh at Sanger Institute http://genomic.sanger.ac.uk/gf/Help/fgenesh.html

Homology searching and analysis

BLAST at NCBI http://www.ncbi.nlm.nih.gov/BLAST/

BLAT at UCSC http://genome.ucsc.edu/cgi-bin/hgBlat?command=start)

SSAHA at Sanger Institute http://www.sanger.ac.uk/Software/analysis/SSAHA/

Miscellaneous gene analysis

Expasy translation tool http://ca.expasy.org/tools/dna.html

Derwent sequence patent databases http://www.derwent.com/geneseq/index.html

MatchMiner (gene aliases) http://discover.nci.nih.gov/matchminer

Google literature search portal http://scholar.google.com/

4. Genes might be expressed at vanishingly low levels. For example, many G-protein-

coupled receptors (GPCRs) are completely absent from EST data and cDNA

libraries. Most GPCRs have been identified by the combination of gene prediction

and homology-based searches. Genes with no known homologues and very low

expression are likely to be absent from the current complement of human genes.

The importance of possessing a correct, complete gene model is entirely dependent

on the use case of this information. It may be important for setting up a screen

for variation in the gene to ensure that all exons are screened, including untrans-

lated exons and alternatively spliced exons. This also follows through to selection of
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variants if genotyping of all potentially functional variants is considered important.

Understanding the full complexity of a gene is also important for functional analysis

of genetically associated variants; for example, there may be evidence to support the

assertion that a SNP annotated in dbSNP as intronic might turn out to be exonic (and

functional) if there is evidence to support an alternatively spliced exon. However, just

to put this into perspective, in the vast majority of cases, this kind of gene analysis

may not be important. For example, if a genetic experiment employs a haplotype

tag-based approach to capture variation across a gene, the precise boundaries of the

gene may not be important, unless unknown exons are outside the scope of the tag

SNPs.

5.3 The evidence cascade for gene products

So what kinds of evidence need to be considered before we assess the likelihood of

a stretch of genomic DNA giving rise to a gene product and what kinds of numbers

can be assigned to these evidence levels? In the following section, we review these

sources of information and give figures for these evidence levels, based on queries

completed in June 2006.

The NCBI Entrez Gene database is probably the most comprehensive non-

redundant source of known gene loci. There are currently 32 014 (excluding pseudo-

genes) human genes in Entrez Gene (www.ncbi.nlm.nih. gov/projects/Gene/gentrez

stats.cgi?SNGLTAX=9606) (Maglott et al., 2005). These loci include protein-coding

loci and also non-coding loci, such as micro-RNAs (see Chapter 14). If a gene locus is

unknown or further evaluation of a known gene is needed to ensure that the gene and

transcript model are as accurate as possible (e.g., to assess the impact of functional

variation in the gene), the entire cascade of evidence for a gene and its products may

need to be reviewed. We review each of these steps in the following sections.

5.3.1 Experimentally determined protein sequence

The most solid evidence of a gene is the experimental verification of the protein prod-

uct by mass spectrometry and/or Edman sequencing. Although these techniques are

commonly used to analyse proteins produced by heterologous expression in vitro,

surprisingly few genes from in vivo or cell-line sources have been verified at this level.

From the entire SP/TR collection of human proteins, only 420 are cross-referenced

as having at least a fragment of their primary structure identified directly from a

2DPAGE experiment (http://ca.expasy.org/ch2d/) (Hoogland et al., 2004). Numer-

ous mass spectrometry-based identifications and peptide sequences from human

proteins are reported in the literature, but few of these data have been formally

submitted to the public databases, and therefore they have not been captured by

SwissProt or other secondary databases (see Webster and Oxley, 2005, for a review of
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these methods). However, even this most direct of gene product verifications is rarely

sufficient to confirm the entire ORF. For example, secreted proteins are characterized

by the removal of signal peptides and frequent C-terminal processing. This precludes

defining the N and C translation termini by protein chemical means.

5.3.2 Messenger RNA (mRNA) databases

The next level down in the evidence cascade is, of course, an extended mRNA.

There are a bewildering range of sources of mRNA sequences, ranging from ex-

perimentally verified sequences to in silico predicted mRNA with no other sup-

porting evidence. Most of these sources can be viewed in the three main genome

browsers. Figure 5.1 displays some of the sources discussed below across the

BACE1 gene in the UCSC genome browser. Starting at the top of the mRNA

evidence cascade, the consensus CDS (CCDS) project (www.ncbi.nlm.nih.gov/

projects/CCDS/CcdsBrowse.cgi) contains the most stable group of transcripts, which

are now completely stabilized between the NCBI, UCSC and Ensembl genome view-

ers (Figure 5.1). In June 2006, there were 14 795 transcripts in the CCDS database.

The NCBI RefSeq collection is probably the next most reliable link in the cascade

(www.ncbi.nlm.nih.gov/RefSeq/). Refseq currently lists 49 565 human transcripts,

including transcript variants (Pruitt et al., 2005). Although this collection attempts

to provide a non-redundant snapshot of gene transcription, it must be remembered

that they are not all full-length transcripts, nor do they represent all known splice

variants. If the databases do not contain an extended mRNA, the assembly of overlap-

ping and/or clone-end clustered ESTs can be considered as a virtual mRNA (Schuler,

1997). The ESTs have the additional utility that many of them can be ordered as

clones. Alternatively, the virtual consensus sequence, backed up by comparisons to

the genomic DNA, can be used for PCR cloning. ESTs are one of the most prolific

sources of evidence of mRNA, which makes them one of the commonest sources

of supporting evidence for a transcript, especially if they include a plausible splice

junction and are derived from multiple clones from different tissue cDNA libraries.

There are a few sources of pre-assembled EST clusters; the NCBI Unigene database

(www.ncbi.nlm.nih.gov/UniGene/) currently contains 86 806 human EST clusters.

Another resource, the TIGR human gene index, contains over 200 000 tentative hu-

man consensus sequences (THCs). These are a useful source of pre-assembled virtual

mRNA (www.tigr.org/tigr-scripts/tgi/T index.cgi?species=human) (Quackenbush

et al., 2001). Both Unigene and the TIGR Gene Index can also be viewed as UCSC

genome browser tracks. The use of unspliced ESTs as evidence for a transcribed

gene is generally unreliable, as they can arise from genomic contamination of cDNA

libraries. However, human EST-to-genome matches for exon detection can be fur-

ther supported where orthologous ESTs from other vertebrates, such as mouse or

rat, match uniquely in the same section of the genome. If an assembly of mouse

ESTs is consistent with a human gene model, the existence of an orthologous human
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transcript is strongly suggested. Support can also be provided by evidence of con-

servation across vertebrate genomes; this can be assessed quite rapidly with the

‘conservation’ track in the UCSC genome browser.

5.3.3 Protein databases

The protein databases occupy the centre of the evidence cascade for gene prod-

ucts. Those mRNAs or full-length cDNAs that contain a large ORF tend to be

viewed as potential gene transcripts even if they are not full length and/or there

is ambiguity about the choice of potential initiating methionines. However, the

fact that the protein databases have now expanded to include human ORFs de-

rived solely from genomic predictions (described in the next section) means that

the evidence supporting them as gene products becomes circular. The highest cura-

tion level is provided by SwissProt sequences, a manually curated dataset from the

Human Proteomics Initiative (HPI) (http://ca.expasy.org/sprot/hpi/hpi stat.html).

The June 2006 SwissProt release comprised 14 094 unique gene products and

7707 isoforms arising from alternative promoter use or alternative splicing

(O’Donovan et al., 2001). The next highest curation level is provided by UniProt

(SP/TR), an automated dataset combined with the manually curated SwissProt.

The total for human proteins in June 2006 was 38382, including splice vari-

ants (http://www.ebi.ac.uk/integr8/OrganismStatsAction.do?orgProteomeId=25).

The International Protein Index (IPI) maintains a database of cross-references be-

tween the data sources UniProt, RefSeq and Ensembl (Kersey et al., 2004). This pro-

vides a minimally redundant yet maximally complete set of human proteins with one

sequence per transcript (http://www.ebi.ac.uk/IPI/IPIhuman.html). The June 2006

release contains 60 090 protein sequences, but this includes a number of predicted

ORFs from transcript models which are not supported by mRNAs.

5.3.4 Ab initio gene prediction

The next level of evidence can be classified as genomic prediction; that is, where

a cDNA, a translated ORF and a plausible gene splice pattern can be predicted

from a stretch of genomic DNA (Burge and Karlin, 1997). This is done after fil-

tration of repeats, which can be considered as another link in the evidence chain.

A very high local repeat density certainly suggests where exons are unlikely, but

the converse is not true; that is, the absence of repeats does not prove the pres-

ence of genes. The shortcomings of ab initio gene prediction have been pointed

out, but the geneticist should at least be aware of possible false-positives and false-

negatives (Guigo et al., 2000). The Ensembl statistics of the ratio of genes pre-

dicted by Genscan to genes with a high evidence-supported threshold is currently

3.2:1 (http://www.ensembl.org/Homo sapiens/index.html). Although this clearly
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represents over-prediction, some may be ‘genes-in-waiting’ that more accumulated

evidence may verify, as by the cloning of an extended mRNA. Looking for a con-

sensus or at least common exons from a number of gene prediction programs with

different underlying gene model assumptions can strengthen this type of evidence,

but this can become a circular argument where the programs are both trained and

benchmarked with known genes. The most effective way of filtering down genomic

predictions without experimental evidence is homology support; that is, the pre-

dicted protein shows extended similarity with other proteins. This is described in

detail in the Ensembl documentation, but, in essence, all possible protein similarity

sections from translated DNA are identified and used to build homology-supported

gene predictions by Genewise (Birney and Durbin, 2000). The advantage of gene

detection by homology is that the entirety of protein sequence space can be used.

The caveat is that predicted gene products with low similarity to extant proteins

would be discarded in this filter, although the entire set of Genscan predictions are

preserved for searching in Ensembl and can also be displayed at UCSC.

5.3.5 Comparative genomics

The next link in the evidence chain is a special case of the similarity principle, but

in this case utilizing comparisons between the genomes of other vertebrates, many

of which are now complete or close to completion such as dog, mouse, chicken, frog

and fish. The Ensembl and UCSC sites now display at least 16 vertebrate genome

assemblies; these can either be viewed directly or aligned against the human genome.

Cross-species data can be assessed at several levels. Comparison of DNA similar-

ity between (vertebrate) genomes is termed ‘phylogenetic footprinting’ (Susens and

Borgmeyer, 2001; see Chapter 6 for a detailed review of this approach). This is a

valuable technique for the detection of vertebrate genes and conserved regulatory

regions, but the problem for gene product detection is that this is too sensitive; that

is, mouse/human syntenic regions have many conserved similarity ‘patches’ outside

the boundaries of known exons. Conserved regions are likely to be important for

functions not yet understood, but it is difficult to discriminate superficially between

potential coding and potential regulatory regions. Often these regions need to be

identified in a relatively high throughput manner to allow primer design or SNP

selection. The ECR browser (Ovcharenko et al., 2004) has been specifically designed

for visualizing and accessing evolutionarily conserved region (ECR) data from com-

parisons of multiple vertebrate genomes, and it suits the needs of geneticists very

well (Figure 5.2). The ECR browser annotates ECRs across a query region, using a

user-configurable set of alignment conditions. ECR and known exon-annotated DNA

sequences corresponding to the entire genomic region can be displayed. In Figure 5.2,

there appear to be several mouse ECRs in intron 1 of BACE1. These might correspond

to alternative exons or regulatory regions. There is a strong argument to support in-

vestigations across these regions, such as SNP selection for genotyping or screening
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for polymorphisms. The ECR browser expedites this process, by providing access to

the sequences of ECRs detected and a list of their positions in the displayed region.

A detailed ECR description page contains ECR sequences from both species in any

pairwise comparison, and a display of the underlying DNA sequence alignment. In

addition, sequence characteristics are combined with pipelined links to primer design

tools and the rVista program for transcription factor-binding site (TFBS) analysis.

5.3.6 Transcriptional regulatory region analysis

The last link in the evidence chain, the in silico recognition of transcriptional control

regions, is circumstantial but is likely to increase in utility (Kel-Margoulis et al.,

2002). These could include potential start sites in proximity to CpG islands, promoter

elements, transcription factor-binding sites, and potential polyadenylation acceptor

sites in 3′ UTR. When considered in isolation, these signals have poor specificity, but

taken in combination with a consensus gene prediction and conservation of these

putative control regions between human and mouse, they can become a useful part

of the evidence chain. Chapter 12 considers this area of bioinformatics analysis in

detail, so we will not offer any further coverage of this here.

5.3.7 Conclusions on the evidence cascade for genes

In summary, there is currently direct experimental support for ∼15 000 protein-

coding genes and strong evidence for a basal (unspliced) lower limit of around

25 000 (Southan, 2004). In Figure 5.3 we review the public data resources that

provide the data for this evidence cascade. The confirmation rates for the types of

evidence listed above have not been calibrated experimentally, so we cannot give

any kind of scoring function to rank gene likelihood. Going to the extremities of

the evidence cascade, for example, with the 60 090 proteins from the IPI or the

86 806 UniGene clusters containing at least two ESTs, would result in a higher upper

limit. This uncertainty becomes a key issue for genetic experiments. Let us suppose,

for example, that a linkage study has defined a trait within the genomic region

bounded by two microsatellite markers. If the lower limit gene number is true, the

investigator merely needs to check the annotations from any of the three gene portals

to produce a list of gene products between the positioned markers from which to

choose candidates for further work. If the upper limit is true, this approach has a major

limitation because many of the genes between the markers will not be annotated.

However, the different levels of gene evidence described above can be visualized in the

display tracks of the genome viewers. Consideration of the evidence will enable the

geneticist to decide what experiments need to be designed to confirm potential novel

gene products. An example of working through this evidence is given in the examples

below.
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Figure 5.3 The evidence cascade for genes, transcripts and proteins

5.4 Dealing with the complexities of gene models

One of the conclusions that is clear from the analysis of the human genome sequence

is that gene models are not a simple cascade of a defined gene locus → a single mRNA

species → a single protein. This rarely describes the complex relationship between

the genome and its products. Attempts to fit transcript data into this kind of view

highlight a number of inconvenient ‘grey’ areas that just might mean the difference

between success and failure in a genetic experiment.

5.4.1 Delineating the 5’ and 3’ extent of an mRNA transcript

The first of these grey areas is the delineation of the extreme 5′ and 3′ ends of the

mRNA transcripts (Pesole et al., 2002; Suzuki et al., 2002). The fact that many mRNAs

are labelled as partial is testimony to the difficulty of finding library inserts that are

complete at the 5′ end. In many cases, the mRNAs are considered finished when a

plausible ORF has been delineated. However, very few cDNAs are full-length in that

they have been ‘walked out’ to determine the true 5′-most initiation of transcription

in the 5′ UTR. The same problem applies to the UTR at the 3′ end. There may be

substantial stretches of 3′ UTR extending downstream of the first polyadenylation

position at which further cloning attempts have ceased. If we overlook this UTR

sequence in a genetics experiment, we might be overlooking functionally important

micro-RNA-binding sites with a key role in gene regulation (see Chapter 14). The

problem is compounded by the poor performance of gene-prediction programmes

for 5′ and 3′ ends. The first step toward resolving the uncertainty about the extremities

of a transcript is to survey the coverage of all available cDNA sequences, whether
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nominally full-length or partial, ESTs and patent sequences. These can often extend

the UTR sections.

5.4.2 Dealing with pseudogenes

The second grey area concerns pseudogenes. Processed pseudogenes in particular are

common (Shemesh et al., 2006). These are reverse-transcribed mRNA copies that

have integrated into the genome, but which do not code for a functional protein. In

some cases, genomic sequence is so severely degraded that transcription is unlikely;

however, in many other cases, transcription still occurs. Entrez Gene contains 7202

human pseudogene loci, although this count may be far from complete. The UCSC

presents several tracks with pseudogene information; one track, ‘retroposed genes’,

shows 16 731 processed mRNAs that have been inserted back into the genome since

the mouse/human split. These can be either functional genes that have acquired a

promoter from a neighbouring gene, non-functional pseudogenes or transcribed

pseudogenes.

5.4.3 Dealing with gene-product heterogeneity

The third grey area is gene-product heterogeneity. In some cases, there may be

alternative upstream initiation methionines or alternatively spliced exons in the 5′

UTR. The causes of 3′ heterogeneity include variations in the pattern of intron

splicing from a pre-mRNA, as well as alternative polyadenylation positions inside the

3′ UTR. Potential for such gene-product heterogeneity can often be rapidly evaluated

with genome viewers, and evidence of alternatively spliced exons or alternative first

exons may be identified in spliced EST data or after comparison with other vertebrate

mRNAs or genomic regions. Unfortunately, getting beyond this potential evidence to

a robust gene model can be one of the most complex and confounding bioinformatics

analysis tasks, so again it is important to determine what level of detail is required for

the task in hand. For example, a complete transcript model may not be required to

evaluate the impact of a SNP – in this case, the exon and its immediately preceding

exon are all that are needed to determine a possible coding change.

5.4.4 Dealing with overlapping and embedded genes

The fourth grey area concerns overlapping genes. As genomic annotation proceeds,

we can find more examples of this from both gene products reading from opposite

strands and same-strand genes in close proximity (see Makalowska et al., 2005, for a

review). Embedded genes are another consideration. These are small, often intronless

expressed genes (possibly with similar origins to pseudogenes) that are located in the
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intronic regions of ‘host’ genes. Transcription of embedded genes may often be driven

by the promoter of the host gene, so this can make the determination of function

(e.g., expression) of an embedded gene and its host very difficult to separate. A good

example of an embedded gene is CHML in intron 1 of the OPN3 gene (Halford

et al., 2001).

5.5 Locating known genes in the human genome

Genes can be located by one of the following; a section of raw sequence data, a

primary accession number, a secondary accession number, a similarity search, a gene

product name, or a set of genome coordinates. Each of these has advantages and

disadvantages, and, although the main genome portals are generally consistent, they

may not give the same answers in every case. Bearing in mind that only the first two of

these gene location methods are based on stable (almost) unambiguous information,

it is better to use at least two ways to define and store the results: for example, a section

of raw sequence and a gene name, or a primary accession number and a set of genome

coordinates. The BACE1 gene will be used as an example of a known gene to locate.

The potential complexity of this task is illustrated if we view the Ensembl gene report

for BACE1, which is often a good place to start to get a feel for the data relating to a gene

(http://www.ensembl.org/Homo sapiens/geneview?gene=ENSG00000186318).

5.5.1 Using raw sequence data to locate genes

The availability of the human genome sequence means that most features can now

be unambiguously located in the genome with as little as 100 bp of sequence. This

means that storing a sequence string, preferably with a longer sequence context of

200–1000 bp, is a useful, future-proofed, method of locking-on to a genomic location.

Sequences are more or less immune to the vagaries of shifting secondary accession

numbers, naming ambiguities or GP sequence finishing that can change the genomic

coordinates. Performing nucleotide searches against the genome using tools such as

BLAT (UCSC), SAHA (Ensembl), or BLAST (NCBI) means that sequence matches

can be quickly located. The disadvantage for raw sequence is that it has to be stored

in its entirety, it may contain errors, it needs the operation of a similarity search to

be located, and similarity matches across repeat-containing sections or duplicated

regions of the genome need close inspection to sort out. This can be a particular

problem for sequence-tagged sites (STSs) and SNPs if the GP match is in the region

of 98 per cent to 95 per cent identity. Within this range, it is difficult to discriminate

technical sequencing errors from multiple genomic locations, assembly duplication

errors or even copy number polymorphisms. The genome portals capture mRNA

entries for most gene products; however, because of the thin annotation, they do not

capture sequences from the patent divisions of GenBank. An NCBI BLAST search of
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the gbPAT database with any BACE1 mRNA returns hundreds of high-identity DNA

matches (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi). These are clearly mRNAs

that could be usefully compared with all other mRNA sequences for polymorphisms,

splice variants or UTR differences. However, users should be aware that not only are

some of these entries identical versions of the same sequence derived from multiple

claims in the patent documents but also they may be identical to a public accession

number if the authors and inventors are from the same institution. Another possible

reason for using raw sequence data for gene-product checking is that all secondary

databases suffer from the snapshot effect whereby updates lag behind the content of

the primary databases. For example, the SNP or EST assignments made for BACE

in the secondary databases (see below) could be checked by BLAST searches against

the updates of dbSNP or dbEST (the latest EST data need to be searched in ‘month’

as well as dbEST).

5.5.2 Using primary accession numbers

A primary accession number (or primary database record) is assigned to a DNA or

protein sequence or other genomic entity when it is first entered in a database. This

accession should be related to a specific experiment, and it should contain contact

details for the investigator that carried out the experiment. Primary sequences should

be treated with some care, especially if they are particularly old, as they may often

contain sequencing errors or possibly polymorphisms. These are usually corrected (or

annotated as polymorphic) based on a consensus alignment of all primary accessions

in the secondary sequence record, such as RefSeq. In the case of BACE1, AF204943 is

one of the primary accessions for this gene. Because these uniquely define stretches

of sequence, they are stable except where genomic DNA, and occasionally mRNAs,

undergo version changes. They can be used in any of the major genome query portals

to go directly to a genomic location. The disadvantage is redundancy for mRNAs,

short sequence context for some STSs, and both redundancy and large multigene

sequence tracts for genomic DNA, and very recent accessions may not be indexed

in genome builds. If the query fails to connect to a genome feature, the sequences

can be searched as raw sequence. In the BACE1 example, interrogating the UCSC

browser with BACE1 retrieves three primary Genbank IDs. Users need to be aware

that although an mRNA accession number can provide a specific route into the

genome, the variable number of links to the genome portals is related to their update

frequency.

5.5.3 Using secondary accession numbers

Secondary database records do not directly relate to a specific sequence submis-

sion; instead, they usually represent a consensus view of the primary data to capture
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representative versions of each splice variant or alternative initiation. This may in-

clude extending the sequence based on an alignment of all primary sequences. Some

examples of secondary databases are RefSeq, SwissProt and RefSNP. If we view BACE1

in Ensembl or the UCSC, there are several secondary accession numbers that desig-

nate BACE1 mRNAs and proteins. Although secondary accession records have the

advantage of capturing a consensus across all the available information, they do have

some problems in use for gene localization. Firstly, the sequence linked to a sec-

ondary accession number may not be stable, as new information arises, and these

can be merged, split or retired. Recent improvements mean that retired IDs are now

linked to new IDs and version change histories but this can be confusing. However,

SwissProt and RefSeqNP protein IDs can be considered stable even if there can be

minor changes in the linked sequence.

5.5.4 Using gene names and symbols

The whole area of gene symbols and aliasing can be fraught with confusion, and it is

probably fair to say that this is one of the commonest sources of error in bioinformat-

ics searches. If we take BACE1 as an example again, there are four synonyms or aliases

(BACE, ASP2, HSPC104 and KIAA1149). Using ASP2 as a search query for the UCSC

browser, we retrieve BACE1 but also ASP2 (aspartate aminotransferase 2), a com-

pletely unrelated human gene. This illustrates the problem when gene products are

given different names by different authors. A good tool for checking gene aliases either

individually or in batches is MatchMiner (http://discover.nci.nih.gov/matchminer/).

In an attempt to avoid this confusion, the Human Gene Nomenclature Committee is

trying to establish official HUGO gene symbols for all human genes. Where possible,

these should always be used when referring to a gene, and many journals now require

the use of these symbols for publications. It is possible to check HUGO gene symbols

at the organization website (http://www.gene.ucl.ac.uk/nomenclature/). The com-

plexity of the aliases for just one gene product makes it clear that any gene name lists,

such as candidate genes to be screened for mutations, should be backed up by acces-

sion numbers, raw sequence or chromosome locations. It also illustrates the need to

cross-check aliases and their spellings when attempting a comprehensive literature

search on a particular gene product. The formal sequence-literature links that can be

followed in Entrez Gene or SwissProt are not comprehensive because they are depen-

dent on the journal-author-database system that usually only makes these links ex-

plicit for a new accession number. Much important literature remains outside this sys-

tem. Review articles, for example, do not typically include primary accession numbers

when describing genes, so the specificity of literature searches remains dependent on

the name links. Information trawling with gene names can also be done with the stan-

dard Internet search portal. Putting the term ‘beta-site app cleaving enzyme’ into the

Google Scholar literature mining engine gave 408 hits (http://scholar.google.com/).

The listing included duplicates but very few false positives.
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5.5.5 Using genome coordinates

Since the adoption of defined releases of human genome assemblies, this method

of genomic location has become more reliable, but users are strongly advised to

check the version of the genome assembly that their coordinates are derived from.

At the time of writing (June 2006), the May 2004 (NCBI35) human genome as-

sembly was still in most frequent use by the majority of applications. A March

2006 (NCBI36) release is just beginning to be incorporated into the UCSC and pre-

Ensembl servers. This creates a potential problem, of which the user must always be

aware. When genomic coordinates of different data types are compared, it is critical

to ensure that they are both based on the same NCBI genome build. Considering

this, it is good practice to record the genome build with any data set containing

genomic coordinates. Data mapped against different assemblies can be compared

by the UCSC Batch coordinate conversion tool(http://genome.ucsc.edu/cgi-bin/

hgLiftOver).

5.6 Genome portal inspection

From the descriptions above, it should be possible to locate any known gene or

genetic marker such as an STS or a SNP. Descriptions of the genome viewer features

for Ensembl, UCSC and NCBI are covered in detail in Chapter 4. However, we give

one specific example below (Figure 5.4) because it effectively illustrates some of the

issues in gene analysis. The UCSC genome browser view of the 3′ portion of the

BACE1 gene (Figure 5.4) shows that there are significant differences in the lengths

of the 3′ ends of some of the primary mRNA records. Clearly, AF201468 (5878 bp)

and AB032975 (5814 bp) are the longest reads, but, in fact, AB032975 is labelled as a

partial coding sequence because of what may be a sequencing error at the 5′ end. A

detailed analysis of the 3′ ends by EST and mRNA distribution profiles indicates that

the different UTR lengths in this case arise not from incomplete cloning but from

three alternative polyadenylation positions (Southan, 2001). Further heterogeneity

is illustrated by three splice variants affecting exons 3 and 4 (the furthest exons on

the right of Figure 5.4). The representative mRNAs are AB050436, AB050437 and

AB050438. There is also an alternative protein reading frame from AF161367, a

partial mRNA cloned from CD34+ stem cells. Opening the spliced EST tracks in

the viewer shows individual ESTs corresponding to these splice forms and others

that correspond to potentially novel exons. This suggests the possibility of further

BACE1 splice forms, but to provide further evidence to support this, the EST to

genome alignment would need to be inspected for the presence of a canonical splice

site (see Chapter 11). Beyond this, experimental verification of this variant would be

recommended.
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Figure 5.4 Reviewing the evidence cascade in the UTR region of BACE1

5.7 Analysing novel genes

In many cases, experimental results will locate a genomic region where there are no

annotated genes. Inspection of all three genome browsers might indicate possible

novel gene products with a variety of supporting evidence. This evidence might

extend from ab initio gene predictions through evidence of genomic conservation to

EST evidence. Building up a robust package of evidence around an unannotated gene

in genomic sequence can be a bit of an art, and we discuss this further in Chapter 9.

Again it is worth considering what level of detail is required for genetic analysis. For

genotyping across a gene, a well-selected set of tag SNPs should suffice. Even if an

association is localized to a SNP in a possible novel gene, it may not be necessary

to build a full gene model. If there is clear evidence of exons, it may be possible to

obtain a multiframe translation across several exons to evaluate the impact of the
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SNP. The options are limitless and it is really a question of how far we need to take

the analysis for the purpose in hand.

Once we have identified a putative novel protein in silico, there are a number of an-

alytical approaches to investigate the function of the protein. Firstly, it is worth check-

ing the Ensembl and UCSC browsers to see whether any of the work has been done

already in the form of predicted gene models. Both browsers offer highly informative

protein views. Without the benefit of this information, you really are out on your own,

so the first step is to cross-check for reading frame consistency and species orthologues

by performing a TBLASTN search against vertebrate EST and mRNA databases.

TBLASTN is a sensitive protein similarity query used against DNA databases trans-

lated in all six reading frames (http://www.ncbi.nlm.nih.gov/BLAST/). The results

can rapidly help to highlight ORFs and possible splice variants in a predicted protein.

Clearly, the analysis of what, for example, might be a candidate disease-associated

gene has to move on from the identification of an ORF to the assignment of function

that is both mechanistically plausible and experimentally testable. The subject of as-

signing functions to new proteins is outside the scope of this chapter. However, one

of the first steps should be a comprehensive motif analysis. This can be completed

with tools such as InterPro Scan (see Southan, 2000; Kriventseva et al., 2001, for a

review of this area).

5.8 Conclusions and prospects

The geneticist is in the fortunate position of having access to secondary databases

and genomic viewers of increasing quality, content and utility. This is making the

process of finding and analysing gene products easier. However, the examples used in

this chapter also show that there are many subtle details in genomic annotation, and

the implications of these will take some time to unravel. This requires comprehen-

sive inspection and may ultimately need experimental verification. The expansion

of Web-linked interoperativity and interrogation tools means that new options will

already be available by the time this book is in print. One consequence of these ad-

vances could be the perception of a diminished necessity to perform bioinformatic

analysis. Although this is true in the sense that secondary database include an increas-

ing amount of ‘precooked’ bioinformatic data, there is a paradox in that the more

sophisticated the public annotation becomes, the more important it is to understand

the underlying principles. For example, it is important to be able to distinguish

between gene products defined by in vitro data or only by in silico prediction.

So what of the future? There are a few developments worth highlighting, all of

which are covered in detail in later chapters. The first is that the combination of

increasing transcript coverage and the availability of multiple complete vertebrate

genomes will further diminish the uncertainty limits of gene numbers. Secondly, with

the HapMap in hand and the ability to carry out genome-wide genetic association

scans across a comprehensive set of gene products, we should be in a better position
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than ever to determine which genes are associated with common diseases. It is fair to

say that we still have no idea what many thousands of genes in the human genome

actually do. This presents us with a prospect that is both exciting and daunting –

do these genes play a role in human diseases, and, if so, what is this role? Answers

to these questions may take a while longer in coming than the initial associations,

but the end result might well be the illumination of entire new pathways with direct

relevance to human disease.
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6.1 Introduction

The geneticist is typically concerned with the investigation of genetic variation be-

tween individuals of a population. In contrast, much of comparative genomics is

based on the differences that have accumulated between species. More specifically,

comparative genomics uses the signal of past selection as a highly sensitive assay for

function in genome sequences. Unlike experimental approaches, it does not require a

prior hypothesis of that function. The realization that comparative sequence analysis

is crucial to understanding the functions encoded in the human and other genomes is

driving a major comparative sequencing effort. The fruits of this labour are a rapidly

expanding number of whole-genome sequences and new computational methods to

analyse these data in efficient and meaningful ways.

For the geneticist, one of the great attractions of comparative genomics is the

potential to focus in on functional polymorphisms from a list of tens or possibly

hundreds of candidates based on genetic evidence alone. Comparative genomics can

also provide clues to the function of a polymorphic site and can lead to the genera-

tion of experimentally testable hypotheses for the investigation of that function. By

including DNA sequence from genetically tractable model organisms in comparative

analyses, this approach can also provide a route into model organism studies through

the identification of orthologous sites in the target genome.

In this chapter, we introduce the concepts and techniques of comparative ge-

nomics; in doing so, we also venture into the topics of sequence alignment and

phylogenetics. In general terms, the approaches we describe can be applied to se-

quence data from any collection of organisms, but our emphasis here is primarily on

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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questions of relevance to human genetics. We begin, in Section 6.2 by presenting an

overview of genome structure and content, providing a context for the subsequent

discussions. We then introduce the concepts of natural selection, the neutral theory of

evolution, homology and phylogenetic distance that underlie comparative genomic

analyses. In Section 6.4, we consider the types of questions that can be addressed

and the strategies that can be employed to address them. We also consider the avail-

ability and accuracy of genomic sequence data. With Section 6.5, we introduce the

three main technical challenges of comparative genomic sequence analysis: genomic

sequence alignment, the visualization of sequence relationships and detecting the

signal of selection. We review the methods employed to meet these challenges and

discuss the most popular and the most promising new tools. In Section 6.6, we illus-

trate the utility of comparative genomic studies with recent applications that have

given new insights into human biology. Finally, in Section 6.7, we highlight some

resources that are likely to have a profound impact on future comparative genomic

studies and identify future research challenges.

6.2 The Genomic landscape

The human genome is approximately 3 200 000 000 (3.2 gigabases (Gb)) nucleotides

long (Lander et al., 2001; Venter et al., 2001). At first sight, a monotonous repetition

of A, T, C and G representing the four nucleotides of DNA, it is, in fact, a diverse

and still in many ways mysterious landscape. Of the total 3.2 Gb, 2.85 Gb has been

sequenced to high accuracy (IHGSC, 2004); the remainder has not, largely because

of heterochromatic regions (centromeres and telomeres) that are highly repetitive

and refractory to current sequencing technology.

6.2.1 Gene content

The definition of a gene depends upon the context of its use. To a classical geneticist, it

is a unit of inheritance; to many biologists, it is a DNA sequence that encodes a protein;

and to the popular media, it is something, which causes a disease! For the purposes

of genomic annotation, it is often practical to think in terms of a transcription unit:

a set of overlapping transcripts from the same template DNA strand. Chapter 11

(Figure 11.2) outlines the typical genomic structure of a eukaryotic transcription

unit, including the presence of a core promoter region immediately upstream of

the transcription unit, and more distantly located cis-regulatory elements mediating

transcriptional control and punctuation of the transcribed region by introns which

are spliced from the transcript during RNA maturation. Even though introns are

removed and degraded, in higher eukaryotes such as mammals, the length of introns

often far exceeds that of exons.

Proteins are often thought of as the principal functional product of a genome. Con-

sequently, protein-coding sequences are the first place screened for disease-associated
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mutations and functionally significant polymorphisms. The human genome encodes

approximately 22 000 protein-coding genes (http://www.ensembl.org), although the

total diversity of proteins produced is likely to be several times this thanks to alter-

nate transcript initiation and processing (Maniatis and Tasic, 2002; Carninci et al.,

2005). However, it appears that this protein-coding sequence accounts for less than

1.5 per cent of the human genome sequence (Lander et al., 2001). The situation is

similar to that in rodents (Waterston et al., 2002; Gibbs et al., 2004), other mammals

(Lindblad-Toh et al., 2005) and, to varying degrees, other vertebrates (Aparicio et al.,

2002; Hillier et al., 2004). These estimates of coding sequence content appear to be

robust, as they are supported by multiple lines of evidence, including the integration

of comparative data (Roest Crollius et al., 2000) with transcript evidence (Potter

et al., 2004), and they are also consistent with extrapolation from targeted regions

investigated in considerable detail (Miller et al., 2004). This finding does, of course,

raise the question, what is the function of the remainder of the genome?

It is clear that protein-coding genes are not the complete story. There are also

many transcription units with specific functions other than the encoding of a protein,

ribosomal and transfer RNAs being classic examples. More recently, the abundance

and importance of micro-RNAs that act to regulate the expression of other genes

have come to the fore (Lim et al., 2005; see Chapter 14). In addition to these known

‘functional RNAs’, there is considerable evidence for the existence of many RNA

transcripts that have no known function (Carninci et al., 2005).

6.2.2 Repetitive elements

A major component of the human and many other higher eukaryotic genomes is

sequence derived from interspersed repetitive elements (IRE) such as endogenous

retroviruses, retrotransposons and DNA transposons. At least 45 per cent of the

human genome is identifiably derived from IREs (Lander et al., 2001), although

this almost certainly underestimates their true contribution, as older, more diver-

gent repeat-derived sequences are unlikely to be identified. These elements are often

considered ‘junk’ DNA, and rarely have organism-level biological functions been

attributed to them, although a small number of exceptions are known (Kowalski

et al., 1999; Kapitonov and Jurka, 2005). It is interesting to note that some vertebrate

lineages, most notably that of the pufferfish, are almost devoid of such IRE-derived

sequence and have a genome approximately eightfold smaller than the human de-

spite encoding a similar, or slightly greater number of protein-coding genes (Aparicio

et al., 2002).

An interesting consequence of a genome rich in repetitive elements, particularly

those that replicate through the process of reverse transcription (duplication via

an RNA intermediate), is the abundance of processed pseudogenes. Occasionally,

rather than the enzyme responsible for reverse transcription (reverse transcriptase)

driving the replication of an IRE, this enzyme will reverse-transcribe the mRNA of

a gene. This leads to the integration of a processed duplicate of the gene into the
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genome. The result is a processed pseudogene, the copy of an mRNA integrated into

the genome, which bears the hallmarks of transcript processing, such as the removal

of introns and 3′ polyadenylation (Zhang et al., 2004). Processed pseudogenes are

often incomplete at the 5′ end, a consequence of reverse-transcriptase reading the 3′

end of the mRNA first. Some genes, such as those encoding the ribosomal proteins,

are particularly susceptible to generating new processed pseudogenes (Zhang et al.,

2004), probably reflecting in part the level germ-line transcript of the gene.

6.2.3 A varied landscape

In probably every measure that has been made of the human genome sequence, it has

been found to be far from homogeneous. We have already touched on the distinction

between heterochromatic regions that perform roles in the packaging and segregation

of chromosomes, from the remaining (euchromatic) regions. Throughout the rest of

the euchromatic genome, there is considerable variation in gene density (the number

of genes per unit sequence), IRE content, nucleotide and dinucleotide frequency, and

the observed rates of genetic recombination, nucleotide substitution, insertions and

deletions. Many of these attributes have been found to co-vary across the genome

(Hardison et al., 2003; Gibbs et al., 2004; Singh et al., 2005), but currently the basis of

their interrelationships is not well understood. Of particular relevance to comparative

genomic studies is the fluctuation of substitution, insertion and deletion rates across

the genome (Wolfe et al., 1989), which suggest there may be regional variation in

the rate at which mutations occur. At least in rodents, the scale of this variation is of

the order of 1 Mb, so that the substitution rates for two neutrally evolving regions of

sequence are generally well correlated if they lie within this distance of each other,

but the correlation decreases rapidly with increasing genomic distance (Gaffney and

Keightley, 2005).

The rate of sequence mutation is dependent not only on the large-scale region of a

genome, but also on the sequence and composition of neighbouring sites (Hardison

et al., 2003; Taylor et al., 2004). For example, tandemly repeated sequences and

mononucleotide tracts are prone to insertion and deletion mutation (Taylor et al.,

2004). The epigenetic methylation of cytosine nucleotides, when they are located di-

rectly upstream of a guanine (CG), is a common occurrence in mammalian genomes

and to a lesser extent in other metazoans (Bird, 2002). This nucleotide modification

has had a major influence in shaping mammalian genomes. Thanks to a quirk of

biochemistry, a methylated C can mutate to T at a much higher frequency than all

other nucleotide substitutions occur. As a result, CG dinucleotides are grossly under-

represented across the majority of the human genome, relative to chance expectation

given the frequency of C and G nucleotides (approximately 20 per cent of the expected

frequency (Sved and Bird, 1990; Lander et al., 2001)), and CG mutation rates tend to

be substantially higher than those of other dinucleotides. However, within specific is-

lands of sequence (commonly known as CpG or CG islands), CGs are not methylated,
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at least in the germ line (Bird et al., 1985), and so are not under-represented. CG

islands are often associated with the 5′ end and promoters of some genes (Bird et al.,

1985), and so represent sequences that are often of particular interest in genetic and

functional studies.

6.2.4 Segmental duplication

Segmental duplications are a genomic feature that can often cause problems for

sequence assembly such that they are frequently overlooked. These are large (typ-

ically 5 kb is taken as an arbitrary, minimum threshold in their definition) tracts

of sequence that occur multiple times in a genome, often as tandem repeats. The

duplicated regions can encompass whole genes or even multiple genes. Recent seg-

mental duplications will share a high degree of nucleotide identity and are likely to be

polymorphic in the population. The mechanism of segmental duplication provides

a rapid means of divergence between species (Law et al., 1992; Nguyen et al., 2006).

6.3 Concepts

The replication of DNA is imperfect; new mutations are continually arising with

each generation. In the absence of selection (neutrality), the eventual fate of a new

mutation will be determined by genetic drift, chance fluctuations in frequency that

result from sampling a finite population. For most mutations, this will result in

their loss from the population, but some will drift to fixation. As this is a random

process, any observed sequence changes can be considered an unbiased sample of all

mutations that occurred. However, natural selection disrupts this unbiased sampling

of mutations.

If we assume that a region of an organism’s DNA has a biological function that

contributes to the survival of that organism, it is probable that a random mutation

in this region will disrupt that function. This is analogous to someone randomly

connecting a pair of wires in a computer – it may make the computer work better,

but most likely it will have a detrimental effect on function. Consequently, the ma-

jority of mutational changes within functional elements are likely to be detrimental

and removed by the process of selection, whereas there is no such driving force to

eliminate mutations within non-functional elements. As a result, functionally im-

portant sequences are expected, in general, to accumulate fewer mutational changes

than neutrally evolving DNA. This is the same as saying that two functional regions

of sequence diverged from a common ancestor are expected to be more similar than

a pair of non-functional regions that diverged at the same time. Local regions of

sequence similarity resulting from selective constraint are often referred to as a phy-

logenetic footprint (Tagle et al., 1988). This selective constraint is often referred to

as negative or purifying selection.
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However, it is clear that species adapt and evolve (Darwin, 1859). Especially in

response to changing environmental conditions, there is a selective pressure driving

change rather than conservation. If the function of a DNA sequence is subject to

such adaptive pressure, it may be expected to accumulate changes at a faster rate

than expected for neutrally evolving sequences. This is often referred to as positive or

diversifying selection. There are instances, such as sexual selection and host-pathogen

arms races, of sustained selective pressure for diversification (Nielsen et al., 2005),

but in the majority of cases, a period of diversification will be both preceded and

succeeded by longer periods of purifying selection. As such, diversifying selection

can be difficult to identify unambiguously, and the majority of comparative studies

outside protein-coding sequences currently focus on the identification of purifying

selection. For an in-depth discussion of genetic drift, selection and the influence of

population size, see Lynch (2006).

Both purifying and diversifying selection result in a departure from the neutral rate

of sequence evolution; this departure is diagnostic and can be considered the signa-

ture of selection. Natural selection can act only on genetic variation that manifests as

phenotypic differences between individual organisms of a population. It is a stringent

filter: even a 0.001 per cent reduction in fitness will result in a polymorphism being

efficiently removed from most mammalian populations (Ohta, 1976; Piganeau and

Eyre-Walker, 2003). Therefore, the signature of selection defines a sequence as signifi-

cantly contributing to the biology of the organism. As we have discussed (Section 6.2),

vertebrate and many other higher eukaryotic genomes are dominated by sequences

that appear to have no biological function. This means that although the human

genome is approximately 3.2 Gb in size (Lander et al., 2001; Venter et al., 2001), most

of the biological functions and, consequently, disease-associated polymorphisms and

biological insight are concentrated into as little as 0.16 Gb of sequence (Gibbs et al.,

2004; Lunter et al., 2006) (Section 6.6.1). Comparative genomics provides a means

of identifying that rich vein of functional sequence, and, unlike laboratory-based

approaches, it does so without requiring prior assumptions of what that function

may be.

6.3.1 Homologues, orthologues and paralogues

The rate of sequence evolution is measured from an alignment between sequences

that have diverged from a common ancestor; that is, they are homologous. If the point

of divergence for two homologous sequences was a speciation event, they are referred

to as orthologues. Otherwise, they are paralogues of one another. The distinction

between orthology and paralogy is important for two reasons. Orthologues are more

likely than paralogues to have conserved the same function since divergence, because

the processes giving rise to paralogues, such as intragenome duplication and hori-

zontal gene transfer, provide an opportunity for functional diversification through

the relaxation of selective constraint (Gogarten and Olendzenski, 1999). Secondly,
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when we compare loci of multiple orthologues between the same range of organisms,

a common phylogenetic relationship and divergence times can be assumed for all

of the loci, enabling direct comparison between loci. No such assumptions can be

made for comparisons of paralogous loci. For these reasons, the majority of studies

are based on alignments of orthologue sequences.

‘Phylogenetic scope’, a term introduced by Cooper et al. (2003), defines the range

of organisms being considered in an analysis, denoted by their most recent common

ancestor. For example, a study involving sequences from zebrafish, chicken, frog,

mouse and man is vertebrate in scope, whereas one looking at man, chimpanzee and

macaque is primate in scope. The phylogenetic scope of a study must be matched

to the biological questions being asked. In general, more closely related species are

more likely to have similar biology than distantly related species. The Sonic hedgehog

gene discussed later (Section 6.6.3) provides a good example of the potential pitfalls

of an inappropriate phylogenetic scope.

The number of expected differences between sequences has important implica-

tions for the utility of a particular sequence in a comparative analysis, and how the

analysis should be performed. It is useful then to have some standard measure of

the expected degree of sequence divergence. For orthologous sequences, a widely

used measure has been divergence time in millions of years, estimated through the

integration of fossil records and molecular data. The greater the divergence time,

the greater the number of changes that are likely to have accumulated. However,

these date estimates vary wildly with the methods used and assumptions made; for

example, the divergence between rodent and primate lineages has been estimated

as occurring between 75 and 121 MYA (Waterston et al., 2002; Gibbs et al., 2004;

Glazko et al., 2005).

A more useful measure for comparative genomics analysis is that of branch length,

sometimes simply referred to as distance. This measure denotes the number of mu-

tational changes per unit of sequence, such as substitutions per nucleotide, deletions

per amino acid or inversions per kilobase. The most useful and widely used measure

when considering comparative genomics is that of substitutions per nucleotide, as it is

readily calculated and is reasonably robust to alignment methodology. As a measure,

it also relates directly to the amount of information present in aligned sequences and

also how accurate an alignment between those sequences is likely to be (see below).

In the phylogenetic tree shown in Figure 6.1, the total branch length between man

and mouse is D = 0.63 substitutions per site in a neutrally evolving sequence, cal-

culated by summing branch lengths between the human and mouse terminal nodes

(0.025 + 0.12 + 0.399 + 0.083). It should be noted that branch length is often not

the same as the sum of sequence differences, as the methods used to calculate sub-

stitution rates typically take into account the likelihood of multiple changes at the

same site.

In theory, the power of a study to distinguish non-neutral from neutral evolution

is proportional to the total divergence (branch length) of the analysis; in the case

of Figure 6.1, this would be the sum of each value shown on the tree (total: 0.989).



OTE/SPH OTE/SPH

JWBK136-06 February 16, 2007 15:15 Char Count= 0

112 CH 6 COMPARATIVE GENOMICS

Figure 6.1 Phylogenetic tree showing branch lengths. An unrooted tree with branch lengths

derived from nucleotide substitution rates of anonymous aligned sequence in the greater CFTR

region. Individual branch lengths are shown on each branch segment

Under the simplest scenario of identifying selective constraint, one is evaluating the

likelihood that a segment of nucleotides has remained unchanged by chance, given

an expected neutral rate of evolution D. For small values of D, we can use the Poisson

distribution (e−D) to approximate the probability that a neutrally evolving site will

be unchanged (Cooper et al., 2003; Eddy, 2005). For a man:mouse alignment with

D = 0.63, there is a 53 per cent likelihood that a neutral site will be unchanged by

chance.

In practice, a pairwise alignment between orthologous sequences cannot distin-

guish selective constraint from neutral evolution for a single nucleotide position.

Rather, a region of consecutive nucleotides is evaluated collectively. The size of a

region necessary to identify selective constraint scales inversely with the value of D

for the analysis (Eddy, 2005). A simple way to increase the sensitivity of an analysis,

to detect shorter or less conserved sequences, is to compare more distantly related

sequences. Unfortunately, there are two important caveats to this strategy. First, the

more diverged sequences are, the less accurate the alignments are between them

(Pollard et al., 2004), so constrained sequences may be missed at the alignment stage

rather than in the analysis of the alignment. Second, is the issue of phylogenetic

scope; diverged species are less likely to share biological functions or be subject to

similar constraints.

An alternative approach for increasing total D of an analysis is to include

more sequences through multiple alignment. Based on the branch-length values

in Figure 6.1, a comparison of man and mouse has D = 0.63, but adding rat as a

third species increases total D to 0.72. When calculating total D for an analysis, each

unique section of branch is counted only once, so rat adds only D = 0.086 to the

total analysis; considerably more power could be added by using dog instead of, or in

addition to rat, as it would contribute D = 0.244 of unique branch length. A further

advantage to increasing comparisons from pairwise to multiple sequences is that it

allows the direction of mutational changes to be resolved, such as the discrimination

of insertion from deletion and the ability to assign changes to a specific lineage.

Alignment of closely related pairs of sequences, such as man-chimpanzee or man-

macaque orthologous regions (D = 0.009 and D = 0.052 respectively (Margulies

et al., 2003)), is of little use for phylogenetic footprinting studies (Section 6.3;
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Figure 6.2). However, extending the approach described above to the alignment of

many such similar sequences can in theory provide sufficient total D for useful de-

tection of selective constraint (Cooper et al., 2003; Eddy, 2005). As the sequences are

closely related, their alignment should be highly accurate, covering most nucleotides

(Pollard et al., 2004), and the phylogenetic scope is narrow, so relatively little func-

tional divergence is expected. This paradigm, known as phylogenetic shadowing

(Boffelli et al., 2003), represents an ideal combination of attributes for comparative

genomic studies. Using phylogenetic shadowing, Boffelli et al. (2003) were able to

demonstrate the identification of constrained sequences specific to primates, and

showed that as few as four to eight well-chosen genomes could capture much of

the information present in deeper alignments of up to 17 primate sequences. The

principal limitation is the need for multiple closely related, orthologous sequences

(Section 6.3).

6.4 Practicalities

6.4.1 Available genomic sequences

At the turn of the millennium, comparative genomic projects in vertebrates involved

the laboratory-based identification of homologous regions and their sequencing

(Davidson et al., 2000), prior to any comparative analysis. This situation has changed

markedly, with an extremely high-quality reference human genome sequence in hand

(IHGSC, 2004) and high-quality draft sequences from mouse and rat (Waterston

et al., 2002; Gibbs et al., 2004). The target for all three of these genomes is ‘finished’

sequence, highly accurate and completely contiguous. Finished sequence is the refer-

ence standard and the ideal for comparative analysis. Unfortunately, the production

of finished vertebrate sequence currently demands considerable time and skill, and is

correspondingly expensive. In contrast, a well-designed, whole-genome shotgun se-

quencing and assembly project (Weber and Myers, 1997) can be largely automated at

every stage. As a result of these economics, most eukaryotic whole-genome sequenc-

ing projects now being undertaken have adopted a purely whole-genome shotgun

strategy (Chapter 5), producing ‘draft’ assemblies with no finishing step planned for

the foreseeable future.

Draft assemblies have been produced from multiple other vertebrates including

chicken (Gallus gallus (Hillier et al., 2004)), dog (Canis familiaris (Lindblad-Toh

et al., 2005)), zebrafish (Danio rerio), frog (Xenopus tropicalis), macaque (Macaca

mulatta), chimpanzee (Pan troglodytes; Muzny), tiger pufferfish (Takifugu rubripes

(Aparicio et al., 2002)), domestic cattle (Bos taurus), rabbit (Oryctolagus cuniculus),

armadillo (Dasypus novemcinctus), African elephant (Loxodonta africana), opos-

sum (Monodelphis domestica), medaka (Oryzias latipes) and freshwater pufferfish

(Tetraodon nigroviridis (Jaillon et al., 2004)). This list is expanding at an accelerating

rate, driven largely by the realization that sequence comparisons between multiple
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Figure 6.2 Visualization of genomic sequence alignments. The WNT2 locus was aligned between

human and orthologous loci from nine other vertebrates for which at least a draft whole-genome

shotgun sequence is available. Orthologous regions and extents were defined by the UCSC Nets.

In each case, coordinates and annotation are shown for the human sequence and nucleotide

identity from pairwise alignment. (A) Summary view from MultiPipMaker (Schwartz et al., 2000)

based on BlastZ alignments. The extent of the WNT2 transcript is shown above the alignment,

protein-coding exons shaded in grey. Regions of local alignment are shown in light grey or dark

(continued on following page)
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vertebrate genomes is crucial to understanding the structural and functional com-

ponents encoded in the human genome (Collins et al., 2003).

Whole-genome assemblies, rather than individual clone sequences, now provide

the primary resource of genomic sequence for most comparative analyses in the ver-

tebrate scope, and there is a similar situation for biologists focusing on prokaryotes,

viruses, fungi, plants, nematodes and insects, with at least draft status sequence avail-

able for over 1000 genomes. However, the quality and completeness of sequences

should be considered when undertaking an analysis. For a finished sequence, the

accuracy is expected to be high; with less than one nucleotide error per 100 000 nu-

cleotides and fewer than one insertion/deletion error per 200 000 nucleotides, the vast

majority of which are located in tandemly repetitive sequence (IHGSC, 2004), and

there should be no gaps in sequence coverage. The quality of draft sequences depends

to a large degree on the depth of coverage. With eightfold (8×) coverage (every base

sequenced on average eight times), a whole genome shotgun sequencing project can

produce a high-quality sequence with good long-range ordering of sequences (Mul-

likin and Ning, 2003). As coverage is reduced, the rate of all types of error increase; in

particular, there is a rapid reduction in sequence contiguity (Wendl and Yang, 2004).

Even in high-quality and ‘finished’ genomic sequences, there is still a chance of

misassembly, especially in regions rich in repetitive elements. However, a more com-

mon issue is that of segmental duplication (Section 6.2), where very recently dupli-

cated regions, which may encompass several genes, cannot be reliably discriminated

during normal assembly procedures, resulting in the collapse of multiple duplica-

tions into a single sequence (She et al., 2004). Efforts are currently being made to

identify and resolve these problematic regions (Sharp et al., 2005); however, it has

become apparent that the copy number of high-identity (>97 per cent) segmen-

tal duplications is often polymorphic in the human population, diverges rapidly

between species (Cheng et al., 2005) and may be associated with disease susceptibil-

ity (Eichler, 2006). A further consideration is that the small number of differences

between segmental duplicates will appear as polymorphisms in almost all assays,

←
Figure 6.2 (Continued) grey if a combined length and identity threshold is achieved (green or

red respectively when viewed in colour). The region highlighted is shown in detail in panels B

and C. (B) Detailed view of MultiPipMaker output, a percentage identity plot. Exons are denoted

by black boxes above the plot and projected as grey shaded regions across it. Other features

above the plot correspond to annotated repetitive elements (triangles and predicted CpG islands

(grey and white boxes). (C) VISTA plot (Mayor et al., 2000) summarizing mLagan (Brudno et al.,

2003b) global alignments of the sequences. Higher curves show greater conservation; regions

meeting a threshold level of conservation are shaded (darker shading for protein-coding exons).

Exons 2 and 3 are readily aligned in all cases, whereas the relatively short and poorly conserved

exon 1 is not always aligned (panel C, frog and pufferfish). An additional complication when

using draft sequences is the presence of assembly gaps; the apparent failure to detect exon 1

in chicken in this case coincides with a gap in the chicken assembly. (Figure generated by the

authors using software from Mayor et al. and Brudno et al. Permission not required)
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having potentially disruptive effects on genetic studies. Therefore, it is often prudent

to check for indications of segmental duplication such as the ‘WSSD’ and ‘Segmental

Dups’ tracks from the UCSC Genome Browser prior to investigating a new region.

Considerations of sequence quality and coverage are set to become more impor-

tant, as the emphasis of genome sequencing continues its shift from high-accuracy

sequencing to sampling more genomes but with lower individual coverage. As we

have discussed above (Section 6.3), an optimal strategy for the identification of con-

strained sites is to analyse sequence from many closely related genomes to achieve a

large total branch length. The cost of sequencing one genome to 8× is almost the same

as eight genomes at 1×; there is, then, a trade-off between high-quality sequence and

maximizing the number and diversity of sequenced genomes. Margulies et al. (2005)

have explored this trade-off with both real and simulated data, demonstrating that as

little as 2× shotgun, although insufficient to produce a good-quality assembly, can

be useful in the identification of constrained sequences by directly aligning reads to

more completely sequenced genomes.

The National Human Genome Research Institute (NHGRI; http://www.genome.

gov/) has adopted this strategy of many genomes at low coverage and is currently

coordinating the low-coverage sequencing of 16 additional mammalian genomes,

selected to maximize total branch length for comparative analysis. The full list

of organisms, target sequence coverage and progress in sequencing can be moni-

tored online (http://www.genome.gov/10002154). Based on the equations of Eddy

( 2005) and simulations of Margulies et al. (2005), these genome sequences should

provide resolution of selective constraint down to a segment length of eight nu-

cleotides, approaching the same scale as individual transcription factor-binding

sites. If successful, this strategy is likely to be applied to an even greater number

of mammalian and other genomes (a fruitfly-based project is also currently under

way; http://rana.lbl.gov/drosophila/multipleflies.html), the most exciting of which

from the perspective of human biology is the proposal to sequence multiple primate

genomes (http://www.genome.gov/12511814).

6.4.2 Defining and obtaining genomic sequences

When undertaking a comparative genomic study, it is necessary to delineate a locus

or loci of interest and to obtain corresponding homologous, often orthologous, se-

quences. Typically, an approximate locus will be defined by either arbitrary distances

from an identified feature of interest, the confidence intervals of a preceding genetic

study, or the extent of a sequenced genomic fragment. It can be useful to extend a

region of analysis slightly beyond the minimal extent so that the region is bounded

by features that are well conserved between species, such as protein-coding exons,

that serve as anchors for the analysis. A pair of well-conserved anchors provides

confidence that the full extent of a locus has been isolated from each species under

analysis.
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Preassembled genomes are the most accessible source of defined genomic seg-

ments, as the problems of stitching together overlapping sequence fragments

have already been tackled and the assemblies will have been subject to some

degree of validation and quality control. Complete assemblies can be obtained

from a number of disparate sites depending on the organism and assembly

method. However, the UCSC Genome Browser (http://genome.ucsc.edu/), Ensembl

(http://ensembl.org/) and the National Center for Biotechnology Information

(NCBI) (http://www.ncbi.nlm.nih.gov/) all provide portals to the most current, and

archived public assemblies. These sites also provide means of searching the assem-

blies, such as BLAST (Altschul et al., 1997), BLAT (Kent, 2002) and SSAHA (Ning

et al., 2001) as well as precomputed annotation for the genome assemblies that can

be readily incorporated into comparative genomic analyses.

There are several routes to identifying homologous loci in target genome se-

quences. An obvious approach is based on sequence similarity searches, but care must

be taken to distinguish orthologous from paralogous loci. Processed pseudogenes,

in particular, are common (Shemesh et al., 2006); these are the reverse-transcribed

copy of an mRNA that has integrated into the genome, but which does not code

for a functional protein (Section 6.2). As processed pseudogenes lack introns, they

can score better than an orthologous locus in a similarity search. Genome-wide,

reciprocal best matches (Tatusov et al., 2003) can be used to increase confidence that

two loci are orthologous. Ensembl also provides precomputed assignments of gene

orthology, currently based on reciprocal best matches for several genomes in the

‘geneview’ pages and from the EnsMart data repository. Conservation of the order

and orientation of genes in and neighbouring the locus can also provide additional

support of the orthology of two loci.

Probably the simplest currently available route to identifying orthologous loci is

with the Net alignments at UCSC. These genome-to-genome pairwise alignments

show genome-wide best matches and local rearrangements within them. They pro-

vide a direct means of jumping between an orthologous location in two genomes

and can be used directly to delineate an orthologous locus in a target genome. For

example, with the genome browser showing a complete locus of interest in a human

assembly, clicking on the human to dog Net will provide an option to open the dog

genome browser in a corresponding window, from which the canine sequence and

associated annotation can be obtained. An extension of this method is to use the ge-

nomic alignments to transfer annotation from one perhaps well-annotated genome

to another that may have been recently assembled. The LiftOver tool at the UCSC

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver) provides this facil-

ity for a limited set of genome pairs. This can provide a rapid way to get a baseline

annotation, which can then be filtered and refined. The Net alignments are generally

good quality, but problems do arise, in particular where segmental duplications and

assembly gaps are involved.

If there is uncertainty in the assignment of paralogy or orthology between mul-

tiple sequences, it can often be resolved through rigorous phylogenetic analysis, of
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either whole genomic alignments or more discrete regions, such as protein-coding

sequences, within them. This is often a problem with comparisons involving teleosts

such as pufferfish and zebrafish, which may have been subject to a past whole-genome

duplication (Hoegg et al., 2004) with the subsequent loss of many genes.

6.5 Technology

There are three general challenges that are common to most comparative genome

analysis: (i) the production of an alignment; (ii) visualization of the alignment;

and (iii) detection of departures from neutral sequence evolution in the alignment.

As alignments form the foundation of the comparative analysis, we spend some

time discussing the different options available and the consequences for interpreting

results. There are also several options available for the visualization of large-scale

genomic alignments. We have already discussed the principles and general approaches

taken for the detection of departures from neutrality (Section 6.4), in Section 6.5.3,

we present the tools that are currently available to apply these methods.

6.5.1 Alignments

The starting point for the majority of comparative genomic analyses is an alignment

between homologous sequences. Precomputed alignments are available between sev-

eral whole genomes as well as tools (Table 6.1) for producing such alignments. To

a large extent, the genomic alignment tools and precomputed alignments can be

treated as ‘black boxes’. It is not necessary to understand in fine detail the process of

producing the alignment to address a biological question with it. However, knowing

in general terms how an alignment was generated, and the parameters used, can

be crucial to its meaningful interpretation, especially when considering the appar-

ent absence of conservation. In this section, we present an overview of the genomic

alignment problem, highlighting the limitations of available methods as well as recent

advances in the field.

There are two general approaches to sequence alignment: local and global. When

performing a local alignment, one is asking to be shown every similarity, scoring

above a predefined threshold, between two sequences. The aligned subsequences

(alignment segments) need not be in the same order or orientation in the parent

sequences, and many-to-many matches are permitted. In contrast, in a global align-

ment, the entire length of one sequence is aligned with the entire length of the other

through the insertion of gaps in both sequences. There is a maximum one-to-one

correspondence between nucleotides and their order is constrained such that dupli-

cations, inversions and other rearrangements cannot be detected. Rather than com-

peting and redundant, these approaches should be considered complementary, as

they provide different insights into the relationship between two or more sequences.
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Table 6.1 Summary of widely used and recommended genomic alignment tools. ∗G
indicates global and L local alignment methods. ∗∗2 denotes pairwise and M multiple

alignment tools. Note that several visualization tools, such as MultiPipMaker, emulate

multiple alignment by stacking the percentage identity plots of multiple pairwise

alignments without actually producing a character-based multiple alignment

Program ∗ ∗∗ Reference Comment

AVID G 2 (Bray et al., 2003) http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/

BlastZ L 2 (Schwartz et al., 2000, 2003) The most widely used local genomic alignment

tool http://pipmaker.bx.psu.edu/pipmaker/

Blat L 2 (Kent, 2002) Efficient use of memory and rapid execution

make this a good choice for defining

approximate regions to align with more

sensitive methods

CHAOS L 2 (Brudno et al., 2003a) By itself lacks the heuristic refinements of

BlastZ but is used by DIALIGN and Lagan to

identify initial alignment matches

DIALIGN G M (Morgenstern, 2004) Only practical for alignment of large (>10 000

nucleotides) sequences when used in

conjunction with CHAOS .(Brudno et al.,

2004) http://dialign.gobics.de/anchor/

GLASS G 2 (Batzoglou et al., 2000) One of the first available tools, now superseded

by AVID

Lagan G 2 (Brudno et al., 2003b) http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/

MAVID G M (Bray and Pachter, 2003) http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/

mLagan G M (Brudno et al., 2003b) http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/

MultiZ G M (Blanchette et al., 2004) Based on BlastZ local alignments but with a

tiling path of aligning segments chosen

(chaining, see main text) and integrated into

multiple sequence alignments. This is the

method used to produce high-resolution

alignments for the UCSC Genome Browser

(http://genome.ucsc.edu/)

sLagan G 2 (Brudno et al., 2003c) Also known as Shuffle-Lagan. Produces glocal

alignments which have relaxed some

constraints of global alignment so

inversions, translocations and duplications

can be detected http://genome.lbl.gov/vista/

TBA G M (Blanchette et al., 2004) A prototype stand-alone tool to produce

threaded blockset multiple sequence

alignment, similar to the output of MultiZ

WABA G 2 (Kent and Zahler, 2000) Readily handles large gaps and can predict the

protein-coding/non-coding status of a

sequence region based in part on the

periodicity of divergent sequences

119
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Local genomic alignments

All of the local alignment methods commonly applied to genomic sequences

(Table 6.1) employ an index-based search strategy based on the same principle as

that employed in the original BLAST algorithm (Altschul et al., 1997). Briefly, this

approach produces an index of all k-length words (k-mers) in one of the input se-

quences and searches the other sequence for identical words. When a match is found,

it is extended in both directions to define a maximally scoring segment of alignment.

If that score is above the predefined threshold, the alignment is reported.

Three methods have been applied to genomic local alignment tools that elaborate

this basic procedure to increase the sensitivity and specificity:

1. Requiring two matching words to be separated by a maximum distance from each

other. This is a common approach used by BLASTN and most of the local align-

ment methods in Table 6.1. The principal exception is CHAOS, which identifies

multiple matching words but does not perform alignment extension. Instead, the

matching words are clustered (chained) if they lie in the same orientation and

within a threshold distance of each other. It is this chain of words that is scored

by CHAOS rather than BLAST-like extended initial matches.

2. Using degenerate k-mers, which can tolerate a mismatch in any position of the

k-mer, is a strategy that adds considerably to the computational load in the initial

search step but provides more flexibility in defining word matches. This method

is used by CHAOS in conjunction with the novel chain-of-words approach.

3. Matching k-mers of non-consecutive positions, an idea introduced to the field by

Ma et al. (2002). For example, a k = 8 word could be represented as 11111111,

each number one denoting the position of an identity required for a match; a non-

consecutive k = 8 could be represented as 11011011011. This is distinct from the

degenerate k-mer approach, as a degenerate k-mer can tolerate a mismatch in

any position, whereas the position of possible mismatches is constrained in the

non-consecutive k-mer case.

Such patterns of matches can relate more directly to the underlying biology. The

previous example could be useful to identify matches between coding sequence

given the periodicity of codon conservation, due to the degeneracy of the genetic

code. The non-consecutive k-mer also has a slight statistical advantage over the

consecutive k-mer, as the failure to match overlapping non-consecutive k-mers is

less strongly correlated between k-mers than the failure to match those which are

overlapping and consecutive (Batzoglou, 2005).

Beyond the limits of sensitivity defined by the initial index search, there are many

parameters that can be modified in the available tools to optimize them for a specific

purpose or phylogenetic scope. For such insight, we direct the reader to the primary
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literature and associated web servers (Table 6.1). However, the program BlastZ is

one of the most versatile and widely used in this class of program for comparative

genomic studies and is the basis for a number of publicly available resources; as such,

we consider its use in more detail here.

Developed principally by Scott Schwartz and Webb Miller (Schwartz et al., 2000,

2003), BlastZ is based on the Gapped-BLAST algorithm (Altschul et al., 1997). An

alignment is seeded by a short perfect or defined imperfect match, extended by

dynamic programming, initially without gaps and if score thresholds are achieved,

and then with gaps. Sequence between anchoring alignments is again searched and

alignments extended, but with a lower stringency than in the initial search, the strin-

gency being determined by the separation distance between anchors. BlastZ employs

heuristics to take sequence complexity into account, requiring low-complexity se-

quence to align better than high-complexity sequence, and dynamically to mask any

regions with an unexpectedly large number of matches. As BlastZ is a local alignment

tool, matches may overlap; they can be distributed between both strands and are un-

constrained in their linear order. However, BlastZ has the option of constraining

matches to be co-linear between input sequences (chaining) or to select only a best

match to each region of a reference sequence (single coverage). Both of these op-

tions involve discarding data but can be useful in interpreting results and subsequent

analysis.

Global genomic alignments

The prototypical global alignment method is that of Needleman and Wunsch (1970).

However, this procedure does not scale well to the large alignments commonly re-

quired in comparative genomics. The approach employed by most of the genomic

global alignment tools is to define a series of anchors, high-confidence matches be-

tween a pair of sequences that are constrained to be in the same order and orientation

in both sequences. This is effectively the chaining method optionally employed by

BlastZ, as discussed above. The portion of each sequence between adjacent anchors

is then aligned with lower stringency, defining a new set of anchors, and the process

is reiterated until all sequence is aligned. The strategy effectively breaks the large

alignment down into a series of progressively smaller alignments, with two impor-

tant consequences. First, the total search space is quickly reduced and continues to

be refined with each iteration, allowing the alignments to be produced quickly and

using little memory relative to the length of input sequences. Second, the chain-of-

anchors approach is tolerant of large gaps, which are common in genomic sequence

alignments, but poorly dealt with by gap penalties employed by the purely dynamic

programming methods such as that of Needleman and Wunsch.

Table 6.1 summarizes the global sequence alignment tools that are often applied

to genomic sequences. Of these, AVID (Bray et al., 2003) and Lagan (Brudno et al.,

2003b) are the most widely used. AVID identifies maximal matches (identical runs
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of nucleotides) and from these selects a chain of non-overlapping alignment anchors

using dynamic programming, iterating the process as described above until all bases

are aligned, or there are no significant matches in the remaining subsequences. The

full Needleman–Wunsch algorithm is applied if the remaining sequences are short

(<4 kb); otherwise, a fully gapped alignment of these regions is returned.

A particularly useful feature of AVID is its ability to perform template-directed

fragment assembly. Provided with a contiguous and a fragmented sequence, AVID

will use high-confidence local matches to order and orient the fragmented sequence

relative to the contiguous one, producing a ‘merged draft’, which is then used for

pairwise alignment. Such a utility can be invaluable in the analysis of early-draft

genomic sequences.

Lagan (Brudno et al., 2003b) proceeds in a very similar iterative manner to that

described for AVID, making use of the application CHAOS to produce local align-

ments from which the anchors are defined. In a further development, Brudno et al.

(2003c) have generalized this approach by relaxing the criteria for co-linearity in the

order of alignment anchors, instead requiring them to be sequentially ordered along

only one of the input sequences, the designated reference sequence. This relaxation

allows the detection of genomic rearrangements such as inversions, translocations

and duplications relative to the reference sequence. This method is implemented

as Shuffle–Lagan (Table 6.1). In recognition of similarities to both local and global

methods, the authors have termed these ‘glocal’ alignments. The approach is inno-

vative and has potential to be developed further, but there are two key drawbacks to

the current implementation. First, because the two input sequences are treated dif-

ferently, the resulting alignment depends on the order sequences are presented. The

second limitation is our current lack of understanding in the frequency of genomic

rearrangements to parameterize appropriately such alignments.

Multiple sequence alignments

The local and global sequence alignment methods we have discussed so far are able

to produce only pairwise alignments. We have seen in Section 6.3, however, that the

combined analysis of multiple sequences provides much greater insight, statistical

power and resolution to comparative genomic studies. Unfortunately, the difficulties

of producing pairwise genomic sequence alignments are exacerbated in the challenge

of producing multiple alignments.

To perform a progressive multiple alignment in this manner, the phylogenetic rela-

tionship between sequences being aligned needs to be established. This either can be

calculated from initial all-versus-all pairwise alignments of the sequences, or, for some

programs, can be provided in the form of a previously established phylogenetic tree.

If the multiple sequence alignment is between orthologous sequences, their relation-

ship is often known in advance; for example, (((man,chimpanzee),(mouse,rat))dog).

Provision of the tree in advance removes uncertainty in the order a program aligns
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the sequences, providing consistency between the alignment of multiple loci and

expediting the alignment process, as well as ensuring that the correct phylogeny is

used. After production of the initial multiple sequence alignment, the location of

gaps can be optimized, making use of the greater information content of multiple

sequences. There are multiple alignment versions of AVID and Lagan, denoted by

the ‘M’ prefix to the name (MAVID and mLagan), both of which use the general

method outlined above to produce the global multiple sequence alignments.

Although MAVID and mLagan produce true multiple sequence alignments, many

visualization tools (Section 6.5.2) display conservation profiles relative to a chosen

reference sequence. A similar approach is frequently used to integrate conservation

measures between multiple pairwise alignments (Schwartz et al., 2000) and to define

multiply conserved sequences (Section 6.5). The reference sequence approach is an

obvious choice if the objective is the annotation or investigation of a particular

sequence. However, increasingly, comparative genomic studies intend to measure

how a locus has evolved in multiple lineages and how selective forces have changed

during that evolution, rather than just detecting regions of the reference sequence

that are selectively constrained. For these analyses, the reference sequence approach

has two major drawbacks. First, any regions conserved between a subset of aligned

sequences, but not the reference, will not be detected. This problem can be overcome

by generating several multiple sequence alignments, one with each of the sequences

under study as the reference. This solution is time-consuming, raises the additional

problem of integrating results between alignments, and exposes the second major

drawback to the reference sequence approach; that is, the potential for inconsistencies

when using alternate sequences as the reference.

A solution to the problems presented by reference sequence-based alignment and

analysis has been proposed in the form of a ‘threaded blockset’ (Blanchette et al.,

2004). Under this proposition, a multiple sequence alignment is represented as a

series of alignment blocks, termed ‘blockset’. Within an individual block, each row

corresponds exactly to an input sequence (or its reverse complement) if gap characters

are ignored. That is, no sequence within a block has been rearranged. Additionally,

an individual block need not involve every aligned sequence. From this blockset,

multiple sequence alignments can be produced with any one of the aligned sequences

as the reference sequence, simply by ordering and orienting the blocks according to

the selected reference sequence, a process referred to as threading the blockset. This

approach ensures consistency of alignment when alternate reference sequences are

used and no portions of the alignment are discarded. The threaded blockset aligner

(TBA) (Blanchette et al., 2004) has been developed as a prototype tool to generate

blocksets.

Many eukaryotic genomes are rich in repetitive sequences (Section 6.2); these

can confuse alignment programs if not treated appropriately. The simplest treat-

ment of interspersed repeats and low complexity regions is to mask the se-

quence prior to alignment, readily achieved with tools such as RepeatMasker

(http://www.repeatmasker.org/) or available precomputed from the UCSC Genome
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Browser for a wide range of whole genome assemblies. However, interspersed re-

peats can be interesting in their own right, and are a useful measure of mutation rate

(Section 6.5). A more satisfactory treatment of repeats is to ignore them in the initial

stages of alignment and then align through them if flanking non-repeat sequence

has been aligned. This is often termed ‘soft-masking’, and is implemented in several

alignment tools including LAGAN, Blat and AVID.

Assessing the quality of genomic alignment tools

Which alignment tool is the most accurate? This is an obvious question to ask when

deciding which tool is the most appropriate to use. Unfortunately, this appears to

be impossible to answer definitively. For protein-coding sequences, solved three-

dimensional protein structures provide a reference standard against which align-

ment methods can be scored (Brenner et al., 1998). No such equivalent exists for

non-coding DNA. A possible solution is the in silico simulation of sequence diver-

gence (Stoye et al., 1998), which can provide a population of sequences related to a

common ancestor by a precisely known sequence of mutational events, so that the

true alignment is known.

There is a chance that an evaluation of alignment success based on simulated

data is measuring the similarity of evolutionary models, rather than the sensitivity

and specificity of the alignment methods themselves. Despite this limitation, Pollard

et al. (2004) have performed such an analysis and produced some useful rules of

thumb for genomic sequence alignment. All methods rapidly lost sensitivity with

increasing divergence, with more than 50 per cent of nucleotides not accurately

aligned by all methods with D = 1.0 (divergence, substitutions per site) in the most

realistic simulations. Local aligners were successful at identifying constrained sites,

but performed poorly on neutral sequence with D > 1.0. As would be expected

from their mode of action, global aligners had the highest overall sensitivity to align

orthologous sites accurately in both neutral and selectively constrained sequence.

Lagan (Brudno et al., 2003b) performed particularly well under almost all of the

simulation scenarios. The simulations in this study did not include inversions and

duplications, which would have been detected only by the local alignment methods

considered.

Using whole-genome alignments

As we have seen, there is a good diversity of tools available to produce pairwise

and multiple genomic sequence alignments. Although these tools are optimized for

genomic sequence alignment, the alignment of whole eukaryotic genomes to each

other is still a daunting and specialist task requiring considerable computational

resources. Fortunately, several research groups that specialize in such large-scale

genomic alignments have made their alignments publicly available (Table 6.2). The
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Table 6.2 Precomputed whole eukaryotic genome alignment resources

Resource URL Reference

MultiZ at UCSC http://genome.ucsc.edu/ (Blanchette et al., 2004)

Berkeley Genome Pipeline http://pipeline.lbl.gov/ (Couronne et al., 2003)

GALA http://gala.cse.psu.edu/ (Giardine et al., 2003; Elnitski et al., 2005)

utility of these alignments is not limited to whole-genome analyses, and they represent

an excellent resource for investigations focused on defined loci.

These publicly available alignments have several significant advantages over pro-

prietary alignments produced ad hoc to address specific questions. First, because they

are a public resource, they are used by many members of the research community

to address a multitude of questions; therefore, any systematic problems in their con-

struction are likely to be highlighted, whereas in-house alignments are unlikely to be

as rigorously vetted. Secondly, results based on the same alignments can be directly

compared between research groups, as in the integration of findings in large collabo-

rative projects (Waterston et al., 2002; Gibbs et al., 2004). Finally, it is faster and sim-

pler than producing one’s own alignments, especially in the cases where existing an-

notation has already been mapped to the alignments (http://pipeline.lbl.gov/) or can

be readily mapped by easily accessible tools (http://pipmaker.bx.psu.edu/piphelper/).

However, there are, of course, limitations to the utility of precomputed align-

ments. The user is restricted by the predefined phylogenetic scope of the alignments;

for example, at the time of writing, the human-based MultiZ alignments available

from UCSC included alignments with chimpanzee, mouse, rat, dog, chicken, puffer-

fish and zebrafish; but assemblies for the genomes of opossum, rhesus macaque,

cow and frog are also publicly available and could add considerably to the infor-

mation content of the multiple sequence alignment. Moreover, for some analyses,

a very specific set of alignment parameters or constraints are required (Keightley

et al., 2005), and these are unlikely to be met by off-the-shelf whole-genome

alignments.

6.5.2 Visualizing genomic alignments

The visual representation of alignment-based data is an important aspect of com-

parative genomics, especially when the focus of the analysis is a locus of specific

interest. One of the most intuitive and logical representations of a pairwise sequence

alignment is a dotplot. Such a representation can summarize all regions of local sim-

ilarity between two sequences, highlighting inversions, translocations, duplications

and deletions. Plotting a sequence against itself is often an excellent first step in the

comparative characterization of a locus, as it can highlight regions that are tandem

repetitive and of low complexity, and that clearly show segmental duplications, all of
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which are potentially confusing to interpret when visualized with the other methods

discussed below. For sequences of up to a few hundred kilobases, the Dotter soft-

ware (Sonnhammer and Durbin, 1995) is able to produce a complete dotplot and

incorporate arbitrary annotation. For sequences above this size, the computation of

a complete dotplot is impractical, but tools such as PipMaker (Schwartz et al., 2003)

can produce dotplot style summaries of local alignments (Figure 6.2), which can be

interpreted in essentially the same way.

The downside to dotplots is that they take up considerable space and are im-

practical when it comes to summarizing the similarity between multiple sequences.

For these reasons, percentage identity plots (PIPs) were introduced (Hardison et al.,

2003) in which the x-axis represents the coordinates of a reference sequence and the

y-axis shows percentage of identity (Figure 6.2). A horizontal bar within the plot then

identifies a gap-free segment of local alignment, the horizontal position and extent

of the bar defining the aligning section of the reference sequence. The position of

the bar in the y-axis shows the percentage nucleotide identity for the ungapped local

alignment. This is a versatile way of displaying pairwise sequence similarity, as it can

be applied to both local and global alignments, and, through stacking of multiple

such plots, can be adapted to show the conservation of a reference sequence aligned

with any number of sequences.

Another intuitive and commonly used representation of nucleotide identity in

sequence alignments is to plot a histogram of conservation (Figure 6.2). As with

PIPs, identity is plotted against the coordinates of a chosen reference sequence. Rather

than calculating the identity from an ungapped segment of alignment, however, it is

calculated from a predefined range of nucleotides in the reference sequence. These

can be discrete consecutive bins of, say, 10 alignment columns, or more commonly

calculated as a sliding window. VISTA (Mayor et al., 2000), for example, uses a

window of 100 columns with sliding increments of 1, by default.

6.5.3 Detecting selection

Any significant departure from the neutral rate of sequence evolution can indicate the

action of selection. If a collection of sequences that are thought a priori to be evolving

in a neutral or nearly neutral manner can be defined, they can serve as a comparator

for a set of test sequences. In a protein-coding sequence, this is often achieved through

measuring the substitution rate at codon positions where a substitution would not

result in an amino-acid change (synonymous sites) and comparing it to the rate at

non-synonymous sites, where a substitution would change the amino acid (Kimura,

1977). In this case, the assumption is that selection is acting principally on the

encoded amino-acid sequence. The ratio of non-synonymous (Ka) and synonymous

(Ks) rates then provides a quantitative measure of net selection (these measures are

also referred to as dn and ds respectively). Ka/Ks > 1 indicates positive selection,

Ka/Ks < 1 is indicative of purifying selection, and a Ka/Ks not significantly different

from 1 is consistent with neutral evolution. Outside the analysis of protein-coding
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sequence, Ks may not be the most appropriate category of sequence to estimate

the neutral rate. Other categories of sequence used for this purpose include ancient

repeats, anonymous sequence and pseudogenes. We consider the advantages and

drawbacks of each of these below.

Fourfold degenerate sites

In the standard genetic code, there are eight instances where substituting the

third codon position for any other nucleotide will not change the encoded amino

acid (CTn=Leu; GTn=Val; TCn=Ser; CCn=Pro; ACn=Thr; GCn=Ala; CGn=Arg;

GGn=Gly); these are synonymous or fourfold degenerate (4D) sites. 4D sites are

readily identified from annotated or well-predicted coding sequences, and because

they are embedded in generally well-conserved coding sequences, they can often be

aligned between even highly divergent sequences with a high degree of confidence.

For these reasons, 4D sites represent an excellent type of sequence from which to

estimate the neutral rate. In general, such sites are readily identified as less conserved

than other coding positions and non-4D third codon positions (Nei and Kumar,

2000). However, that is not to say that they are devoid of function or functional

constraint – such sites may be involved in the regulation of splicing, translational

efficiency, mRNA localization or transcript stability. 4D sites are generally consid-

ered to be good for the calibration of nucleotide substitution rates, and, as discussed

above, they provide an excellent control sequence for the investigation of selection

in a protein-coding sequence. However, they are of no use in measuring the neutral

rate of insertion, deletion or rearrangements.

Ancient repeats

Interspersed repetitive elements (IREs) are widespread through most vertebrate

genomes, and are thought to be free from selective constraint (Section 6.2). Un-

like 4D sites, IREs are free to accumulate insertion, deletion and rearrangement as

well as substitution changes (Petrov and Hartl, 1998). With the tool RepeatMasker

(http://repeatmasker.org/), combined with an appropriate repeat database (Repbase;

http://girinst.org/), IREs can be grouped into families and subfamilies based on se-

quence similarity. Each copy of an IRE subfamily is thought to have been almost

identical at the time of insertion, as they were all produced from one, or a very

small number of ‘parent’ elements in a brief period of activity before mutation

robbed the parent element of its ability to transpose (Lander et al., 2001). Therefore,

an IRE that inserted into a genomic location in the common ancestor of a set of

sequences being compared is expected to accumulate mutational changes indepen-

dently in each of the diverging lineages, and those changes are likely to be invisible to

selection.

This assumption of identity between IRE subfamily members at the time of in-

sertion provides them with additional advantages over other categories of candidate
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neutral sequence. For example, if we use the IRE subfamily consensus sequence as an

out-group, mutational changes can be assigned both a direction and a lineage from

just pairwise comparisons, rather than requiring a minimum three aligned sequences.

For mammalian and other genomes rich in interspersed repeats, IREs appear to be

the ideal means to measure the neutral rate of mutation. However, IREs are typically

defined on the basis of their sequence similarity to previously defined repeats and to

other sequences in the genome. This means that highly diverged members of a repeat

family may not be detected, resulting in underestimation of the mutation rate. The

distribution of IREs is non-random across a genome (Hardison et al., 2003), some

favouring A/T-rich insertion sites, and others showing preferential retention based

on nucleotide composition. The non-random distribution may result a systematic

bias in mutation rate estimation. The abundance of these elements in the genome

may also lead to non-orthologous recombination between elements (Kazazian, 2004),

resulting in a high frequency of gene conversion within the elements (Roy et al., 2000).

Anonymous sequence

Another possibility is anonymous sequence. In genomes dominated by non-

functional sequence, such as those of mammals (Section 6.2), the background mu-

tation rate can be approximated by simply taking the average rate across the whole

alignment. This estimate can be improved by specifically excluding annotated func-

tional sites such as protein-coding exons and core promoters. The remaining unan-

notated (anonymous) regions of alignment will be enriched for selectively neutral

sites. An interesting variation is to use sequences that align between closely related

species but do not align with a more distant out-group, because the sequence has

been inserted in one lineage or lost from the other (Cooper et al., 2004). Again, it can

be argued that the sequence is less likely to contain important functional elements

and is thus enriched for selectively neutral sites.

Pseudogenes

Pseudogenes (Section 6.2) are particularly interesting for estimation of the neutral

rate because their starting point is a functional gene, with all the associated sequence

biases, periodicity and, in the case of non-processed pseudogenes, introns, splice

junctions and regulatory sites. These are often the features we are most interested in

identifying or investigating in comparative studies. If a gene pseudogenized before

the common ancestor of compared sequences, we can see the effect of mutation and

genetic drift free from the action of selection superimposed upon it. This is the ideal

scenario. Unfortunately, non-processed pseudogenes are too rare – only 37 having

been found in a systematic screen of the human genome (Lander et al., 2001) – to

be of general use in calculating background mutation rates. Processed pseudogenes

have been useful for the investigation of protein-coding sequences (Ophir and Graur,
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1997), but again their uneven distribution limits their use in estimating local muta-

tion rates, and some sequences identified as pseudogenes may still have functional

roles (Podlaha and Zhang, 2004).

Distribution of control and test sequences

For a comparative study that aims to identify highly constrained sequences that are

evolving many times slower than the neutral rate, it might be adequate to estimate

the neutral rate on a genome-wide basis. Such studies include the identification of

protein-coding sequence with distant pairs of sequences, human versus pufferfish,

for example (Davidson et al., 2000, Taylor et al., 2003), and the ultra-conserved

elements (Bejerano et al., 2004) discussed later (Section 6.6.2). For more sensitive

studies, it is necessary to calculate the neutral rate in localized regions, as the rate

of mutation has been found to vary spatially across genomes (Wolfe et al., 1989;

Hardison et al., 2003; Taylor et al., 2006) (Section 6.2).

We have seen that for the Ka/Ks measure in protein-coding sequence, both the test

and neutral control sequences are interleaved. This is an ideal scenario, negating the

confounding influence of regional variation in mutation rates. Regional estimates of

the neutral rate can be calculated in a sliding window manner or by calculating it for

an arbitrarily defined region of interest. The principal problem with this approach is

that sites subject to selection cannot be assumed to be randomly distributed across

the genome. For instance, anonymous sequence around the PAX6 gene (Miles et al.,

1998) is highly enriched in functionally important conserved sites (Section 6.6.2).

An estimate of the neutral rate based on anonymous sequence around this gene

would give an artificially low estimate of the neutral mutation rate in the region. The

larger the window used to estimate the regional neutral rate, the less likely it is to

be dominated by non-neutral sites, but a larger window reduces the resolution for

detecting regional variation in mutation rate. The optimum window size for neutral

rate estimation will be a balance of these two opposing needs. Gaffney et al. (Gaffney

and Keightley, 2005) found that within the rodent lineage, a window of 10 kb is likely

to show a consistent neutral rate across its length, and even windows up to 1 Mb may

have little variation in neutral rate across them. However, more recent findings suggest

that these broad-interval analyses may mask considerable fine-grained variation in

the mutation rate, particularly in the primate lineage (Taylor et al., 2006).

Several studies have defined the extent of constrained regions on the basis of

ungapped segments of alignment (Duret et al., 1993; Dermitzakis et al., 2002), a

strategy that lends itself well to analyses based on local rather than global alignments.

Often, these studies use precalibrated thresholds for significant constraint rather

than calculating relative rates directly; for example, 70 per cent identity over 100

ungapped nucleotides is a commonly used parameter for man to rodent alignments

(Dermitzakis et al., 2002).

Sliding windows have been widely used to arbitrarily define the extent of sequences

that are then evaluated for constraint (Mayor et al., 2000; Waterston et al., 2002). The
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approach can accommodate alignment gaps, generally treating them as nucleotide

mismatches (Mayor et al., 2000), but their sensitivity is crucially dependent on the

size of the evaluation window and on how much the window is moved along the

alignment for each evaluation. Analyses based on sliding windows have also been ap-

plied to phylogenetic shadowing (Boffelli et al., 2003). In this case, rather than scoring

conservation or substitution rate directly, the substitution rates for each alignment

column were compared to the rates of sequences known to be evolving neutrally (e.g.,

ancient repeats) or subject to selection (e.g., exons), the final score being a likelihood

ratio of neutral versus constrained evolution for each alignment column. A web server

for phylogenetic shadowing analysis is available (http://bonaire.lbl.gov/shadower/).

An intuitive way of integrating measures of constraint across multiple aligned

sequences is to define multiply conserved sequences (MCS). The common core of

sequence that aligns in all (or most) sequences from a defined scope can then define

the boundaries of the MCS (Margulies et al., 2003; Thomas et al., 2003). For instance,

it is easy to see that exons 2 and 3 of WNT2 can be considered MCS within vertebrates

(Figure 6.2). The MCS definition is versatile, accommodating local or global align-

ments, and can tolerate missing sequence from incompletely sequenced genomes.

This MCS paradigm can incorporate thresholds of alignment quality (identity and

gap frequency), but, more commonly, a simple default of aligned or not-aligned is

used, in which case the sensitivity of the alignment method becomes an arbitrary

threshold score.

Two highly versatile tools, RankVISTA (Martin et al., 2004) and phastCons (Siepel

et al., 2005), have recently been developed that quantify constraint and operate free

of window size and identity thresholds. These tools are also noteworthy because

they quantitatively measure constraint rather than the crude binary discrimination

into constrained or unconstrained that is common to many of the methods dis-

cussed above. RankVISTA integrates pairwise relative rate scores across a multiple

alignment, using a phylogenetic weighting scheme (conservation between distantly

related species scores better than conservation between closely related species). The

neutral rate estimates are derived from anonymous regions in the submitted align-

ment, and the final score is an easily interpretable probability of observing such

conservation in a 10-kb fragment of neutrally evolving sequence. The optimal extent

of constrained sequences is determined with a dynamic programming approach. This

tool is available from the standard VISTA web server (http://genome.lbl.gov/vista/).

The tool phastCons (Siepel et al., 2005) is one of the first practical implementations

of a phylogenetic hidden Markov model (phylo-HMM (Felsenstein and Churchill,

1996)) to score conservation across genomic alignments, in effect scoring how well

the observed pattern of substitution matches its internal model of a constrained

site. The approach is also noteworthy because it takes into account the tendency

for conservation levels to be similar at adjacent sites, and it is an extensible model

that could be adapted to incorporate additional parameters. Regularly updated, pre-

computed phastCons results are available through the UCSC genome browser for

multispecies whole-genome alignments. When interpreting phastCons results, it is
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worth remembering that they are based on genome-wide alignments. It is often the

case that a discrete region is identified as highly conserved, but upon further in-

vestigation the aligning regions prove to be from non-syntenic loci. Many of these

instances can be attributed to alignments involving process-pseudogenes. Consider-

ation of the UCSC browser Net alignment track while interpreting phastCons results

is a useful way of identifying these anomalous signals.

All of the methods described above focus on nucleotide substitution rates. Inser-

tions and deletions (indels) have the potential to help detect constrained regions;

however, estimation of their rate is more sensitive to alignment parameters than is

the case of substitution rate calculations (Keightley and Johnson, 2004), and good

stochastic models of insertion and deletion in non-coding DNA are not currently

available. Alignment gaps are typically treated as either missing data (phastCons) or

nucleotide substitutions (RankVISTA) when assessing selective constraint. Neither

of these is a particularly satisfactory solution, and phastCons leads to artificially high

scores over regions of gapped alignment. Recent work by Lunter et al. (2006) has

shown that indel rates themselves can be a useful measure of selective constraint.

Importantly, the analysis appears to be robust to a range of alignment parameters,

suggesting that an accurate indel model may not be absolutely necessary to extract

useful measures of selection. Indels to detect constrained regions have been used

implicitly before in comparative genomics; for example, in a pip-plot (Figure 6.2,

panel 2), exons clearly stand out as much for the length of the horizontal lines (in-

dicating the absence of indels) as they do for the height of the lines on the y-axis

(indicating nucleotide identity). However, the real advantage of indel-based mea-

sures of selection is that they can be used in conjunction with substitution rate

measures, in the same sequence, allowing discordant selective pressures to be simul-

taneously measured – for example, positive selection driving amino-acid sequence

diversity but purifying selection acting to constrain sequence length, or cases where

the nucleotide sequence between two protein-binding sites is unconstrained but the

spacing between elements is crucial.

6.5.4 Comparative genomics meets population genetics

We have seen that the comparison of sequences between species provides a powerful

method to identify functional elements within genomic sequence. If within-species

genetic variation (polymorphism) data are also available for any of the aligned se-

quences, an additional set of analyses becomes tractable, and this can provide in-

dependent tests of conclusions drawn from interspecies comparisons and open the

door to new biological questions. The prototypical, combined intra- and interspecies

analysis is the McDonald–Kreitman test (McDonald and Kreitman, 1991). The basic

premise of this test is that mildly deleterious mutations will be present in a popula-

tion as polymorphisms. However, as they are deleterious, they are unlikely to drift to

fixation (frequency = 1.0). The vast majority of sequence differences between even
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closely related species are likely to be fixed differences; even the most famous example

of overdominance maintaining polymorphism between man and chimpanzee has re-

cently been shown to be convergent (Wooding et al., 2006). Under neutral evolution,

the Ka/Ks ratio derived from interspecies comparison should equal an analogous

non-synonymous:synonymous (�a/�s) ratio derived from polymorphism data, an

excess of interspecies amino-acid substitutions in this test indicating positive selec-

tion. In this test, it is not necessary to have complete ascertainment of variation, and

control regions and the population frequency of polymorphisms used are unimpor-

tant. However, it is crucial that the ascertainment of polymorphism data be unbiased

between test and control sequences. The McDonald–Kreitman test can be adapted to

any pairwise comparison between test and nearly neutral control sequences, just like

the Ka/Ks ratio test. If polymorphism data are available, especially if there are also al-

lele frequency data, a number of measures can be used to reinforce conclusions drawn

initially from interspecies comparative genomic studies and reveal the direction of

recent selection (see .Hahn, in press, for an excellent review of this subject).

6.6 Applications

There have been a huge number of published studies that are either centred on

comparative genomic analysis or utilize comparative genomics to address specific

questions within a wider study. In the next few sections, we highlight a small number

of examples that have given new insight into the general biology of vertebrate genomes

and provide good examples of the application of methods described in this chapter.

6.6.1 How much of the human genome is constrained?

In Section 6.2, we provided a brief overview of the human genomic landscape.

One of the most prominent features of that landscape was the apparent dearth of

identified functional sequences, such as those encoding proteins, and an abundance

of repeat sequences that presumably do not usefully contribute to the biology of the

organism. With publication of both the draft human (Lander et al., 2001) and mouse

(Waterston et al., 2002) genomes, it became possible to apply comparative genomic

methodologies to the entire genome and test these presumptions. In particular,

it became possible to estimate the total proportion of the human genome that is

subject to selective constraint, and so estimate the proportion of the genome that has

conserved function but is not protein coding. A conservation score was calculated for

non-overlapping 50 nucleotide windows of human:mouse whole-genome pairwise

alignments. Two sets of scores were derived, one for the complete alignment and

a second only from aligned ancient repeats. As ancient repeats are thought to be

unconstrained by selection (Section 6.2), the distribution of conservation scores

should reflect the pattern expected under neutral evolution. The distribution of
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scores from the whole-genome alignments substantially overlaps those derived just

from ancient repeats, although a significant shoulder specifically toward higher scores

is evident (Waterston et al., 2002). Subtracting the ancient repeat distribution from

that of the whole genome suggests that approximately 5 per cent of 50 nucleotide

windows are more highly constrained than expected under neutral evolution. Similar

analyses based on human to rat comparisons have supported this conclusion (Gibbs

et al., 2004). These studies are not without their limitations. For example, isolated

regions of constraint that are substantially shorter than the 50-nucleotide window

size used will have gone undetected, suggesting that the estimate of 5 per cent may be

a lower bound for the true value. Generally, similar fractions of 2.6–3.5 per cent of

the human genome were found to show evidence of selective constraint by the indel-

based method (Lunter et al., 2006) described in the previous section. These studies

have led to the important conclusion that much of the functionally constrained

sequence in the human genome does not code for proteins.

If coding sequences are not the singularly dominant functional component of the

genome, the question arises, what are the functions of non-coding sequence? Several

types of non-coding elements are known, such as cis-regulators of transcription and

splicing and RNA structures that influence transcript localization and stability, as

well as transcripts whose functional product is RNA rather than protein (see Mattick

(2004) for review). It is also likely that there are classes of functional elements that we

have yet to discover. This potential naivety is well illustrated by the relatively recent

realization that a major class of non-coding functional elements (microRNAs) has

been almost entirety overlooked (Ambros, 2004; see Chapter 14).

It is one of the great strengths of comparative genomics that no prior assumption

of the function is required to identify a sequence as functionally important. With the

increasing depth of available genomes (Section 6.5) and the methods described above,

we are rapidly approaching the stage where we can confidently identify short regions

and possibly even single nucleotides as constrained. A remaining and significant

challenge is to characterize the function of those sites. Again comparative genomics

can help. We have already seen that there is a characteristic profile of conservation

for protein-coding sequence (Section 6.5.1), and similar profiles may exist for other

categories of functionally important sequence. Dermitzakis et al. (2004) found that

conserved, non-genic sequences (CNGs) accumulated sequence changes in a manner

that can be statistically distinguished from both protein-coding sequences and non-

coding RNA genes. These patterns of sequence change most resembled clusters of

protein-binding sites.

6.6.2 Ultra-conserved regions

The sequences studied by Dermitzakis et al. (2004) were selected, from chromosome

21, on the basis of a simple threshold identity in man to mouse alignment, and also

on the ability to PCR amplify homologous sequences from 14 mammalian species.
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Consequently, these sequences should represent the subset of CNGs that both have

the highest nucleotide identity and are the most constrained through mammalian

evolution. Ironically, a whole-genome analysis of non-coding conservation has since

shown that human chromosome 21 is the only autosome devoid of so-called ultra-

conserved elements (Bejerano et al., 2004). These elements are also defined on the

basis of simple and arbitrary length and identity thresholds, but, in this case, the very

stringent criteria of 200-nucleotide ungapped alignment between human, mouse

and rat, and 100 per cent nucleotide identity in all three species. In total, 481 of these

incredibly well-conserved sequences were found.

Although defined initially on the basis of conservation between man and rodents,

97 per cent of the ultra-conserved elements could be identified in the chicken genome

with, on average, over 95 per cent nucleotide identity, and more than 66 per cent

of them could be aligned with a puffer fish genome (Takifugu rubripes). In contrast,

only 5 per cent could be identified in any of the non-vertebrates Ciona intestinalis

(sea squirt), Drosophila melanogaster (fruit fly) or Caenorhabditis elegans (nematode

worm), and all of these were ultra-conserved elements that overlap protein-coding

exons from known genes. It appears, then, that although these ultra-conserved ele-

ments have been highly constrained for 300–450 million years of vertebrate evolution

(Bejerano et al., 2004), they are largely confined to the vertebrates. A similar study

making use of a recently available whole-genome sequence from multiple insects, has

also identified ultra-conserved regions between fruit flies and the mosquito Anophe-

les gambiae (Glazov et al., 2005). However, the majority of ultra-conserved elements

identified in fruit flies were substantially shorter than the 200-nucleotide threshold

used for the mammalian study, despite similar evolutionary distances, for some of

the analyses, in both studies.

It has been noted in both mammals and fruit flies that ultra-conserved elements

are often located in the introns of, or intergenic regions around, developmentally

important genes (Bejerano et al., 2004; Glazov et al., 2005; Woolfe et al., 2005). These

developmental regulatory genes often encode DNA-binding transcription factors or

RNA-binding proteins (Bejerano et al., 2004) that are likely to be involved in the

regulation of RNA processing and transport. These observations have invoked the

notion of developmental master regulators: regions that integrate multiple signals

coordinating the expression of genes that, in turn, regulate many more genes through

transcription and RNA processing. Some experimental support for this idea has been

provided by Woolfe et al. (2005) in a zebrafish experimental system. Of 25 non-coding

sequence elements that are highly conserved between man and pufferfish, 23 showed

significant transcriptional enhancer activity in one or more tissues during zebrafish

development.

The idea that ultra-conserved elements act as developmental regulators fits well

with the observation that they are highly conserved within phylogenetic clades that

share similar developmental programs, but apparently are not conserved between

more diverse groups. Could the ultra-conserved elements that are common to both

man and pufferfish be the master regulators that define the basic vertebrate body plan:
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skeletal structure, musculature and internal organs, and the developmental programs

to orchestrate their construction? This is an attractive idea, but much more work is re-

quired to establish whether this is even close to accurate. In particular, some genes are

known to be key regulators of developmental programs, and the orthologous genes

in both man and fruit fly are apparently performing the same task in the same tissue.

PAX6, for example, is crucial in the development of eyes in both man and fruit fly

(van Heyningen and Williamson, 2002). The human PAX6 locus is one of the richest

in ultra-conserved elements (Bejerano et al., 2004), and six out of seven tested ele-

ments show enhancer activity, four of which directed expression preferentially in the

developing eye (Woolfe et al., 2005). Despite the conserved role of PAX6 in eye devel-

opment between man and fruit fly and the demonstrated role of mammalian ultra-

conserved elements in directing that expression, there is no identifiable sequence

similarity between the ultra-conserved elements and the fruit-fly PAX6 locus.

6.6.3 Specific locus studies

In this section, we focus on a small number of disease-related studies that have been

substantially advanced through the application of comparative genomics. We make

several references to Online Mendelian Inheritance in Man (OMIM), a key human

curated resource that brings together published information relating human genetic

diseases and disease genes. Full OMIM records can be obtained with their identifier

number from the Entrez system (http://www.ncbi.nlm.nih.gov/entrez/).

Hirschsprung’s disease is a congenital disorder characterized by intestinal abnor-

malities (OMIM:142623). The genetics of this disease have been well studied, but

the pattern of inheritance is complex. Mutations have been found in eight loci that

contribute to disease susceptibility (OMIM:142623 for review), but these account for

only 30 per cent of cases (Emison et al., 2005). Genetic evidence indicated that one of

those eight loci, the RET gene, harboured additional, previously undetected muta-

tions or variants that account for much of the remaining susceptibility (Gabriel et al.,

2002). All apparent protein-coding sequence of RET had already been screened for

mutations, so the challenge was to identify additional functionally important non-

coding sites within the locus or identify previously missed protein-coding sequence.

Emison et al. (2005) identified more than 30 regions of conserved non-coding

sequence in 350 kb of genomic sequence centred on the RET gene. The analysis used

the multiple conserved sequences paradigm (Section 6.5.3) based on alignment of

12 orthologous loci from vertebrates. Only five of the conserved non-coding regions

were within the region maximally implicated by genetic evidence. The comparative

analysis also indicated that a human single-nucleotide polymorphism (SNP) is lo-

cated within one of the conserved regions, and not withstanding the polymorphism,

the nucleotide has been highly conserved through vertebrate evolution, an obvious

candidate for the functional variant. Emison et al. (2005) were able to show that

this conserved element has enhancer activity and that the level of that activity is
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influenced by the SNP genotype. The comparative alignment allowed the ancestral

and derived alleles to be discriminated, the lower enhancer activity and disease sus-

ceptibility being associated with the more recently derived allele. The non-coding

SNP genotype was shown to account for much of the previously unaccounted for

genetic susceptibility contributed by the RET locus.

The Hirschprung’s disease RET locus is a good recent example of the utility of

comparative genomics and its synergy with genetic studies. It also stands out for sev-

eral of other reasons. The functional variant identified is common in the population,

exceeding 50 per cent in some parts of East Asia, despite being disease-associated.

The effect of the genotype is influenced by sex, demonstrating a form of epistasis, and

the variant is regulatory rather than protein coding. All of these features are likely

to be frequently encountered when searching for the genetic risk factors in common

diseases (Marchini et al., 2005) such as cancer, heart-disease, diabetes and stroke.

The RPGR gene has a similar story to the RET locus. RPGR is known to be a

major locus for X-linked retinitis pigmentosa (OMIM:312610), a form of retinal de-

generation. Several known disease-associated coding sequence mutations had been

found, but it was apparent from genetic studies that many more cases of retinitis

pigmentosa should be attributable to the locus than could be explained by the muta-

tions in the coding sequence (Teague et al., 1994; Vervoort et al., 2000). Comparative

genomics revealed a previously unknown, alternately spliced protein-coding exon

that was specifically expressed in the retina and harboured the missing mutations

(Vervoort et al., 2000). In this case, all of the disease-associated mutations disrupted

the encoded protein. It is likely that such missing mutations are common for even

well-studied genes and that they are simply under-reported in the literature, because

it is seldom practical to screen large genomic intervals for mutations, nor is it easy

to demonstrate their causal role.

Our next example demonstrates over how wide an interval cis-regulatory sites

can act, but also how, even when the region is large and complex, comparative

genomics can allow functional sites to be identified and subsequently characterized.

The mouse Sasquatch (Ssq) mutation was generated serendipitously in trying to insert

a transgene into the genome. The transgene integration led to ectopic expression

of the developmental signalling molecule Sonic Hedgehog (SHH) and resulted in

preaxial polydactyly (extra digits) (Sharpe et al., 1999). Intriguingly, genetic evidence

demonstrated that the effect was specifically in cis (Sharpe et al., 1999), but, as the

integration site was over 1 Mb from Shh and located within the intron of an adjacent

gene, identifying the functional regulatory element remained a challenge.

Multiple sequence alignment between orthologous regions from mouse, man,

chicken and pufferfish identified a 0.8-kb stretch of sequence close to the transgene

insertion site that has been highly conserved throughout vertebrate evolution (Lettice

et al., 2003). It has now been shown that the 0.8-kb element, known as the ZRS, is

a limb bud-specific enhancer of Shh expression (Sagai et al., 2004; Lettice and Hill,

2005) and that even the fish sequence can drive expression in the mouse limb bud.

These studies of the Shh locus have shown that cis-regulatory elements can be located
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large distances, at least 1 Mb, along linear DNA from the genes they act to regulate. Not

only can these elements be far from their targets, but they may also be closer to other

genes on which they apparently have no regulatory role – the ZRS is located in the fifth

intron of the Lmbr1 gene, whose expression is unaffected by mutations in the ZRS.

Like the ultra-conserved sequences described above, the striking conservation of

the ZRS throughout vertebrate development indicates that even single nucleotide

substitutions in the region are likely to be detrimental and strongly selected against.

Accordingly, point mutations in the ZRS have been found in four human families and

two mouse lines, and in each case they lead to preaxial polydactyly (see Lettice and

Hill, 2005, for review). In contrast to these point mutations, complete deletion of the

ZRS in the mouse abolishes Shh expression in the limb bud and results in severely

truncated limbs (Sagai et al., 2005), a similar phenotype to human acheiropodia,

which is also linked to the Shh locus (Ianakiev et al., 2001). Several vertebrate lineages,

such as snake, have substantially reduced or entirely lost limbs, although they were

present in their ancestors. Sagai et al. (2004) have shown that for at least two of these

cases, snakes and limbless newts, this has coincided with the loss of the ZRS, whereas

it remains conserved in lizards and legged newts. Whether loss of the ZRS was a

primary event in the morphological transition of either of these separate lineages,

or whether it represents secondary losses, remains unclear; but it does illustrate two

points rather well. First, the importance of selecting an appropriate phylogenetic

scope for a comparative genomic study (Section 6.3); an analysis utilizing legless

newts and snakes, rather than pufferfish and chickens, would not have revealed the

ZRS in the first place. Second, it demonstrates the apparently modular nature of

conserved non-coding sequence blocks in evolution. The ZRS can be lost without

apparently disrupting the many other functions (OMIM:600725) of Shh during

vertebrate development.

6.7 Challenges and future directions

There has been great progress in understanding the biology and functions encoded

by the human genome since the first draft of a reference sequence was produced in

2001 (Lander et al., 2001; (Venter et al., 2001), and much of this insight has been

gained by comparison both within and between genomes. However, as with many sci-

entific endeavours, more questions arise with each increment in understanding. For

example, we have now realized that much of the functionally constrained sequence

in the human genome does not encode proteins, and our current understanding

of these elements is poor. They are the dark matter of the genome. A major and

current challenge is to identify each of these elements and to start dissecting their

function. In particular, it is likely that they will harbour polymorphisms that affect

human health, contributing to common disease susceptibility. The integration of

comparative genomics with genetic variation data (IHC, 2005) to identify functional

polymorphisms is likely to be a rapidly expanding field with the combined assets of
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multiple mammalian genome sequences and high-density confirmed polymorphism

data available.

Sequence comparison alone may be able to identify all constrained sites, but it is

unlikely to be able to establish their associated functions. Rather, it is the synergy of

comparative studies with laboratory experiment that provides greatest insight. This

approach is embodied by the Encyclopaedia of DNA elements (ENCODE) project,

an international initiative with the ultimate aim of identifying all functional elements

in the human genome (ENCODE Project Consortium (EPC), 2004), in effect to shed

light on the dark matter of the genome. This is an ambitious and relatively long-term

goal. As a first step, a pilot project has been undertaken to investigate 30 Mb of the hu-

man genome (approximately 1 per cent of the genome, selected primarily on the basis

of gene density and evolutionary conservation) in great detail, applying a broad spec-

trum of experimental and computational methods to identify functionally impor-

tant sites ( http://genome.gov/10005107). These rigorously annotated regions will be

important training and testing grounds for the development of methods in compar-

ative genomics. The UCSC genome browser (http://genome.ucsc.edu/ENCODE/)

provides a key portal to access the ENCODE pilot project data.

6.8 Conclusion

In the middle of 2000, credible estimates of the total number of human protein-

coding genes plummeted from 80 000–100 000 to 30 000 or so (Roest Crollius et al.,

2000). These lower counts were essentially confirmed by the early analyses of the

human genome (Lander et al., 2001) and, if anything, the real numbers are likely to

be smaller still (IHGSC, 2004). Although it is difficult, and perhaps even of little value,

to interpret these results within the commonly perceived frameworks of organismal

complexity, the fact remains that they have created a new impetus for looking beyond

protein-coding genes to other classes of functional elements, such as non-coding

RNAs and, in particular, the cis-acting elements regulating gene expression. At the

same time, it is sobering to reflect on how unanticipated these downward revisions of

gene count were, and accordingly to reserve judgement on exactly how many more

functional elements of major relevance we may expect to find. The methods and

early results presented in this review are merely the first steps on a long path to a

broader understanding of the totality of information encoded in the genome.
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7.1 Introduction

Genetic disorders due to the inheritance of an abnormality in a single gene are termed

‘monogenic’. These can be subclassified into autosomal or sex-linked disorders, each

with either a dominant (one mutation) or recessive (two mutations in the same gene)

inheritance pattern. Though the genetic inheritance of a single gene disorder is not

complex, the mechanism of mutation can be. In this chapter, we will highlight useful

bioinformatics tools for chromosomally mapping a monogenic disease, and analyt-

ical tools and technologies for identification of genetic mutations. Finally, we will

discuss some of the approaches for better understanding of the mechanism of the dis-

ease mutation. Such information may be invaluable to the understanding of human

disease and ultimately drug development (Cohen et al., 2004; Brinkman et al., 2006).

7.2 Clinical ascertainment

Prior to any laboratory study of a monogenic disease, a number of non-bioinformatic

and non-molecular aspects need to be considered. Paramount among these are the

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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requirement to apply for ethical permission before the study commences, correct

clinical ascertainment, and informed patient consent. Other factors may also influ-

ence the study design, such as the mode of inheritance. During clinical ascertainment,

consideration should be given to the possibility of phenocopies; that is, disease pre-

sentation occurring in an affected family member that is due to an environmental

agent, epigenetics and/or a sporadic (or ‘new’) mutation appearing in a family that

resembles the genetically inherited disorder segregating in the family. Examples of

phenocopies include certain common cancers such as sporadic breast cancer oc-

curring in families in which BRCA1 or BRCA2 mutations are segregating. Another

possibility to consider is variable disease presentation between affected family mem-

bers due to modifying genetic or environmental factors. A class of skin diseases called

palmoplantar keratoderma shows variable expressivity in families and between fami-

lies in which the same disease mutation is segregating. In inherited cancer syndromes,

variable penetrance is also a factor, mutation carriers either not presenting with the

disease at all or with variable age of onset. These variable clinical presentations suggest

environmental or genetic modifiers. Beyond these confounding issues, the estimated

statistical power of a given study design is a very important consideration, but this

is largely outside the scope of this chapter; therefore, we direct the reader to other

specialist texts on this matter (Balding et al., 2003).

7.3 Genome-wide mapping of monogenic diseases

Two types of polymorphisms are routinely used to facilitate the localization of a single

gene disorder to a specific chromosomal region: microsatellites or SNPs. Microsatel-

lites are multiallelic and obviously much more polymorphic than biallelic SNPs

(Database of Sequence Tag Sites http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?

db=unists). The physical and genetic distances between microsatellites can now be

reliably compared with the human genome sequence as a physical mapping frame-

work. This information can be visualized by one of the many available genome

viewers (see Chapter 4). Estimates of recombination hotspots can also be derived

from comparison of physical and genetic distances or by viewing HapMap recombi-

nation data. The standard microsatellite mapping panels with a density of 5 or 10 cM

can now be supplemented to a much higher density to provide informative markers

for fine-mapping efforts. Map coverage can be evaluated alongside other features,

such as recombination hotspots and genes, with a genome viewer to visualize a par-

ticular chromosomal region. Figure 7.1 shows an example of the visualization of such

information by the UCSC human genome browser (http://genome.ucsc.edu/).

7.3.1 Microsatellite mapping approaches

There are commercially available custom panels of fluorescently tagged primer pairs

for genome-wide microsatellite panels. The Applied Biosystem (Foster City, CA,
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USA) panel of 400 microsatellites with genome coverage of 10–15 cM is commonly

used. The sizing and use of different fluorochromes allows pooling of PCR prod-

ucts from different microsatellites prior to size separation on capillary sequencers.

However, the ‘gaps’ in genome coverage that these relatively sparse maps offer may

inevitably result in very weak detection of linkage or possibly complete failure to

detect linkage (Evans and Cardon, 2004). In these cases, evidence of linkage may

be subsequently identified or enhanced by selecting further panels of microsatel-

lites that span the genomic regions not well covered by the initial mapping set or in

regions of high recombination frequency. The information content of microsatelite

(and SNP) linkage maps can be computed to evaluate regions showing poor coverage

with the ‘-information’ switch in MERLIN (Abecasis et al., 2002; see Chapter 10 for

a worked example). However, microsatellites are more labour intensive and require

more detailed analysis in calling the genotypes. In terms of speed and manpower,

the method of choice for genome scans is the SNP microarray platform (Matsuzaki,

et al., 2004).

7.3.2 SNP-mapping approaches

There are currently over 10 million human SNPs listed in dbSNP – a develop-

ment accelerated by the SNP consortium of the late 1990s, and later consolidated

by the HapMap project (http://www.ncbi.nlm.nih.gov/SNP). The dbSNP database

represents a compendium of (mainly) germline variation from a variety of sources,

including SNPs identified from different individual DNA samples as part of the

sequencing effort for the human genome project, and from more targeted ap-

proaches to identify all common SNPs, in particular genes of interest, by rese-

quencing larger panels of individuals – usually with reference to particular disease

areas (e.g., Seattle SNPs – http://pga.gs.washington.edu/). The dbSNP database is

a rich source of polymorphisms for genetic mapping and the study of complex

disease; however, certain data are not represented in this database. The most ob-

vious variants that are excluded from dbSNP are monogenic disease mutations;

these are represented separately in locus-specific databases and centrally in the Hu-

man Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk/ac/index.php).

Somatic mutation data, generated by projects such as the cancer genome project

(http://www.sanger.ac.uk/genetics/CGP), are also excluded from dbSNP – for cov-

erage of somatic mutation resources, see Chapter 17.

The binary nature of this class of variation has allowed a number of technologies,

in particular array-based platforms, to be developed that allow large scale typing

of SNPs (Matsuzaki et al., 2004). These provide more information at a much lower

cost, in terms of both material and, more importantly, manpower; they have higher,

more measurable accuracy than STR panels. A number of companies currently have

off-the-shelf products that enable linkage to be assessed, including Affymetrix (Santa

Clara, CA, USA) and Illumina (San Diego, CA, USA); arrays of 10 000–500 000 SNPs
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Figure 7.2 Linkage of anonychia to chromosome 20. No linkage was detected with microsatellite

markers. Homozygosity mapping with Affymetrix 10K SNP array identified a region of homozygos-

ity shared by all affected individuals, but no unaffected sibling (data not shown). Taken together,

the data reveal a minimal region in which candidate genes may be analysed

are available (see Chapter 18 for details). The identities of these markers are easily

available from company websites and are also listed on public websites, such as the

UCSC genome browser, where their relative positions to other annotated features

can easily be determined.

Certainly, for mapping recessive single gene disorders in consanguineous families,

SNP genotyping has been the most frequently used method in very recent years,

as it is rapid (results in 2–3 days), and the genome coverage of SNPs on the array

(in most cases the 10K SNP array is sufficient) allows rapid disease mapping. In

many cases, evidence of linkage can be identified by simply looking for shared ho-

mozygous blocks of SNPS between affected family members without the need to

perform linkage analysis (Kelsell et al., 2005). A number of studies have now re-

ported detection of linkage with SNP arrays after failing to map the same disease

gene with genome-wide microsatellite panels. Figure 7.2 shows an example of one

of our experiences while trying to map the gene for autosomal recessive anonychia

(no nail development) in consanguineous families. No linkage was detected with

microsatellite markers. However, homozygosity mapping with the Affymetrix 10K

SNP array identified a region of homozygosity shared by all affected individuals, but



OTE/SPH OTE/SPH

JWBK136-07 February 16, 2007 15:16 Char Count= 0

152 CH 7 IDENTIFYING MUTATIONS IN SINGLE GENE DISORDERS

not an unaffected sibling (data not shown). Altogether, the data revealed a minimal

region in which candidate genes could be analysed. Alternatively, additional geno-

typing may be required to refine the chromosomal region harbouring the disease

gene further by identifying recombination events and/or identifying common dis-

ease haplotypes between families. Candidate gene mapping within this minimally

defined region can be identified by any of the genome browsers and then analysed

in order of probable functional candidacy, such as expression profile, homologue

of gene mutated in similar disease or mechanistic roles. This process is similar in

both complex and monogenic disease, so we direct the reader to Chapter 9, which

discusses this whole process in great detail.

7.4 The nature of mutation in monogenic diseases

Table 7.1 summarizes the more common mutation types seen in monogenic disor-

ders. In general, in recessive disease, the mutation leads to loss of protein function,

while in dominant disease, mutations can act as either a dominant negative or loss

of function (the latter is termed haploinsufficiency). Epigenetic effects, such as ge-

nomic imprinting, may also play a role, although, as these are not strictly mutations

of DNA, we will deal with these separately below. Other common monogenic muta-

tion mechanisms include mitochondrial mutations and expansion repeat mutations.

An example of the latter is inherited dominant disease caused by trinucleotide repeat

instability, including fragile X and Huntington’s disease. The phenomenon of antic-

ipation often occurs in these two disorders due to the number of repeats increasing

through successive generations, leading to a more severe disease phenotype.

Another type of mutation are those that appear as gross chromosomal changes.

It has been estimated that cytogenetically visible rearrangements are present in

Table 7.1 Summary of the more common mutation types seen in monogenic disorders

Mutation type Subtype Effect on protein

Single base substitution Missense One amino acid substituted for another

Nonsense One amino acid replaced with a stop codon

Splice site Create or destroy exon-intron splicing signals.

Addition or deletion of amino acids and/or

prematurely truncated protein

Deletion In-frame Deletion of one or more amino acids

Frame shift Prematurely truncated protein

Insertion In-frame Addition of one or more extra amino acids

Frame shift Prematurely truncated protein

Structural variation

Copy number

variation

Truncation or

deletion or

amplification

Protein truncated, entirely deleted or gene

product amplified in the case of increases in

gene copy number
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∼1 per cent of newborns. They are termed microdeletion syndromes. These chromo-

somal changes can cause a wide range of deleterious developmental effects, including

mental retardation (Kriek et al., 2004).

Heterozygous advantage is postulated for common recessive diseases which have

a high mutation carrier frequency in certain populations; that is, being heterozygous

for a recessive mutation confers some selective advantage on the individual. For

example, the carrier frequency for the sickle cell gene is high in Africa, as it confers

some protection against malaria. Heterozygote advantage is also seen in cystic fibrosis,

where the invasion of Salmonella typhi into epithelial cells is restricted via the mutant

CFTR chloride channel, thus providing protection against typhoid fever (Pier et al.,

1998). A more recent, but similar example is the association between a common

deafness mutation in GJB2 and an improved skin barrier with a protective effect

against bacterial invasion (Common et al., 2004).

In view of the important role of natural selection and possible heterozygote advan-

tage as a mechanism for the spread of monogenic diseases, some recent genome-wide

studies of selection pressure may be of key importance to monogenic disease-gene

hunting. Voight et al. (2006) published a map of signatures of positive selection that

they detected in the human genome, using HapMap data. They made the results of

their analysis available for viewing selection in the context of a gene, SNP or genomic

region in Haplotter(http://hg-wen.uchicago.edu/selection/haplotter.htm).

7.4.1 Mutation detection by sequencing

Upon selection of genes for mutation analysis, the first method of choice for muta-

tion screening is a combination of PCR of exons followed by sequencing. The steps

involved in this method of mutation detection are shown in Figure 7.3. For initial

mutation screening of a candidate gene, primers are designed to amplify each exon.

Exons are first identified by mapping the mRNA sequence onto the genomic DNA

sequence. At this stage, review of the gene in a genome browser, such as that of the

UCSC, is important to ensure that all exons are identified, including novel exons

present in EST data (see Chapter 5). Once all exons have been defined, amplified

exon fragments are sequenced and analysed for nucleotide changes by comparison

to the consensus of sequences reported in databases based on mRNA and genomic

DNA data. A number of tools may then prove useful when determining whether the

change identified is disease-causing or not (Chapters 11–14 review these methods in

detail).

There are a number of mutation-screening strategies, which often involve PCR am-

plification of exons followed by conformational change analysis, including SSCP, het-

eroduplex and melt curve analysis. The reference standard, however, is re-sequencing.

As sequencing technologies become more affordable and analysis packages improve,

this is becoming the technology of choice for screening in many laboratories. A num-

ber of packages are available from commercial organizations, including Mutation
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Figure 7.3 Mutation detection by sequencing

Surveyor (soft genetics http://www.softgenetics.com/ms/index.htm) and Seqscape

(Applied Biosystems http://www.appliedbiosystems.com/), as well as, on an academic

partnership basis, Polyphred (http://droog.gs.washington.edu/PolyPhred.html)

(Stephens et al., 2006), NovoSNP (Weckx et al., 2005), SNPdetector (Zhang et al.,

2005) and InSNP (Manaster et al., 2005). Each of these software packages allows

comparison of resequencing with reference sequence files and gives quality scores

for each inferred SNP. There is currently no objective survey comparing the efficacy of

each method. Comparisons within original reports often favour the reported method

over the comparator methods, false-positive and false-negative rates ranging from

5 per cent to 20 per cent (Manaster et al., 2005; Weckx et al., 2005; Zhang et al., 2005;

Stephens et al., 2006). For identifying monogenic trait mutations, these platforms

are likely to be an aid to target manual confirmation rather than being relied upon

per se. Laboratories will need to investigate which package conforms to their specific

requirements.

The sequencing approach will identify the majority of known mutation types in-

cluding missense amino-acid substitutions, insertion of stop codons, small intragenic

insertions or deletions, and splice-site mutations. However, there are other types of

mutations that can be missed by this approach, so it can often be quite difficult to

exclude a positional candidate gene purely by sequencing of exons and intron/exon
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junctions. In some cases, regions of low complexity or repeat sequences may be

difficult to sequence, but perseverance is required, as these regions by their very

nature may harbour insertion/deletions or other structural variants. This was the

case during mutation analysis of the TNFRSF11A gene, which was almost excluded

as a candidate for familial expansile osteolysis (Hughes et al., 2000). Mutations in

the gene candidate were excluded with the exception of a repetitive sequence in exon

1, which could not be sequenced. Polyacrylamide gel electrophoresis was eventually

used to confirm an insertion in this region by the presence of an allele of increased

size in affected individuals (Hughes et al., 2000).

Other approaches may therefore need to be considered if all the genes have been

excluded by sequencing. One point to be considered is that the databases have not

identified all possible exonic sequences within the genomic DNA mapping in the

minimal disease interval. Novel exons can be identified from spliced EST data, by

genomic sequence conservation across vertebrates, or by the use of exon-prediction

tools. Chapter 5 reviews some of the approaches that can be used to identify additional

exons at a particular gene locus that may harbour the disease mutation. To maximize

chances of successful mutation detection by sequencing, it can also help to have a

number of unrelated families with the same disease that map to the same genomic

region. It is likely that a subset of these families will have mutations that will be

detectable by sequence analysis. However, this will not be possible when there is

genetic heterogeneity, in which mutations in many genes cause the same monogenic

disease. This is a particular problem for very rare diseases where only one or two

families are diagnosed with the condition. An example of the latter is tylosis with

oesophageal cancer (TOC). This is an autosomal dominant single gene disorder that

occurs in three families, with two of the families related by disease haplotype analysis.

The entire minimal region (34 kb) has been sequenced (except for highly repetitive

regions) and no obvious disease-causing mutation has been identified, but a disease

mechanism has been postulated (MacDonald et al., 2006).

7.4.2 Other mutation detection approaches

Analysis of cDNA can reveal other mutations as well as indicating the effect of identi-

fied mutations on mRNA stability and confirming intron/exon splice site mutations.

For example, a truncated message may indicate the presence of a large intragenic

gene deletion. A larger than expected cDNA may indicate the presence of a larger in-

tragenic insertion or the introduction of splicing mutations deep within the intronic

sequence. Large single exon or multiple exon insertions or deletions can be difficult

to detect unless they are in homozygous form, as they may be too large to be de-

tectable by standard PCR and sequence analysis of exons, as the other allele (normal

in dominant disease or carrying a different mutation in a recessive disease) is still

being amplified in the PCR reaction (Figure 7.4). If cDNA is unavailable, there are

a number of PCR-based genomic approaches available, including non-transmission



OTE/SPH OTE/SPH

JWBK136-07 February 16, 2007 15:16 Char Count= 0

156 CH 7 IDENTIFYING MUTATIONS IN SINGLE GENE DISORDERS

Fi
g
u
re

7
.4

H
et

er
o
zy

g
o
u
s

ex
o
n

g
en

e
d
el

et
io

n
id

en
ti

fi
ed

b
y

m
u
lt

ip
le

x
P
CR

o
r

o
li
g
o

ar
ra

y
(t

h
an

ks
to

A
n
n
a

Th
o
m

as
)



OTE/SPH OTE/SPH

JWBK136-07 February 16, 2007 15:16 Char Count= 0

7.4 THE NATURE OF MUTATION IN MONOGENIC DISEASES 157

of SNPs to offspring (if SNP maps within deletion), multiple ligation (Hashimoto

et al., 2005), and multiplex analysis or copy number array analysis. The latter two

examples appear in Figure 7.4, showing the detection of exon deletions in compound

heterozygotes for ABCA12 mutations (Thomas et al., 2006).

7.4.3 Arrays for detecting comparative genomic hybridization
(CGH) and UPD

Other mutation mechanisms include large genomic deletions or duplications that

encompass a number of genes. Examples include Williams syndrome and trisomy

21 in Down’s syndrome. These can be easily detected by cytogenetic methods but

could also be easily identified and mapped by CGH or copy number arrays. Another

genetic mutation is uniparental disomy (UPD), which occurs when the chromosome

copy number remains the same, but both homologues of a chromosome or part of a

chromosome are identical to one another (reviewed by Kotzot and Utermann, 2005).

Using SNP-based arrays, a number of studies have now revealed this as a major genetic

mechanism in cancer (Figure 7.5). UPD also occurs via germline transmission, as in

Prader–Willi syndrome (PWS) and Angelman syndrome (AS).

Copy number polymorphisms (CNPs) have been demonstrated to play a role in a

number of monogenic diseases (such as DiGeorge syndrome and PWS) and, recently,

complex diseases (Aitman et al., 2006). However, they are increasingly acknowledged

as part of normal genomic variation alongside SNPs and STRs (McCarroll et al.,

2006). CNPs must be taken into account when mapping monogenic traits to avoid

confusing common variation with aetiological changes (see below). Encouragingly,

initial reports suggest that CNPs may be tagged with adjacent SNPs in LD with the

CNP, allowing relatively easy genotyping (Newman et al., 2006). A number of ap-

proaches have been used to identify CNPs, including analysis of fosmid sequence data

(Tuzun et al., 2005) and CGH – either with BAC clones (de Vries et al., 2005) or spot-

ted (Lucito et al., 2003; Barrett et al., 2004; Sebat et al., 2004) or synthesized (Bignell

et al., 2004; Hinds et al., 2006) oligonucleotide arrays – or by inferring deletions

from HapMap data (Conrad et al., 2006; McCarroll et al., 2006). There is currently

no consensus on the number or size of CNP in a normal genome, and this reflects

the technologies and sample sizes used to identify them. Estimates for the number of

variant sites between any two individuals fall between 3 and 50. A model to assess the

number of common CNPs greater than 5 kb gives figures of 900 in the Caucasian pop-

ulation and 1525 in the Yoruban population (Conrad et al., 2006). This may underes-

timate the true value, as a number of the technologies and programs used to identify

CNPs do not perform well in duplicate regions (Conrad et al., 2006; McCarroll et al.,

2006), precisely those shown to harbour a high proportion of CNPs (Sebat et al.,

2004). However, they are likely to be several orders of magnitude less common than

SNPs. Data from the majority of studies to date are represented in the Database of
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Figure 7.5 Identification of UPD in basal cell carcinoma. Affymetrix 10K SNP array analysis

revealed loss of heterozygosity (LOH) on chromosome 9q when tumour DNA was compared to

blood DNA. A corresponding decrease in DNA intensity signal score with LOH indicates loss of

DNA. However, uniparental disomy (UPD) is signified when the DNA intensity signal remains the

same in the presence of LOH

Genomic Variants http://projects.tcag.ca/variation/ and the HumanStructural Vari-

ation Database http://humanparalogy.gs.washington.edu/structuralvariation/. The

data are most easily visualized at the latter site with a modified version of the UCSC

browser. Figure 7.6 shows a view of the FCGR3B gene, using the Human Structural

Variation Database. This is a good example of some of the data that can be interro-

gated by this tool. Aitman et al. (2006) reported a predisposition to systemic lupus

erythematosus-related nephritis caused by CNPs. In a study of affected and unaf-

fected individuals, the FCGR3B gene copy number was reduced in affected patients

but generally increased in controls. In a 366-kb region in Figure 9.6, it is apparent

that the entire FCGR3B region contains a substantial number of structural varia-

tions, including a gap in the genome assembly that may have been caused by the

genome assembly problems that some of these structural variants have presented. If

we look specifically at the FCGR3B gene, there appears to be evidence of a segmental

duplication across the first three exons of the gene in the ‘human WSSD’ track. This

track is based on data from the SSD database, which identifies putative segmental
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duplications on the basis of Celera whole-genome shotgun read in depth across the

genome assembly (Bailey et al., 2001). Clicking on the WSSD region allows inspection

of the data. Figure 7.7 is a detailed view of the AL590385 BAC clone, showing a

higher than expected depth of Celera whole-genome shotgun reads across the left-

hand region of the clone, and suggesting the presence of segmental duplications in

this region. This seems to be in general concordance with the structural variation

reported by Aitman et al. (2006). It is expected that these data will be presented in the

Ensembl and UCSC genome browsers in the near future (personal communication).

The ‘WSSD duplication’ track is already available in the main UCSC browser.

7.5 Considering epigenetic effects in mendelian traits

Epigenetics is concerned with the study of heritable changes other than those in the

DNA sequence and encompasses two major modifications of DNA or chromatin:

DNA methylation, the covalent modification of cytosine, and post-translational

modification of histones, including methylation, acetylation, phosphorylation and

sumoylation (Perini and Tupler, 2006). In terms of function, epigenetic modifica-

tions act to regulate gene expression and stabilize adjustments of gene dosage, as seen

in X inactivation, tissue-specific gene silencing and genomic imprinting. There are

a number of examples of epigenetic effects in human syndromes, such as PWS and

AS, both of which show abnormalities of imprinted domains (Nicholls and Knepper,

2001), and specifically cancer-related syndromes, such as Werner syndrome (Agrelo

et al., 2006). Dysregulation of epigenetic mechanisms can also combine synergistically

with genetic alterations in the development and progression of Mendelian disorders,

such as Rett syndrome and facioscapulohumeral muscular dystrophy (FSHD), both

of which result from altered gene silencing, but on the basis of very different mech-

anisms (Perini and Tupler, 2006).

Rett syndrome (RTT) (OMIM 312750) is a severe neurodevelopmental disorder,

the second leading cause of mental retardation in females. Mutations in the methyl-

CpG-binding protein 2 (MECP2) gene account for 75 per cent of RTT patients

(Perini and Tupler, 2006). The MeCP2 protein is a ubiquitously expressed transcrip-

tional repressor that participates in heterochromatin formation and gene silencing

by direct binding of methylated CpG sequences and also by interactions with other

transcriptional repressor complexes mediating repression through deacetylation of

core histones. A very large number of MECP2 mutations have been seen in RTT,

suggesting that a global alteration of transcriptional repression may be the basis of

the disease. However, transcriptional studies in patients and MECP2 KO mice did

not confirm this view. The targets of MeCP2 are still unclear, although it has been

shown to bind brain-derived neurotrophic factor (BDNF), and it is also essential

for the formation of a silent chromatin structure at Dlx5-Dlx6, a novel imprinted

homeobox locus involved in brain patterning. Collectively, these studies emphasize
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the functional plasticity of MeCP2 and suggest that the RTT phenotype may result

from several different aberrant gene-transcription mechanisms.

FSHD (OMIM 158900) is an early-onset, autosomal-dominant myopathy charac-

terized by progressive and variable atrophy and weakness of the facial, shoulder and

upper-arm muscles. This disorder is not the result of a classical mutation within a

protein-coding gene; instead, all FSHD patients carry deletions of an integral number

of tandem 3.3-kb heterochromatic repeats on 4q35, known as D4Z4 (van Deutekom

et al., 1993). The deletion of D4Z4 affects the chromatin organization of the 4q35

subtelomeric region, leading to dysregulation of the expression of nearby genes. As

a result, genes located upstream of D4Z4 are found inappropriately overexpressed,

specifically in FSHD muscle (Gabellini et al., 2002).

These examples show that genetics can have either a direct or indirect impact on

epigenetic effects. In RETT syndrome, mutations cause a defect in the recognition of

the correct DNA methylation pattern of genomic DNA. In FSHD, deletion of tandem

heterochromatic repeats affects the chromatin organization of the 4q35 subtelomeric

region and, consequently, the expression of nearby genes.

Epigenetic effects may also help to confound the analysis of genetic traits; for

example, PWS can be found in a genetic form (e.g., a common deletion 15q11-q13)

or in epigenetic forms (e.g., maternal UPD causing PWS). In PWS deletions, about

four megabases of genomic DNA are lost, whereas the entire genomic sequence

is normal for UPD cases. Evaluating the potential of genetic variation for impact

on epigenetics is not a trivial exercise; however, bioinformatics tools can help this

process. Efforts are under way to investigate the entire human epigenome, and tools

are being developed to assist this process (Rakyan et al., 2004; www.epigenome.org).

Additionally, we refer the reader to Chapter 9 (Section 9.4.7), which covers a number

of tools for epigenetic analysis in some detail.

7.6 Summary

The laboratory-based technology and bioinformatics tools available currently fa-

cilitate relatively rapid single gene disorder mapping and also are revealing novel

mechanisms of disease mutation.
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8.1 Introduction

Linkage analysis of complex traits with family-based samples typically results in a

number of broad, ill-defined linkage peaks that represent several megabases of DNA

(see, for example, Grettarsdottir et al., 2002); beneath the expanse of each peak, there

may lie a gene (or genes) associated with the disease in question. Historically, simple

tandem repeat markers (STRs) have been used for genome-wide linkage scans (see

Section 8.2.3 below); however, STR marker panels are gradually being replaced by

single-nucleotide polymorphism (SNP) marker sets, which offer several advantages,

including increased marker density and ease of use (Evans and Cardon, 2004). Under

the prior assumption that a preliminary linkage analysis has been completed with

SNPs, STRs or a combination of both, the goal of this chapter is to take the investigator

through the process of characterizing and narrowing a linkage region by a population-

based approach, with the ultimate aim of identifying candidate genes and testing them

directly for association with the disease or trait in question. This is usually achieved by

testing markers in the genomic interval of interest (the critical interval) for differences

in allele frequency between case and control cohorts, where the cohorts consist of

unrelated individuals (although methods employing family structure, based on the

difference in frequency of allele transmission in a large number of small pedigrees

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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are also used – see below; this is covered in more detail in Chapter 10). In general,

population-based methods for complex trait analysis offer large increases in both

power and resolution over linkage-based approaches (McGinnis, 2000; Risch, 2000;

discussed in Chapter 10) and are well suited to the follow-up of preliminary (and

often equivocal) linkage results.

The extension of population-based genetic association methodology to cover the

entire genome offers great promise for the rapid identification of genes involved

in common disease and other complex traits, but requires a far larger number of

markers than a linkage scan, as the increase in power to detect an effect is generally

offset by a far shorter detection range for each marker. It is estimated that a panel

of 300 000–600 000 SNPs is required to capture the majority of common variation

across the genome in most human populations (International HapMap Consortium,

2005). Some progress toward routine use of marker sets of this magnitude has been

made with the advent of Affymetrix microrrays that allow simultaneous typing of

100 000 SNPs (Nicolae et al., 2006). The techniques described in this chapter are

equally applicable to the follow-up of loci highlighted by whole-genome associa-

tion studies using dense marker sets, although any loci thus identified are likely

to be far shorter and more manageable than those identified by linkage. However,

although the first whole-genome association studies are imminent at the time of

writing (Thomas et al., 2005), large numbers of loci with putative links to complex

traits continue to be identified by linkage, and linkage methods are likely to run in

parallel with association studies for the foreseeable future. Examples of the successful

application of a two-step linkage-association approach include identification of the

involvement of ApoE in Alzheimer’s disease (Strittmatter et al., 1993) and NOD2 in

Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001). In other cases, a convincing

association between a genomic region and the trait under study has been uncovered,

but the culprit gene has not yet been identified; for example, the recent discovery of

a common genetic variant associated with prostate cancer in European and African

populations (Amundadottir et al., 2006). Although seemingly intractable at present,

such anonymous associations will, no doubt, yield an increasing number of disease-

related genes, as our understanding of gene and genome function and regulation

improves. The first part of this chapter focuses on theoretical and practical consid-

erations for good study design, while the second part covers a systematic approach

to identification of the disease-associated gene, with emphasis on the application of

methods, software tools and databases.

8.2 Theoretical and practical considerations

8.2.1 Choice of study population

Wherever possible, the study population selected for follow-up analysis of loci identi-

fied by genome scans should be derived from the same geographic area as the families

or individuals used for the original scan. As the genetic components contributing to
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complex disease are likely to be varied, there is no guarantee that the predisposing

genetic factors in one population will be the same in a second. If we use the term

‘study population’ in the broadest sense as applied to genetic association studies, a

variety of study population structures may be considered. Three of the most common

configurations are the case-control cohort, the discordant sib-pair cohort (i.e., one

affected and one unaffected sib) and the parent-offspring triad (affected offspring

with both parents) cohort. Each of these structures has advantages and disadvantages

(for an evaluation of each, see Risch, 2000; Cardon and Bell, 2001).

Case-control cohorts simply consist of one group of individuals (cases) with the

disease state and a second group without the disease (controls). Case-control co-

horts have the advantage of being more straightforward to collect than the other two

structures described above and generally provide more statistical power than sim-

ilarly sized discordant sib or other nuclear family-based cohorts (McGinnis, 2000;

Risch, 2000). However, case-control cohorts are prone to ‘population stratification’

(or substructure) effects. Population stratification occurs when the cohort under

study contains a mix of individuals that can be separated on grounds other than the

phenotype under study (most commonly on the basis of geographic origin). This can

lead to allele frequency differences in cases and controls that are due to circumstances

unrelated to the phenotypic difference under investigation, resulting in erroneous

conclusions regarding association between the marker under test and the disease

phenotype. Geneticists and statisticians often refer to such spurious associations as

‘type I errors’; that is, rejection of the null hypothesis of no association when the null

hypothesis is in fact correct and there is no true association. Conversely, failure to

reject a false null hypothesis is referred to as a ‘type II error’. Population stratification

is a major potential source of type I errors in genetic association studies. Careful

selection of individuals for inclusion in disease and control cohorts is necessary to

ensure as homogeneous a background as possible and therefore avoid stratification.

If stratification is suspected, it is possible to test for it by using randomly selected

genetic markers (Pritchard and Rosenberg, 1999; Devlin and Roeder, 1999). It is

also important to match the cohorts for phenotypic or environmental variables that

may otherwise confound any genetic analysis; for example, hormone replacement

therapy (HRT) has a large impact on bone mineral density (BMD), and it would be

necessary to account for this in a search for genetic factors influencing BMD in a

cohort of post-menopausal women (Giraudeau et al., 2004).

Although population homogeneity and well-matched cases and controls are pre-

ferred, it may be possible to use a cohort even if stratification is present; Jonathan

Pritchard and colleagues have developed a method for testing for genetic association

in the presence of population stratification, by using unlinked markers to make in-

ferences about population substructure and employing this information to test for

associations within the identified subpopulations (Pritchard et al., 2000; Falush et al.,

2003). STRUCTURE and STRAT, software tools for the detection of stratification and

testing for genetic association in the presence of stratification can be downloaded

from http://pritch.bsd.uchicago.edu/software.html. An alternative approach to cor-

rection for population stratification, termed ‘genomic control’, measures the degree
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of variability and magnitude of the test statistics observed at random loci and uses

this information to adjust the critical value for significance tests at candidate loci

by the appropriate degree (Devlin and Roeder, 1999; Clayton et al., 2005). However,

it should be noted that correction for stratification cannot completely remove the

possibility of increased false-positive results under all circumstances (Cardon and

Bell, 2001; Devlin et al., 2001; Pritchard and Donnelly, 2001; Marchini et al., 2004),

and stratification should be avoided where possible.

The main advantage of using study populations that incorporate elements of fam-

ily structure (such as discordant sibs or trios) is that, unlike case-control cohorts,

they are immune to population-stratification effects. However, as mentioned above,

family-based samples are typically more difficult to collect than case-control sam-

ples (particularly for late-onset diseases, that is, those that manifest in middle age or

later) and generally offer less statistical power than the equivalent sized case-control

cohort (McGinnis, 2000; Risch, 2000). The remainder of this chapter will focus pre-

dominantly on case-control methodology where reference to population structure is

necessary; statistical methods for analysing family-based cohorts, such as the trans-

mission disequilibrium (TDT) and sib transmission disequilibrium (S-TDT) tests,

together with tools for the analysis of quantitative traits, are covered in Chapter 10.

Estimation of required cohort size for a genetic study depends on a number of

factors, including the size of the effect of the locus under test, the frequency of

the disease-risk-conferring allele, and the genetic nature of this ‘risk allele’, that is,

whether recessive, dominant, additive, etc. If the causal variant is not being tested

directly, the distance between the causal variant and the surrogate marker under

test (see Section 8.2.3) is also relevant. Most of these factors are unknown prior to

the start of the study, and the minimum required population size is usually based

on assumptions concerning these factors (McGinnis, 2000; Risch, 2000). In reality,

pragmatism typically dictates the available sample size; investigators use the largest

obtainable cohort, with the caveat that the available sample may not provide sufficient

statistical power to detect effects below a certain magnitude. To detect genetic factors

of fairly small or moderate effect, cohorts of several hundred to a few thousand

individuals may be required (McGinnis, 2000; Risch, 2000).

8.2.2 Sequence characterization at the locus under investigation

After a whole-genome linkage scan, the investigator is typically faced with several

genetic loci of potential involvement in the disease process, the limits of each de-

fined by two genetic markers spanning several centimorgans (cM). As 1 cM equates

to roughly one megabase (Mb) on average, and each megabase contains an esti-

mated average of nine genes (based on 25 000 genes in the entire 2900-Mb genome;

International Human Genome Sequencing Consortium, 2004), this may represent

several thousand kilobases of DNA and over 100 genes per locus. Whole-genome

association scans are likely to yield far shorter intervals, as markers generally have
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a much smaller range for detection of a genetic effect in tests of association than

linkage. The first task is to define the locus in the context of the human genome, in

order to gain a comprehensive knowledge of genes and further genetic markers in the

interval. Until recently, this involved the laborious laboratory process of identifying

and ordering genomic clones into contigs and using those contigs as a framework for

gene and marker identification. Fortunately, locus characterization has become far

more straightforward in the wake of the human genome-sequencing project, with a

number of web-based tools now available for exploiting this sequence. These tools

are described very briefly in Section 8.3.1 and their practical application is covered

in detail in Chapters 4 and 9.

8.2.3 SNPs, linkage disequilibrium, haplotypes and STRs

Introduction

This section provides a simple introduction to the underlying principles of the detec-

tion of genetic association with a population (i.e., non-family)-based approach. The

majority of studies of this nature are undertaken with SNP markers (see Chapter

3). Biallelic SNPs are the marker of choice due to their abundance in the human

genome and because they are amenable to high-throughput genotyping approaches.

The other marker system commonly used for genetic studies is the multiallelic STR.

The paragraphs below on linkage disequilibrium and haplotypes refer mainly to

SNPs. The use of STRs for population-based association studies is discussed at the

end of this section.

Linkage disequilibrium

A polymorphism associated with a disease state (in the true, rather than statistical,

sense) may either directly contribute to the disease process, or be a surrogate marker

co-inherited with an adjacent functional variant that contributes to the disease state.

This co-inheritance of the surrogate marker with the disease allele, which can occur

to varying degrees, is termed ‘linkage disequilibrium’ (LD). By strict definition, LD

is said to be present if co-occurrence of the two polymorphisms happens with a fre-

quency greater than would be expected by chance. A number of measures of LD are

used, two of the most commonly employed being r2 and D′. Both measures are based

on the difference between the observed and expected (assuming independence) num-

ber of haplotypes (see below) bearing specified alleles of two markers (see Mueller,

2004, or Devlin and Risch, 1995, for a discussion of D′, r2 and other measures of LD).

Although, by the strict definition given above, LD can occur between unlinked vari-

ants, for example, in the presence of recent population admixture, in the following

paragraphs any reference to LD is specifically to LD between two linked markers.
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Clearly, the greater the extent of LD between two polymorphisms, the larger the

chances of detecting the phenotypic influence of one by genotyping the other in a

case-control experiment. The degree of LD is dependent on the history of the two

adjacent markers and is influenced by the relative times of appearance of the two

polymorphisms in the population and the degree of recombination between them.

An extreme example would be two polymorphisms that appeared simultaneously

on the same chromosome through spontaneous mutation and between which no

recombination events have occurred over 2000 generations. During this period,

these two linked polymorphisms have attained a population frequency of 20 per

cent through chance (random genetic drift) and are in absolute LD. Imagine an

alternative scenario in which a new polymorphism arises adjacent to an ancient

polymorphism that has already attained a frequency of 20 per cent over the previous

1000 generations; over the subsequent 1000 generations, there is a high degree of

recombination between the markers, eroding the LD (Figure 8.1). Clearly, the former

case would be more favourable for using one of the markers as a surrogate to detect

the phenotypic influence of the other.

Haplotypes

A haplotype is a string of co-inherited alleles of different markers that are arranged in

a successive fashion along a given stretch of DNA; hence, each haplotype represents a

linear section of DNA rather than the single point corresponding to a single marker.

The extent of discernible haplotype length varies widely for different regions of the

genome; well-defined haplotypes (characterized by moderate or high LD) are punc-

tuated by regions of extremely low LD, suggesting that the recombination processes,

selective pressures and other factors that dictate the degree of LD vary widely in an

abrupt fashion across the genome. However, recent evidence shows that most of the

genome can be categorized into ‘blocks’ (contiguous LD intervals) of SNPs. These

blocks vary in different populations according to population history. For example,

in Caucasians, almost 90 per cent of genomic regions show block-like LD structures

with an average of four common haplotypes per block and an average block length

of 7 kb; in the African Yoruban population, less than 70 per cent of the genome

can be defined in terms of LD blocks, and where blocks can be defined, the average

number of common haplotypes per block is 5.6 and average block length is 16 kb

(International HapMap Consortium, 2005).

In certain circumstances, statistical analysis of haplotypes for the identification

of genes associated with the trait of interest is more powerful than single SNP anal-

ysis. This is because a SNP usually has only two allelic states, whereas a stretch of

DNA can typically be represented by several different haplotypes; the chance that

one of the many haplotypes shows strong association with a functional variant (i.e.,

a variant that influences the phenotype) is higher than the odds of a strong, pure

correlation with one of only two possible alleles for a single SNP. In this sense, a
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SCENARIO A SCENARIO B

1000 GENERATIONS

1000 GENERATIONS1000 GENERATIONS

1000 GENERATIONS

Figure 8.1 Alternative hypothetical scenarios depicting the evolution of a relationship between

two SNPs. Identical stretches of DNA within a population are represented by black lines. In

scenario A, two adjacent polymorphisms, represented by a white star and a grey star, arise

simultaneously and by random drift achieve a population frequency of 0.1 after 1000 generations,

increasing to 0.2 after 2000 generations, at which time they are still co-segregating as a tightly

linked unit. In scenario B, a lone polymorphism (white star) reaches a frequency of 0.2 after 1000

generations, at which point a new polymorphism (grey star) arises spontaneously, some distance

away. Note that although the grey polymorphism occurs only on a background bearing the white

polymorphism, the association is less clear-cut than scenario A due to the chromosomes bearing

the white polymorphism in the absence of the grey polymorphism. During the subsequent 1000

generations, association between the two polymorphisms is further clouded by recombination

between the two SNPs and divergence through random drift. Unfortunately for the genetics

investigator, scenario A is idealized and scenario B is more typical

series of haplotypes is analogous to a multiallelic STR marker (although regarded as

more stable – see below). Clearly, if the functional variant itself is under test, or a

polymorphism that shows perfect co-segregation with the functional variant, hap-

lotypic analysis offers no advantage. It should also be noted that haplotype analysis

is a double-edged sword and in addition to increasing statistical power it has the

potential to reduce it, by introducing multiple testing and possibly by diluting an

association signal due to undetected recombination within the haplotypes. These
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caveats notwithstanding, at the time of writing there is great excitement concerning

the potential of genome-wide haplotype maps for unravelling the genetic basis of

complex disease and other medically important traits such as individual variation

in drug response. This enthusiasm for haplotype-based analyses is evidenced by the

HapMap project, an international effort that yielded a first-generation haplotype

map of the human genome in 2005 (International HapMap Consortium, 2005; see

http://www.hapmap.org and Chapter 4).

Haplotypes are usually constructed by comparing the genotypes of closely related

individuals at two or more linked markers and identifying groups of alleles that are co-

inherited as a set from one generation to the next. However, where no family members

are available and the cohort under study consists of a population of unrelated individ-

uals, it is necessary to infer haplotypes and haplotype frequencies by statistical meth-

ods. The most commonly used method to estimate haplotypes is the expectation-

maximization (EM) maximum likelihood estimate (MLE; Excoffier and Slatkin,

1995). The ARLEQUIN software package, developed in the Genetics and Biometry

Laboratory at the University of Geneva, contains an EM algorithm for this purpose.

ARLEQUIN can be downloaded from http://cmpg.unibe.ch/software/arlequin3/.

Another popular programme for haplotype construction and analysis is EHPLUS

(Zhao et al., 2000). More recently, a Bayesian method implemented in the soft-

ware PHASE has been developed (Stephens and Donnelly, 2003). PHASE, available

for download from http://www.stat.washington.edu/stephens/software.html, was the

software of choice for the generation of the whole-genome haplotype map generated

by the HapMap consortium, and the resulting haplotypes can be viewed and down-

loaded from the HapMap Genome browser (http://www.hapmap.org). PHASE and

other haplotype software packages are discussed in more detail in Chapter 10.

Note that haplotype construction using family inheritance patterns, although

more robust than population-based statistical approaches, also typically requires a

degree of inference, and the resulting haplotypes may be probable rather than actual

(Hodge et al., 1999). For absolute definition of all haplotypes, it is necessary to sepa-

rate physically the two copies of each stretch of DNA under analysis, that is, reduction

from a diploid to a haploid state, to allow unmixed analysis of a single haplotype.

For very short stretches of DNA (up to approximately 10 kb), this can be achieved by

allele-specific PCR (Michalatos-Beloin et al., 1996); for large-scale haplotype con-

struction, it is necessary to separate entire chromosomes. This strategy has been

successfully employed by the California-based company Perlegen Sciences, Inc., who

have used a rodent-human somatic cell hybrid technique to separate physically the

two copies of human chromosome 21 for haplotype elucidation (Patil et al., 2001).

However, most investigators employ the less laborious population or family-based

inference methods for haplotype construction and accept a certain degree of error

or loss of power.

In addition to potentially providing greater power than single markers in subse-

quent statistical analyses, knowledge of the haplotypes representing the locus under

study is extremely valuable for maximizing efficiency in study design. For example,
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Figure 8.2 Using haplotypic information to maximise efficiency in genotyping study design.

Twenty SNPs spanning four haplotypes are shown. Each SNP is represented by a circle; the circle

is black or white, depending on the allelic state of the SNP. The SNPs can be grouped into

nine blocks – each block contains a group of SNPs with an identical allelic pattern in the four

haplotypes. Genotyping all SNPs in any given block is unnecessary, as the genotype of one

SNP per block allows the genotypes of the other SNPs in the block to be inferred; for example,

genotyping SNP 1 allows the genotypes of SNPs 2 and 3 to be predicted. Moreover, in this

simplified example, all four haplotypes can be unambiguously identified by genotyping just two

SNPs, 5 and 14 (boxed), yielding a 90 per cent reduction in genotyping compared to a ‘blind’

strategy (i.e., no knowledge of haplotypic structure)

two markers which always co-segregate (as in Figure 8.1, scenario A) will provide

the same information, regardless of which of the two is genotyped; therefore typing

both markers is inefficient, as the genotype of one can be inferred from the other.

Consequently, detailed knowledge of the haplotypes across the interval theoretically

allows a minimum marker set to be identified that will permit the extraction of all

haplotypic information (Figure 8.2; see Johnson et al., 2001; Patil et al., 2001). The

value of this knowledge in the design of association studies was a major impetus

behind the establishment of the HapMap project (International HapMap Consor-

tium, 2005). Several software algorithms are available to aid the selection of optimum

marker sets based on haplotypic information (reviewed in Ke et al., 2005). The SNPs

that comprise these optimized marker sets are often referred to as ‘tag SNPs’ or

‘htSNPs’ (‘haplotype tagging’ SNPs). Tag SNP selection tools include Tagger (de

Bakker et al., 2005), which can be implemented through the Haploview interface at

http://www.broad.mit.edu/mpg/haploview/ (Barrett et al., 2005).

In order to select an optimized marker set for an association study spanning the

genomic region of interest, it is necessary to identify all common SNPs within the

area under study and select tag SNPs based on knowledge of LD and haplotypes

across the region. At the time of writing, a significant amount of the raw information

required for such a study (genome sequence, SNP data, haplotype and LD data and

tag SNP sets) is publicly available, most notably as a result of the HapMap project

(http://www.hapmap.org). It is possible that a significant proportion of the common

variants contributing to complex phenotypes will be identified by HapMap SNP sets

alone in coming years. Where detection of rarer functional variants is necessary,
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HapMap SNPs alone are unlikely to be sufficient (Zeggini et al., 2005) and more

thorough identification of the majority of SNPs in the interval may be required, by

sequence analysis of a significant number of individuals from the relevant population

across the region of interest. For example, sequencing DNA from 24 individuals would

give a 95 per cent probability of detecting all variants with a minor allele frequency

of greater than 5 per cent (Nickerson and Kruglyak 2001). Five per cent is a sensible

lower cut-off point, as sample size requirements for case-control studies increase

dramatically when allele frequencies fall below 5 per cent (Johnson et al., 2001).

Other than in laboratories with access to high-throughput sequencing capabilities,

it is impractical to sequence a region covering several megabases (the typical outcome

of a linkage scan) in 24 individuals. A more realistic approach is the identification of

all genes in the interval and sequencing of the coding sequence plus flanking splice

sites, together with 1–2 kb of putative promoter (that is, the region immediately

upstream of the transcription start site) and any other known regulatory elements.

Although not comprehensive, as unidentified regulatory elements can be intronic or

tens to hundreds of kilobases away from the genes under their influence (Blackwood,

1998; Stranger et al., 2005), this approach offers a good compromise between ex-

haustive coverage of the locus and practicality. For SNP identification purposes, it

may be preferable to use individuals derived from the disease, rather than control,

population. This will give a greater chance of detecting rare functional variants (mu-

tations) that have a higher frequency in the disease population. For example, NOD2

mutations predisposing to Crohn’s disease were found to be at a frequency of 6–12

per cent in cases, but under 5 per cent in controls (Hugot et al., 2001; Ogura et al.,

2001).

Having identified the majority of coding and regulatory sequence SNPs with a

frequency of greater than 5 per cent, redundant SNPs can be removed by tag SNP

software such as Tagger (de Bakker et al., 2005), or more simply by pairwise com-

parison of LD between SNPs (Zeggini et al., 2005). A subset of 96 individuals from

the population under study should be sufficient to detect the majority of haplotypes

with a frequency of greater than 5 per cent (B-Rao, 2001). These haplotypes can then

be used as a basis for selecting a minimal SNP set for the full association study. It

should be noted, however, that SNPs which suggest a strong possibility of functional

consequence (such as those that alter residues that are conserved between a number

of species, or result in non-conservative amino-acid changes; see Chapters 11–14)

should not be excluded from analysis, and inclusion of such markers can be forced

in most available tag SNP selection tools, including Tagger.

Simple tandem repeat markers (STRs)

STRs (also known as microsatellites) were the mainstay of monogenic trait linkage

analysis during the 1990s, but are now frequently overlooked following the explosion

of interest in SNPs for population-based studies. STRs are out of favour for two main
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reasons: (i) they are less amenable to cheap, high-throughput genotyping methodol-

ogy than SNPs; (ii) STRs typically have a much higher mutation rate than SNPs (up

to 10−3 per meiosis compared with an average of 10−9 for SNPs; Ellegren, 2000). It

has been suggested that this extreme mutation rate, although rendering STRs highly

informative for linkage, might confound genetic association studies, as a single allele

may represent an excessive number of haplotypes, having independently arisen on

the different haplotypic backgrounds through mutation events (Moffatt et al., 2000).

This may prevent the detection of association between the STR allele and an adja-

cent polymorphism associated with disease. However, comparison of the entire STR

allele frequency distribution profiles for cases and controls may highlight differences

reflecting a difference in the frequency of an adjacent disease-associated SNP, due

to divergence of the STR profiles associated with SNP allele 1 and SNP allele 2, as

a result of frequent STR mutation (Koch et al., 2000; Abecasis et al., 2001, Tanaka

et al., 2005). There is also some evidence to suggest that LD can be detected over

greater distances with STRs than with SNPs, possibly ten times as far (Koch et al.,

2000, Horowitz et al., 2005), perhaps because in some circumstances STR mutation

significantly outstrips recombination at flanking sites. There is no doubt that STRs

are a potentially useful tool in association studies; for example, a convincing associ-

ation between an STR and prostate cancer was recently described by Amundadottir

et al. (2006). However, due to the perceived cost and throughput advantages of SNPs,

it is likely that STRs will be displaced by SNPs for the majority of future linkage and

association studies.

8.2.4 Statistical analysis

Methods and software for the statistical analysis of both single marker and haplotype

data in both case-control and family-based cohort scenarios are described in detail in

Chapter 10. Briefly, a chi-square analysis may be used to test for departure between

observed and expected allele frequencies for a single biallelic marker in a case-control

cohort, while multiallelic systems, such as haplotypes, may be tested with software

such as PHASE (Stephens and Donnelly, 2003). In addition to the haplotype con-

struction capability described in Section 8.2.3 above, PHASE includes a permutation-

based likelihood ratio test for comparing haplotype frequencies between case and

control cohorts (for details of how the test of association employed in PHASE

works, see Matthew Stephens’ website: http://www.stat.washington.edu/stephens/

phasefaq.html). Family-based samples such as parent-offspring trios and discor-

dant sibs can be analysed by the transmission disequilibrium test (TDT) and as-

sociated methods (Spielman et al., 1993; discussed in depth in Chapter 10), al-

though the TDT was originally developed for biallelic markers, an extension of the

TDT has been developed for testing multiallelic markers and haplotypes (Sham

and Curtis, 1995). Many TDT-related tests are implemented through the software
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suite FBAT (Family Based Association Tests), which can be downloaded from

http://www.biostat.harvard.edu/∼fbat/fbat.htm (Laird and Lange, 2006).

8.3 A stepwise approach to locus refinement and
candidate gene identification

Figure 8.3 gives an overview of the practical process of locus refinement, candidate

gene selection and testing for phenotype–genotype association by a case-control

approach. Each step is described in more detail in the following sections.

8.3.1 Sequence characterization

The most popular Web tools for the purpose of human genome sequence char-

acterization are the human genome browser hosted by the National Center for

Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov/, the Golden

Path genome browser hosted by the University of California, Santa Cruz, at

http://genome.ucsc.edu/ and the Ensembl human genome browser maintained by

the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Insti-

tute at http://www.ensembl.org/Homo sapiens/. These browsers are described and

reviewed in detail in Chapter 4, and the reader is referred to Chapter 9 for a compre-

hensive description of methods for defining a locus between two genetic markers at

the sequence level with these three tools.

8.3.2 Preliminary analysis using HapMap tag SNPs

As a first step following complete locus characterization, an attempt to identify

regions of potential association within the critical interval using HapMap tag SNPs

is suggested. Tag SNPs across any given genomic region can be downloaded directly

from the HapMap browser (http://www.hapmap.org). A reasonable degree of tag

SNP ‘portability’ between populations (that is, the utility of the same tag SNP set for

identification of common haplotypes in different but related populations) has been

demonstrated (Gonzalez-Neira et al., 2006; Montpetit et al., 2006), and the HapMap

population that most closely matches the population under test should be selected

for tag SNP selection. Following genotyping of HapMap tag SNPs in the case-control

cohort of interest, haplotype construction and haplotype frequency comparison

between cases and controls can be performed with PHASE (Stephens and Donnelly,

2003; http://www.stat.washington.edu/stephens/software.html). A test for Hardy-

Weinberg equilibrium (HWE) is a useful prior check for ensuring that there is no (or

little) population stratification and that each SNP is giving the expected genotype
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distribution for the observed allele frequencies. Expected genotype frequencies are

calculated from allele frequencies under the assumption p2+ q2+ 2pq = 1, where p

and q are the allele frequencies and p2, q2 and 2pq correspond to the frequencies of

the three possible genotypic states. The actual genotype frequencies are then tested

for departure from the expected frequencies by the chi-square test. The calculation

is simple and can be performed by hand or in a Microsoft Excel macro for biallelic

markers.

The relative success of this initial analysis in narrowing the critical interval, or per-

haps even identifying the culprit gene, is highly dependent on a number of factors,

perhaps most notably the frequency of the causal variant. Common genetic variants

that influence the trait in question are far more likely to be narrowed or uncovered

with tag SNPs from HapMap; rarer trait-influencing variants are more likely to be

missed (Zeggini et al., 2005), because HapMap is deliberately focused on analysis of

common, rather than rare, genetic variation (International HapMap Consortium,

2005). Thus, the outcome of this initial analysis is unpredictable, ranging from iden-

tification of a trait-associated gene at one end of the spectrum to no evidence for

association anywhere within the entire critical interval at the other end, with the

middle ground represented by some promising leads (haplotypes within the region

that show some evidence for association with the trait of interest). However, it is

likely that further refinement will be required to pinpoint the causal variant in the

majority of cases.

8.3.3 Locus refinement

In the worst-case scenario of no evidence for association anywhere in the critical

interval following initial HapMap tag SNP analysis, it will be necessary to reanalyse

the entire locus with a new SNP set. Novel SNPs within the critical interval that did

not form part of the initial analysis can be identified through public databases such as

dbSNP; the popular genome browsers also include SNP annotation (see Chapter 4).

Of these new SNPs, those that were not well captured by the initial tag SNP analysis

can be included in a second round of genotyping. SNPs included in HapMap can be

assessed for adequate capture by the HapMap tag SNPs using Tagger implemented

through Haploview. Tagger includes a specific application for evaluating the per-

formance of a given set of tag SNPs (http://www.broad.mit.edu/mpg/haploview/; de

Bakker et al., 2005; Barrett et al., 2005). For SNPs that are not included in HapMap,

genotyping can be performed on a subset of 96 individuals from the control pop-

ulation and PHASE (Stephens and Donnelly, 2003) used to construct haplotypes

incorporating both the original HapMap tag SNPs and the new SNPs. The new SNPs

can then be evaluated with regard to the amount of additional data that they are

likely to capture prior to genotyping the entire case-control cohort and subsequent

association analysis. If necessary, Tagger can be used to identify a further set of tag

SNPs from the new SNPs to maximize genotyping efficiency. Where a single region
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or multiple regions within the critical interval show some evidence for association

following initial HapMap tag SNP analysis, essentially the same strategy of novel SNP

genotyping can be followed, but with a focus on the subregions highlighted in the

initial analysis rather than reanalysis of the entire locus. If there are multiple, exten-

sive tracts that warrant further analysis, it may be useful to arrange genes/regions in

rank order for analysis, based on biological plausibility with respect to association

with the disease or trait under study.

Ultimately, physical identification of novel SNPs in the population under study

may be necessary for ultimate locus refinement and identification of the causal vari-

ant, particularly where the causal variant is rare. This can be achieved by sequencing

the key interval in 24 individuals selected randomly from the disease population,

as discussed in Section 8.2.3 above, followed by genotyping of all novel SNPs thus

identified in 96 random individuals derived from the control population. The new

SNP data can then be combined with previous SNP and haplotype information,

to allow efficient SNP selection prior to full case-control genotyping and analysis,

as before. If the regions for follow-up are extensive, the investigator may wish to

consider prioritizing the identification and testing of SNPs in coding and known or

putative regulatory regions in the first instance.

This iterative SNP testing, with increasing difficulty and cost depending on SNP

source (public databases versus de novo SNP discovery in the investigator’s own lab-

oratory) and the availability of supporting resources, such as SNP allele frequency

data and HapMap haplotypes, should allow the investigator to progress toward iden-

tification of the causal variant in the most efficient manner (Figure 8.3).

8.3.4 General comments on statistical analysis

Several statistical methods for the analysis of case-control data are available in ad-

dition to the method implemented in PHASE described in Section 8.2.4, including

cladistic analysis methods and techniques that consider interactions between un-

linked loci rather than taking a locus-by-locus approach (Durrant et al., 2004; Mar-

chini et al., 2005). No doubt additional strategies will be developed over the coming

years; investigators should carefully consider all available methods and employ the

most appropriate for their data. Expert advice from a statistical geneticist at the early

stages of study design is essential. Replication of positive findings in an independent

cohort is generally considered to be key to confirming the validity of an association

between polymorphism and trait, and investigators may wish to consider including

scope for replication in the study design. For example, it may be beneficial to divide

a cohort randomly into two groups for statistical analysis, to allow the possibility of

replication of any positive association using the second subset. An acceptable P value

threshold for declaring association between a marker and disease is the subject of

considerable debate. Clearly, a nominal cut-off of P = 0.05 is inappropriate where

multiple tests have been performed, as this value (or lower) may occur several times
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by chance. However, standard methods of correction for multiple testing, such as

Bonferroni correction, are regarded as overly stringent (Cardon and Bell, 2001). The

most pragmatic course of action is to avoid setting thresholds that are excessively

rigorous and instead follow up promising leads, adding to the weight of evidence for

involvement (or lack of involvement) in the disease process by additional means (see

below).

8.3.5 The burden of proof – is an associated gene really involved
in the disease process?

Detection of association between a gene and disease phenotype does not constitute

definitive proof that the gene under test is involved in the disease process. Rather,

it provides a single piece of evidence to suggest possible involvement in the disease

process that requires further substantiation. Replication of the association in a sec-

ond cohort considerably strengthens the argument for involvement; for example, the

association between the insulin gene and type 1 diabetes has been reproduced a num-

ber of times (Bennett and Todd, 1996). However, even in the event of independent

replication of results, one should consider the possibility that the replication is due to

chance or that the apparent disease association is due to an adjacent gene in LD with

the marker under test. If the polymorphism is in protein coding sequence and causes

an amino-acid change, it may be possible to assess the possible impact on protein

function by the nature of the change (conservative or non-conservative), the context

in which it occurs (potential disruption of secondary or tertiary protein structure)

and the degree of cross-species conservation and conservation within protein fami-

lies. Conservation may also be used to gauge the potential impact of polymorphisms

in putative regulatory elements. These areas are covered in detail in Chapters 11 and

13. However, it should also be remembered that polymorphisms that appear to be

innocuous on cursory examination can have functional consequences; for example,

synonymous coding changes that occur in exonic splicing enhancer (ESE) regions

(Liu et al., 2001).

Ultimately, it is likely that the investigator will wish to instigate additional

laboratory-based experiments to judge the functional effect of the variant in ques-

tion. These may include gene expression and cell-based reporter assays for puta-

tive promoter polymorphisms, functional enzyme or signal transduction assays for

amino-acid changes and in vivo analysis in the mouse by gene knockout or poly-

morphism knock-in technology for studies in the context of the whole organism, to

name but a small fraction of the available techniques.

8.4 Conclusion

This chapter provides a basic overview of the process of moving from a large genetic

locus to the identification and screening of candidate genes for disease association.
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More detailed information on all aspects of study design and data analysis can be

gleaned from the references cited in the text and further review of the literature, and

readers are strongly advised to broaden their knowledge beyond the limits of this

chapter. Although a number of popular tools and techniques have been highlighted,

several other equally valid approaches exist, and investigators are encouraged to seek

out and develop further methods for comparison with those presented here. Con-

tinual development of new approaches and improvement of existing methodology

are a dominant feature of this rapidly moving field; consequently there is a constant

need for investigators to keep abreast of new developments to maximize the chances

of success.

8.5 A list of the software tools and Web links mentioned
in this chapter� ARLEQUIN: http://cmpg.unibe.ch/software/arlequin3/� Ensembl human genome browser: http://www.ensembl.org/Homo sapiens/� FBAT: http://www.biostat.harvard.edu/∼fbat/fbat.htm� Haploview: http://www.broad.mit.edu/mpg/haploview/� HapMap: http://www.hapmap.org� National Center for Biotechnology Information: http://www.ncbi.nlm.nih.gov/� PHASE: http://www.stat.washington.edu/stephens/software.html� STRUCTURE/STRAT: http://pritch.bsd.uchicago.edu/software.html� Tagger: http://www.broad.mit.edu/mpg/tagger/� UCSC Golden Path genome browser: http://genome.ucsc.edu/

Links to the software tools mentioned in this chapter and many others besides,

via the North Shore LIJ Research Institute: http://www.nslij-genetics.org/soft/
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Integrating Genetics,
Genomics and Epigenomics
to Identify Disease Genes

Michael R. Barnes

Bioinformatics, GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK

9.1 Introduction

It has probably become apparent in the preceding chapters that definition of a genetic

locus, gene or markers in the human genome sequence by a genome browser is one of

the most fundamental bioinformatics processes that a geneticist needs to carry out.

Defining a locus in the genome immediately places it in a wider context, with almost

limitless options for further characterization. The wide range of possibilities that this

action opens up, make it important to set clear objectives for further characterization.

Firstly, it is important to define the genetic and physical structure of the region. This

can be achieved in terms of HapMap LD, haplotypes and recombination rates. The

physical structure of the locus can also directly influence the genetics, by influencing

recombination, chromosome stability and epigenetics. A good understanding of the

genetic and physical properties of the locus can also help to identify the likely extent

of the locus beyond the immediately associated markers.

Once the genetic and physical terrain is evaluated, the next objective is to char-

acterize the functional entities in the locus, these might include known and novel

genes, regulatory RNAs and regulatory regions some of which may be remote to the

genes undergoing regulation. With this information, a picture begins to emerge of

the biology of the locus under study. The next objective is to place all this information

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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in the context of the trait being studied. What pathways are likely to be involved?

What tissues are known to be involved in the trait? How might the functional enti-

ties (genes, regulatory elements, etc.) in the locus fit the biology of the trait under

study? How might known variants in the locus affect the function of these entities?

Naturally, the clarity of the answers to each of these questions is likely to vary greatly

between traits, depending on the level of understanding of the trait and the quality of

the available data. The final objective is to take all this information and, depending

on the approach to follow-up, select markers for further analysis. This might involve

identifying all potentially functional variants or markers which tag all known locus

haplotypes or a combination of both approaches. There may also be a need to rank

genes for follow-up by genetic and biological evidence of association. Most of this is

possible in silico to a point, within certain limitations. These need to be understood

and it is worth bearing in mind that in some situations stepping into the laboratory

may be the only way forward.

9.2 Dealing with the (draft) human genome sequence

It is self-evident that the availability of complete genome sequences is a fundamental

advance for genetics. The labours of the pre-genome sequence era have now been

totally superseded by absolute genome localization to the nearest base pair. But the

human genome sequence must be used with care; without some basic quality checks,

genome sequences can create some distinct problems. Firstly, it is important to stress

that, despite the announcement of the completion of the sequencing of the human

genome in 2001, the sequence is still a draft assembly and is likely to stay so for the

foreseeable future. In fact, there are no plans to sequence the heterochromatin and

centromeric regions of the genome, so, arguably, it may never be complete. The order

and orientation of DNA fragments is often not known from the sequencing process

itself. In some cases, structural variations, such as copy number polymorphisms,

exist (Feuk et al., 2006); however, because of the nature of the genome assembly

process, these will invariably be collapsed into a single contig that does not reflect

the natural sequence. To address the technical challenges of whole-genome assembly,

the human genome is released as defined ‘builds’ on a quarterly basis (Lander et al.,

2001; reviewed in Chapter 4). The increasing complexity of processes that map

data to the genome implicitly involves some lag in availability of the most current

sequence assembly. At the time of writing (May 2006), the May 2004 (NCBI35) human

genome assembly was still in most frequent use by the majority of applications, while

the HapMap was using the July 2003 (NCBI34) release. A March 2006 (NCBI36)

release is just beginning to be incorporated into the UCSC and pre-Ensembl servers.

This creates a potentially huge problem, of which the user must always be aware. When

genomic coordinates of different data types are compared, it is critical to ensure that

they are both based on the same NCBI genome build. Considering this, it is good

practice to record the genome build with any data set containing genomic coordinates.

Without this information, subsequent reference to this data, by either yourself or
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others, will be seriously compromised. Data mapped against different assemblies can

be compared, although the process is rarely painless. The best tool for this purpose is

probably the UCSC Batch coordinate conversion tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver). On an individual basis, the UCSC browser is also very helpful; as

it archives the four most recent NCBI genome builds, the user can view the last four

genome assemblies and can convert a given region in one genome build to another

(using the CONVERT function in the toolbar). In this way, one can view a region

using NCBI34 coordinates and then convert the region to NCBI36 coordinates.

9.3 Progressing loci of interest with genomic information

In an ideal world, all genetic studies would progress smoothly from initial obser-

vations of linkage or association to alleles or haplotypes that explain molecular

mechanisms of disease and other phenotypes of interest. Unfortunately, this linear

path of discovery is rarely encountered. In the real world, the study of genetics is

better characterized by false-positive associations, failures to replicate and analytical

stalemates. Success in genetics was usually the result of painstaking study design, labo-

rious sample collection, methodical analysis and a healthy portion of luck. Today this

situation may be improving; with our knowledge of the genetic structure (HapMap)

and biology of the genome, coupled with advances in genotyping technology, we

may expect improved odds of success in genetics. However, increased genotyping

capacities will create new problems, chiefly type I error (false-positive associations).

With these new challenges and potentially huge rewards, mastery of data has never

been so important. Effective bioinformatics is needed at every stage of genetic anal-

ysis for efficient refinement and integration of data, to build biological rationale

and ascertain function. The step-by-step process of genetic analysis becomes an ever

more challenging process of integrating new results with what is known already and

drawing conclusions to make the next step. Figure 9.1 illustrates each step of this pro-

cess of integration, interpretation and analysis, with genomic sequence as a common

thread through every stage.

9.3.1 Defining a locus – dealing with synteny and orthology

A locus of interest for a particular trait may be identified by many routes and might

relate to just a single genetic variant, a gene or a wider genomic region, containing

many genes and genetic variants. Candidate loci for human traits and diseases might

well be identified by synteny with loci identified in mammalian disease models. With

the exception of the X chromosome, synteny (or evolutionarily conserved gene order)

between human and mammalian genes extends over only limited regions. Billions of

recombination events have tended to distribute orthologous genes across different

chromosomes, making reconstruction of an equivalent locus between mouse and

man quite a challenge. For example, a single locus in mouse may span multiple
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Figure 9.1 Using the genome and HapMap as a template for genetics. Key bioinformatic steps to

take a genetic study from an initial linkage or association to laboratory genotyping are illustrated.

The reader should note the role of genomic sequence as a common thread through every stage

regions in man (see Chapter 5). Similar issues also exist in the establishment of

true orthology between genes in different species, where one is identified to play a

role in a disease model. If two genes are truly orthologous, their evolution closely

follows patterns of speciation (Fitch, 2000). The implicit assumption here is that the

two genes might be expected to carry out a similar role in both organisms. However,

these relationships are not always one to one, nor is similarity of function assured; for

example, a gene identified in nematodes, with a role in apoptosis, might have more

than one orthologue in man, or, worse still, it may have no identifiable orthologue

(see Chapter 6 for a review of this area).

9.3.2 Defining a gene as a locus

Where regions of interest are identified directly in man, obviously the issues of locus

definition for study are less complex, although pitfalls still exist. If a gene of interest
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CCR6 locus

10kb 10kb
CCR6 longest transcript

CCR6 RefSeq gene

Figure 9.2 Definition of a gene locus. The CCR6 gene locus is defined by the most 5’ exon among

all transcript variants and the most 3’ exon among all variants. 10 kb is added to either side of the

locus to allow for regulatory regions. Note that known transcripts (e.g., RefSeq) may not always

be the longest transcript, and a full review of other mRNA and EST evidence is recommended

is identified, perhaps by differential expression or biological rationale, the gene locus

can be rapidly defined in a genome browser. The gene locus could reasonably be

defined as the region encompassing all the exons and introns perhaps 10 kb upstream

and downstream of the first and last exon, to allow for gene promoter and regulatory

elements. In the example of the CCR6 gene, this can be achieved with the UCSC

genome browser, for example, by entering the gene symbol and modifying the genome

coordinates returned by the search by adding 10 kb upstream and downstream.

However, even in this simple case, the locus should not be taken at face value. In the

case of CCR6, most standard sources of gene information (e.g., RefSeq, Entrez-Gene)

describe only one or two known CCR6 gene transcripts, both transcribed from the

same first exon. However, review of UCSC spliced EST data identifies an additional

transcript variant with an alternative first exon more than 11 kb upstream of exon 1

in the known gene (the structure of this variant is exemplified in the UCSC ExonWalk

track). Clearly, this is important to investigate, as it suggests that CCR6 isoforms are

driven by alternative promoters. Therefore, the appropriate locus would span 10 kb

upstream of the most 5′ exon among all isoforms and 10 kb downstream of the most

3′ exon among all isoforms (Figure 9.2). The same rule of thumb would apply to

genes that show complex alternative splice forms.

9.3.3 Defining genetic loci from linkage and association data

Disease susceptibility loci encompassing large genomic regions may be identified

by family-based linkage, population-based linkage or association analysis. These
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Figure 9.3 Definition of a linkage region by LOD score. In this example of a theoretical complex

disease linkage peak, we define an acceptable ‘core region’ as any region with a LOD score of

>3, with a ‘maximum region’ defined by markers with a LOD of >2 or perhaps >1 (respectively

10-fold and 100-fold drops in linkage probability)

different approaches produce results at very different resolutions, which in turn call

for some distinct next steps to define the linked or associated region in the genome

for further study (these differing approaches are discussed in Chapter 8). Taking

population-based disease linkage as an example, the linkage region is likely to be

very large (5−30 Mb) and may be defined by a broad peak, or by multiple peaks

with a poorly defined apex. In such cases, without large numbers of family data, it

is difficult to define a critical region; instead, the best approach may be to define a

core region and a maximal region, defined by a 1-LOD drop in thresholds. Figure

9.3 shows an example of the approach based on a theoretical complex disease linkage

peak. In this case, the ‘core region’ is defined by a LOD score of >3, while the

acceptable ‘maximal region’ is defined by markers with a LOD of >2 or perhaps >1

(respectively 10-fold and 100-fold drops in linkage probability). If a large region is

being prioritized for follow-up analysis, these graded regions can effectively be used

as a method of weighting genes and markers for further analysis.

In the case of association analysis, particularly that based on a high-density map,

such as an oligonucleotide array chip, the associated region may be very small in-

deed. Often an association may be with a single SNP (singleton association), but

more often several SNPs, generally reflecting LD, which might range from 10 kb to as

much as ∼500 kb. High-density SNP association studies, and singleton-associated

SNPs in particular, raise the vexed issue of type I error (false-positive associations).

Briefly, 5 per cent of markers tested might be expected to show association by

chance, so if 500 000 markers are tested, we can expect 25 000 associations by

chance alone. Independent replication is the only practical solution to this problem,

but the cost of sample ascertainment and further genotyping arguably makes de-

tailed locus characterization and rigorous ranking of associated loci more important
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than ever. The general issues that high-density genome scans generate, including

problems with multiple testing and locus prioritization, are reviewed in detail in

Chapter 19.

Genetic associations obtained by candidate gene analysis have their own set of

issues. Aside from the problems of multiple testing, a key issue is marker coverage –

the limits of an associated candidate gene locus can be reliably defined only where

sufficient markers have been typed on either side of the associated marker to see

a decline in association. Without evidence of a lack of association in neighbouring

regions, a marker in a candidate gene may simply be reflecting association with a

neighbouring ungenotyped gene.

9.3.4 Defining a plan for follow-up – expedient or exhaustive?

However the locus is defined, the high-resolution data provided by the HapMap

presents a real opportunity for exhaustive follow-up studies of genetic loci. In terms

of laboratory-based studies, resource constraints are really the only limit to the scale

of further studies. At this stage, one might also choose to evaluate candidate genes

in a region for priority analysis. This approach is becoming increasingly attractive,

as the rich range of available in silico data offers opportunities to identify genes

with a strong rationale in the phenotype under study directly from very large loci.

In such circumstances, it might be reasonable to test these genes immediately for

association. However, it might be argued that there is a potential here for type I error;

as available information continuously expands, so does the chance of identifying

plausible candidate genes by chance.

In the case of high-resolution association analysis, the minimal region of asso-

ciation is defined by the extent of LD, and this can also create problems. LD is a

phenomenon that can extend over several megabases, as in the human major histo-

compatibility complex (MHC) region (Horton et al., 2004). However, on average,

LD extends over 20−30 kb, so analysis can focus on in-depth dissection on a small

number of candidate genes, and the impact of all known variation in the associated

region may be assessed with relatively modest resources.

9.4 In silico characterization of the IBD5
locus – a case study

To illustrate the step-by-step process of genetic locus characterization by in silico

methods, we will take the IBD5 Crohn’s disease (CD) susceptibility locus as a case

study. For more detail on IBD5, see the excellent review by Reinhard and Rioux

(2006).
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The genetics of the inflammatory bowel diseases have been among the few early

successes in complex disease gene hunting, most notably with the discovery of the

IBD1 locus by linkage and the subsequent identification of the CARD15 (NOD2)

gene by association analysis in CD (Hugot et al., 2001). The IBD5 locus was mapped

around the same time as IBD1, to an 18-cM region on 5q31 by a genome-wide linkage

scan. The locus was refined by association with a microsatellite-based transmission

disequilibrium test to a region of around 500 kb. SNP genotyping produced a strik-

ingly limited set of haplotypes, defining a ∼250-kb risk haplotype that was replicated

by association in six large studies, providing clear replication of IBD5 in CD. Given

the robustness of this association, the challenge is to deconvolute the IBD5 risk hap-

lotype, which contains at least five genes, in order to identify a causal gene or genes.

In informatics terms, the first step in this process is to define the IBD5 haplotype in

the genome.

9.4.1 Localizing markers in the genome

Accurate definition of locus boundaries in the genome should always be the first

step in characterization. In Chapter 4, the three primary genome browsers, UCSC,

Ensembl and MapView, are reviewed. These tools all offer the user an opportunity

to localize markers to the human genome. Other specialist genetics tools are also

available, such as the HapMap genome browser (see below), but these can be limited

in scope for full genomic characterization. All genome browsers offer similar query

capacities; usually, queries can be carried out by marker name, genome location or

cytoband, or directly by sequence homology searches by BLAT (UCSC) or a similar

tool. Searching by marker IDs, especially microsatellites, can be problematic, as no

single tool contains a fully comprehensive index of genetic markers and their aliases.

In such cases, the only way to locate an unindexed marker in the genome is by running

a sequence similarity search with the marker sequence. The UCSC genome browser

is highly recommended for genomic localization of markers. The browser is well

indexed for SNPs and microsatellites; alternatively, one can use the fast BLAT service

to localize a sequence (e.g., a marker sequence). To localize a marker or genomic

locus, select from the home page the most current ‘browser’ from the top left-hand

menu. (For this exercise, the May 2004 (ncbi35) version was used.) Type the marker

names in the ‘position’ window. The UCSC interface is very flexible, accepting a

wide range of formats, from a simple cytoband (e.g., 5q23.3) to a genome coordinate

(e.g., chr5:131,651,169-131,829,974). In the original report of linkage, the IBD5

locus was defined betweenD5S1435 and D5S1480. To define a region in the genome

between two markers, including SNPs or microsatellites, enter them separated by a

semicolon. So, for example, in this case, enter ‘D5S1435; D5S1480’. This returns a

27.1-Mb sequence interval, containing 314 distinct genes and transcripts. Note that

in a microsatellite marker query, UCSC returns a larger interval with 100-kb flanking

either side of the markers.
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Table 9.1 IBD5 associated SNP alleles unique to the IBD5 risk haplotype

SNP ID RefSNP ID In HapMap IBD5 P value

IGR2055a 1 rs2248116 Y 0.000019

IGR2060a 1 rs2522057 Y 0.000012

IGR2063b 1 − N 0.000007

IGR2078a 1 rs4705950 Y 0.000063

IGR2096a 1 rs12521868 Y 0.000032

IGR2198a 1 rs11739135 Y 0.000048

IGR2230a 1 rs17622208 Y 0.000063

IGR2277a 1 rs4705938 N 0.000096

IGR3081a 1 − N 0.000038

IGR3096a 1 rs7705189 Y 0.00004

IGR3236a 1 rs2301579 N 0.00023

Data from Rioux et al. (2001).

Using a dense SNP map, Rioux et al. (2001) narrowed the IBD5 locus down to

a common risk haplotype spanning ∼250 kb that shows strong association with

CD. To define the IBD5 risk haplotype accurately in the genome, it is necessary to

locate the SNPs described in the study. Unfortunately, the SNP IDs reported in this

study are not standard dbSNP IDs, so it is not possible to query the UCSC or other

tools by ID. There are several options available when the marker ID is proprietary

or non-standard. Firstly, if the marker sequence is available, it is possible to use

the UCSC BLAT tool to locate it by sequence homology searching. On this occa-

sion, the sequences of the SNPs delineating the IBD5 risk haplotype, IGR2055a 1–

IGR3236a 1 are available in the supplementary information from the original pub-

lication (http://www.broad.mit.edu/humgen/IBD5/5q31data.html). When only the

primers for assaying the SNP are reported and these are too small for use in a homol-

ogy searching tool such as BLAT, the alternative method to use is the UCSC in silico

PCR tool. This tool is accessed on the UCSC toolbar by following the PCR link. The

tool takes 5′ and 3′ primers as input and returns the genome coordinates for the

PCR product. The entire locus can then be defined by recording the locations of

the SNPs from the PCR result. In this case, using BLAT to find map locations for the

SNPs in question, the locus is defined by a 251-kb region between chr5:131,581,239-

131,832,246 (NCBI35); it also becomes apparent that the SNPs are represented in

dbSNP, with IGR2055a 1 represented by rs2248116 and IGR3236a 1 represented by

rs2301579 (Table 9.1). Conveniently, it is possible to save the view of any locus viewed

in the UCSC by bookmarking the browser page, allowing the user to return later at

any point. Figure 9.4 shows the IBD5 risk haplotype region in the UCSC browser;

this clearly identifies seven known genes and a number of novel genes across the

region, evidenced by human mRNAs and spliced ESTs. Methods for examining the

biological rationale of each of these genes in IBD will be reviewed below.
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Figure 9.4 A view of genes across the IBD5 risk haplotype with the UCSC genome browser. The

view immediately identifies seven known genes and evidence for a number of novel transcripts.

Generated using the UCSC Human Genome Browser, http://genome.ucsc.edu

9.4.2 Extracting and annotating genomic sequence across the locus

At this point, with the locus defined in the genome, any number of approaches for

further characterization is possible. If direct analysis of the genomic sequence across

all or part of the locus is desired, the sequence can be extracted from the UCSC

browser. To achieve this, select the ‘DNA’ link in the tool bar; this presents the user

with a number of basic options to format the DNA sequence across the selected

region. If the DNA sequence only is required, select ‘all lower case’ and press the

submit button. Alternatively, select ‘lower case repeats’ to highlight repeats in the

sequence, or mask them for primer design and other applications. There is also an

option to reverse-complement the sequence. This is particularly useful to retrieve

a sequence across a gene that is in the reverse orientation in the golden path. To



OTE/SPH OTE/SPH

JWBK136-09 February 16, 2007 15:18 Char Count= 0

9.4 CHARACTERIZATION OF THE IBD5 LOCUS 195

receive full annotation of the sequence in terms of all the features reported by the

UCSC browser, select ‘extended case/color options’ and press the submit button.

This leads to a highly sophisticated annotation interface that allows annotation of

almost every available UCSC feature on the sequence, with a combination of toggled

case, underlining, boldface, italics and full-colour lettering, very useful for preparing

figures for publication.

9.4.3 Defining the IBD5 locus in the HapMap

An important step in locus characterization before further genotyping or analysis

is to review HapMap-related LD and haplotype information across the locus. The

HapMap genome browser is the simplest access point to the data and can be used quite

intuitively to view LD and haplotypes around a gene or region of interest, to select

tagging SNPs, or to export genotypes or LD data in single or multiple populations.

The browser, which can be reached by following the ‘browse project data’ link on

the HapMap home page, can be searched by a gene, genomic region or SNP ID.

The browser is fully configurable to display LD, haplotypes, recombination hotspots

and tag SNPs alongside genes across the selected region. At the time of writing,

the HapMap browser was transitioning data from NCBI34 to NCBI35 mapping

coordinates, with only limited NCBI35 data availability. To view the NCBI35 region

coordinates used in the UCSC genome browser in the NCBI34 version of the HapMap,

it is necessary to convert the coordinates by the UCSC convert function (see Section

9.2). A region can be viewed by entering the same genomic coordinates used in

the UCSC browser. The search format is similar, except the coordinates should be

separated by ‘..’ rather than ‘–’. So, in the case of the IBD5 risk haplotype, enter the

NCBI34 converted coordinates ‘chr5:131629556..131880563’.

The resulting region that is displayed shows fairly basic information across the

locus, including HapMap genotyped SNPs and genes. However, the browser is con-

figurable to display a range of valuable information. To view different features, select

the ‘Reports and Analysis’ menu and select the desired feature. For example, to view

haplotypes, select ‘Annotate Phased Haplotype Display’ and click the ‘Configure’

button. HapMap LD data can be viewed alongside a variety of other features, in-

cluding Entrez genes from the NCBI, recombination hotspots, phased haplotypes

and precomputed haplotype tagging SNPs. Figure 9.5 shows an example of output

from the tool across the IBD5 region. From this view, a few points are clear. First,

there is a recombination hotspot in the 5′ end of the IBD5 risk haplotype, and some

evidence of variable recombination rates across the region. Rioux et al. (2001) re-

ported that the IBD5 risk haplotype is broken into eight haplotype blocks separated

by areas of elevated recombination. These reported blocks correlate reasonably well

with the phased haplotypes reported by the HapMap. Finally, it is interesting to see

that, based on the precomputed haplotype-tagging SNPs displayed across the re-

gion, 18 tagging SNPs (based on default Tagger parameters) would be sufficient
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Figure 9.5 Viewing the IBD5 risk haplotype region in the HapMap genome browser. The view

displays SNPs genotyped by HapMap, known genes, recombination rates, phased haplotypes and

measures of LD in the CEU population group (Utah residents with European ancestry)

to capture information on the 375 SNPs genotyped by the HapMap across the

region.

Aside from visualization functions, the HapMap genome browser also serves as an

effective data-mining and analysis tool. It allows the user to export data on LD, SNP
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frequency and genotypes from the current window being visualized. The browser

is closely integrated with the HaploView software package (Barrett et al., 2005),

allowing the user to pipeline genotype data from a region directly into HaploView,

and giving more flexibility to recalculate LD and haplotypes and select tag SNPs. In a

similar way, the user can also pipeline genotypes into Tagger (de Bakker et al., 2005)

to allow selection of tag SNPs which capture haplotype diversity across a region in a

maximally efficient manner. This pipelining capability makes the HapMap browser a

remarkably flexible tool, effectively providing the Web user with an LD and haplotype

analysis capacity that would otherwise require hours of data loading, manipulation

and database expertise.

While the HapMap genome browser is useful for exporting LD data across a

defined region or gene, the HapMart tool, also accessed from the HapMap website, is

one of the only practical Web tools for exporting LD data from specific populations

across a range of chromosomes, by different filter criteria. These filters can include

lists of query SNPs, a minor allele-frequency cut-off, a region, or a gene (Figure 9.6).

Powerful queries can be effected with these filters. For example, filtering by SNP

region, it is possible to retrieve all HapMap SNPs that are in LD with non-synonymous

SNPs (nsSNPs). Alternatively, in the case of the IBD5 locus, it is possible to use the

SNP filter function to retrieve all other SNPs that are in LD with a specified list of

SNPs. In this case, we may be interested in retrieving SNPs in LD, with the SNPs

showing association with CD in the IBD5 risk haplotype (Table 9.1). This enables

functional analysis of all SNPs with evidence of LD with associated SNPs to identify

putative causal SNPs. The output of such queries can be easily formatted into a

custom track for display in tools such as the UCSC human genome browser. In

Figure 9.7, we show an example of a custom track created from a HapMart query.

In this case, the nine associated SNPs were entered into the HapMart filter, and

all LD records with these SNPS were retrieved. All records with an r2 < 0.5 were

removed, and the remaining records were formatted as a UCSC custom track and

loaded. The associated SNPs and the SNPs showing LD with the associated SNPs are

displayed in the top two tracks of the browser in a full genomic context. This allows

the user to zoom in and directly compare the location of the SNPs in relation to other

genomic features to assist functional analysis (see Chapter 11 for a detailed overview

of functional analysis methods).

HapMart is also useful for retrieving raw data for further analysis, such as geno-

types for all SNPs that map to a submitted list of genes (based on HUGO IDs). These

are powerful queries as they allow the user to extract specific data on genes of interest

from the wider HapMap data set, which is otherwise quite intractable in the absence

of a locally installed database environment.

9.4.4 Definition of known and novel genes across the IBD5 locus

Following clear definition of the IBD5 risk haplotype, it is important to identify all the

known and novel genes in the region, so that they can be evaluated as candidates or to
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Figure 9.6 The HapMart interface. A range of optional filters allow complex queries of HapMap

data, including genotypes, LD data and haplotypes

ensure that marker maps across the region have provided sufficient coverage to detect

any genetic effect in genes or regulatory regions. The UCSC human genome browser

and other tools such as Ensembl are valuable in this process. Both tools run the human

genome sequence through sophisticated gene-prediction pipelines (Hubbard et al.,

2002). These analyses are coupled with a detailed view of supporting evidence for

genes, such as ESTs, CpG islands and promoter predictions. Homology with other

genomes is also presented; this is expanding constantly, but, at the time of writing

(May 2006), 16 vertebrate genomes were mapped to human in the UCSC browser.

This wealth of data probably makes further de novo gene prediction unnecessary in

most cases. Improvement in the quality of annotation provided by Ensembl and the

UCSC would require an in depth understanding of the intricacies of gene prediction,

and this we cannot hope to convey within the scope of this book (see Rogic et al.,
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Figure 9.7 Using custom tracks to get a detailed view of genomic context in the UCSC genome

browser. Custom tracks in the UCSC genome browser show the location of SNPs showing LD

with IBD5-associated SNPs with r2 > 0.5. An additional track describes known genes. HapMap

LD information below is for the CEU individuals and suggests extended LD across the region,

reflecting the extent of the IBD5 risk haplotype. Recombination rates independently calculated

from HapMap and Perlegen data sets are displayed below the LD track. Generated using the UCSC

Human Genome Browser, http://genome.ucsc.edu

2001, for an excellent review of this field). Instead we suggest a focus on the available

data to build gene models based on existing annotation.

For the purposes of the study of the IBD5 locus, the objective is to identify all

known and novel genes across the locus. This can be a painstaking process, as known

and novel gene information across the genome can be overwhelming. To illustrate

the process, Figure 9.8 focuses on an 83-kb segment of the IBD5 risk haplotype. This

shows a UCSC view of the region between the end of the organic cation transporter,

SLC22A4, and the beginning of the paralogous transporter, SLC22A5. For the pur-

poses of this figure, the UCSC browser has been configured to show tracks directly

applicable to the identification of genes in genomic sequence. These tracks include

‘known genes’, ‘spliced ESTs’, ‘unspliced ESTs’, ‘CpG Islands’ and ‘vertebrate conserva-

tion’. The known genes across the region are clearly identified as SLC22A4, SLC22A5

and a hypothetical gene, FLJ44796. However, after review of all the data, especially

focusing on the spliced expressed sequence tag (EST) information, it is clear that

there are also some potentially novel transcripts across the region. Confidence in the
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Figure 9.8 Using the UCSC human genome browser to investigate evidence for novel genes

and transcripts. A range of evidence, including mRNAs, spliced ESTs and vertebrate homology,

supports the existence of several novel transcripts in the intergenic region between SLC22A4 and

SLC22A5. Generated using the UCSC Human Genome Browser, http://genome.ucsc.edu

identification of novel genes in genomic sequence is partly dependent on the range

and nature of supporting evidence. The most convincing single item of evidence is

a correctly spliced mRNA transcript, either an EST or whole transcript. In Figure

9.8, several human spliced ESTs (e.g., DA163792, DA718034 and BI601237) appear

to be transcribed in the opposite direction from the SLC22A5 promoter region. EST

data can be an important source of novel gene information; however, it can also be

highly confusing. This is one of the reasons that EST data are divided into spliced

and unspliced tracks. This is in recognition of the very high number of artefacts

that are generated in EST libraries. In this case, these spliced ESTs could represent

several things – without further laboratory characterization, it may be hard to de-

termine what. First, in some cases, the ESTs overlap exons from SLC22A4, in which

case they may represent read-through from the RNA polymerase during SLC22A4
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transcription. Some of the ESTs also align to the first exon of SLC22A5, in which

case they may represent uncharacterized upstream 5′ UTR exons from this gene.

This seems unlikely, as there is a large CpG island in the region of the known first

exon of SLC22A5. This is a strong hallmark of a promoter region, suggesting that the

annotated first exon is real. In vertebrate conservation across the SLC22A4/SLC22A5

intergenic region, there are clear regions of conservation that correspond with many

of the spliced ESTs in the intergenic region. This, along with the evidence of splicing

in the ESTs, is strong evidence that these ESTs may actually be coding for a dis-

tinct gene in this region. It is not clear whether these ESTs encode a protein-coding

transcript, or a non-coding RNA – it may be possible to identify protein sequence

homology by using the NCBI BLASTX program (translated DNA v protein). Even if

characterization of a novel transcript draws a blank, this is not necessarily a problem

for genetic analysis. Simply acknowledging that a novel transcript exists, even if the

function is unknown, makes it a candidate for further analysis. As an association is

refined, if the signal still points to the novel transcript, further work (including lab-

oratory characterization) would be worthwhile, but before this point it is probably

premature to do more than record the transcript as a candidate.

Looking back at Figure 9.4, there is further evidence supporting novel genes in

the IBD5 locus. A human cDNA sequence, BC043424, and several spliced ESTs offer

strong supporting evidence of a gene that appears to be transcribed on the antisense

strand of the SLC22A4 locus. Because mRNA is single stranded, the presence of a

complementary antisense strand may alter transcription, elongation, processing, lo-

cation stability and translation of mRNA. Functional antisense RNA has been widely

implicated in gene regulation and differentiation in mammals (reviewed by Dolnick,

1997). Natural antisense transcripts may be coding or non-coding and usually arise

via separate transcription initiation from the opposite DNA strand at the same ge-

nomic locus as the sense strand. Kiyosawa et al. (2003) carried out a genome-wide

survey of 60 770 full-length enriched mouse cDNA sequences derived from various

tissues at various developmental stages. They identified more than 2000 examples of

sense–antisense transcript pairs, clearly indicating the prevalence of this mechanism

and underlining its potential importance in mammalian gene regulation. There is

some evidence linking SLC22A4 to CD (see below), so this also makes BC043424 a

potentially significant gene with a possible role in CD susceptibility.

9.4.5 Building biological rationale around candidate genes

Once all the known and novel genes have been identified across the IBD5 risk haplo-

type, further genetic analysis could take two routes. One route would be to carry out

further high-density association analysis in an attempt to define a subset of markers

across the region that show increased evidence of association. Alternatively, specific

candidate genes could be selected for follow-up studies. The route selected here de-

pends on the size of the locus and the number of candidate genes it contains, but it
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might also be influenced by any compelling candidate genes with strong biological

rationale. In the case of the IBD5 risk haplotype, there are seven known genes across

the region and several novel genes evidenced by ESTs and cDNA sequences (Figure

9.4). With a relatively small number of genes to study, it would be quite reasonable

to investigate each gene, but often a region contains a much larger number of genes,

making follow-up of each gene an impractical approach. An alternative in such cases

is to prioritize candidate genes by their biological rationale in the target phenotype or

trait. Criteria for biological prioritization of candidate genes are discussed through-

out this book. Genes can be prioritized by a known or putative role in the disease

pathway, information from gene knockouts, expression in the disease tissue, func-

tional polymorphism and many other criteria. In this exercise, we are looking for a

gene with a possible role in irritable bowel diseases (IBD). Therefore, to prioritize the

candidate genes, we might first review the literature to search for a link between each

candidate gene in this region and IBD disease pathways. The aetiology of IBD, like

many complex diseases, is poorly understood, making it difficult to establish clear

biological rationale for genes in this disorder. Where biological rationale is found, it

could range from convincing support, such as upregulation of the gene or a related

gene or pathway component in a disease model or in a similar phenotype, to the

most basic support, such as being expressed in a tissue affected by the disease – in

this case, the intestinal tract.

Drawing together the complex strands of evidence in the literature is a skill that

calls for a good background in biology and ideally a broad understanding of the

disease under study. It is obviously not possible to gain an encyclopedic knowledge

of biology and disease overnight; however, many tools such as OMIM at NCBI,

offer very good encapsulated summaries of the underlying biology of genes and

diseases, and so these are always a good place to start in literature searching. Ap-

propriate tools for literature searching are PubMed at the NCBI, which searches

journal abstracts. The new generation of full-text search engines is proving increas-

ingly valuable for focused literature searching. Highwire (http://www.highwire.org)

is highly recommended; this is particularly useful, as it reports the context of the

search term in the sentence in which it occurs in the full-text journal article. Google

Scholar (http://scholar.google.com/) is another member of this new generation of

tools; it has the added advantage of searching the Web with a query, often turning

up unexpectedly useful information.

It is perhaps a testament to the effectiveness of these tools that, with a little imagi-

nation, some form of biological rationale can usually be found for most genes in most

phenotypes. However, reliance on literature-based evidence alone can run the risk of

over-interpreting tenuous links between genes. This could be a particular problem

in the case of poorly understood diseases, where a rationale for a novel pathway in

a disease would largely fail to register. This issue is an argument to support a truly

investigative approach to candidate gene identification. The candidate should be in

the right place at the right time; beyond this, further assumptions may be mislead-

ing. Data presented by tools such as the UCSC can provide solid evidence to help
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to identify genes that are at least expressed in the tissues affected by the disease.

Obviously, in the case of IBD, we are most interested in genes showing evidence of

expression in the gut and intestines. This will inevitably include a large number of

genes. In an analysis of the expression profiles of >33 000 genes, Su et al. (2004)

found that, on average, any individual tissue expresses approximately 30−40 per

cent of known genes. For candidate gene studies, this implies that 30−40 per cent of

all genes are likely to be candidates for any given disease, based on expression in the

disease tissue alone (assuming the disease affects only one tissue).

9.4.6 Analysis of gene expression with UCSC browser tools

A number of tracks in the UCSC browser provide information about the tissue-

expression profiles of genes. The simplest level of information is provided by ESTs;

each is implicitly a measure of gene expression, as each is derived from a specified

tissue source. The number of ESTs represented in each tissue will also give a very

rough idea of the expression levels of the gene, but it will not confirm the absence

of a gene in a tissue. The UCSC provides an index page for all known genes and

cDNAs (the page is reached by clicking on genes in the browser). This is a very useful

link page to many expression-related resources. One of the best links provided is

to the Stanford SOURCE website (http://source.stanford.edu). This provides useful

summaries of gene function and approximated expression information, based on

Unigene. The most comprehensive measure of gene expression at the UCSC is the

GNF gene-expression atlas, contained in the ‘GNF ratio’ track (Su et al., 2004). This

track represents two replicates each of 79 human tissues run over Affymetrix U95

microarrays. In full display mode, all tissues are shown. In packed or dense mode,

averages of related tissues are shown. The microarray data are displayed in a standard

form, red indicating upregulation in the tissue, relative to the tissue-wide mean of ex-

periments with the same gene-specific probe, and green indicating downregulation.

The saturation of the colour corresponds to the magnitude of transcript variation.

Black indicates an undetectable change in expression, and a white box indicates miss-

ing data. Su et al. (2004) offer a more detailed examination of this gene-expression

visualization method. It is also possible to view and run queries on GNF gene expres-

sion data directly at the GNF SymAtlas website (http://symatlas.gnf.org/SymAtlas/).

UCSC gene expression data can also be viewed and interrogated more flexibly with

the UCSC gene sorter, linked at the top of the genome browser. The UCSC gene sorter

is a slightly idiosyncratic but powerful tool for mining most of the data contained

within the UCSC site (Kent et al., 2005). The tool aims at a gene-oriented view of the

genome to complement the chromosome-oriented view of the genome browser. By

default, the gene sorter sorts the displayed genes by their similarity in expression to

the selected gene. This similarity is calculated as a weighted sum of differences in log

expression ratio values. Genes can also be sorted by protein similarity, location in the

genome, name and shared annotation terms. To view expression data for all genes



OTE/SPH OTE/SPH

JWBK136-09 February 16, 2007 15:18 Char Count= 0

204 CH 9 INTEGRATING GENETICS, GENOMICS AND EPIGENOMICS

Figure 9.9 Using the UCSC human gene sorter to evaluate gene expression. The gene sorter

shows expression information for genes contained within the IBD5 risk haplotype. Genes are

sorted in order of genomic distance from the query gene, SLC22A4. The selected expression

data from the GNF Atlas 2 shows that only SLC22A5 shows strong evidence of expression

in the colon and small bowel duodenum. Generated using the UCSC Human Genome Browser,

http://genome.ucsc.edu

in a locus, select ‘sort by gene distance’ and enter a gene in the centre of the locus;

for the IBD5 locus, this is SLC22A4. The query returns all genes around SLC22A4 in

order of distance from the query gene rather than physical genome order. The results

of such a query are presented in Figure 9.9. Interestingly, only one gene in the IBD5

locus appears to show significant expression in gut tissue (based on colon, small

bowel duodenum and stomach tissues) – SLC22A5 shows evidence of upregulation

in small bowel duodenum and downregulation in colon. This perhaps serves to flag

SLC22A5 as a potentially interesting candidate in this region, although it does not

exclude the other genes.

9.4.7 Evaluating epigenomic and epigenetic effects

Epigenomics, the study of epigenetic modification on a genome-wide scale, is a

newly emergent field of genomics that we should also consider in our analysis of the

IBD5 locus. Epigenetics is concerned with the study of heritable changes other than

those in the DNA sequence, and it encompasses two major modifications of DNA

or chromatin: DNA methylation, the covalent modification of cytosine, and post-

translational modification of histones, including methylation, acetylation, phospho-

rylation and sumoylation (Callinan and Feinberg, 2006). In terms of function, epige-

netic modifications act to regulate gene expression and stabilize adjustments of gene

dosage, as seen in X inactivation, gene silencing and genomic imprinting. Despite a

number of examples of epigenetic effects in human syndromes and cancer (Agrelo
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Environment (e)

Parental epigenotye

DNA genotypes (gepg)

Parental Environment (epar)

Age

DNA genotypes (gdep)

DNA genotypes (gind)

Epigenotype (epg) Disease

(Adapted from Bjornsson et al. 2004) 

Figure 9.10 An integrated genetic and epigenetic approach to common disease. A schematic

summary of how genetic and epigenetic (epg) factors might contribute to human disease and the

factors that contribute to epigenetic variation. The sources of epg variation (genetic, environ-

mental and stochastic) are also represented. For clarity, the subscriptind has been added to genes

that affect disease independently of epigenetics and the subscriptepg to genes that directly code

for epg variation. gind might be epigenetically modified, but the epigenetic modification does

not influence disease. The relative importance of gind is inversely proportional to the degree to

which common disease is epigenetically determined, which is unknown at present. The modifi-

cation of gene penetrance by epigenetic context is shown by the use of arrows, which point to

relationships, rather than measured values (Reprinted from Trends Genet 20(8), Bjornsson, H. T.,

Fallin, M. D., Feinberg, A. P., pp. 350–358, Copyright 2004, with permission from Elsevier)

et al., 2006), to date, there are no robust examples of epigenetic effects in complex

disease, although the prevailing view is that epigenetics may play a very important

role in common diseases such as schizophrenia (Singh et al., 2004).

Epigenetic effects are potentially a problem for genetic analysis methods, as a

DNA sequence may be invariant between individuals, but their epigenetics may

vary substantially. This variation also occurs within an individual in a tissue-specific

manner. For example, Rakyan et al. (2004) showed that 10 per cent of all methylated

sites in the HLA region display differential methylation between tissue types.

However, epigenetic analysis also presents opportunities for genetics; incorporat-

ing analysis of epigenetic variation into genetic studies may help to explain the late

onset and progressive nature of common diseases and may help to accommodate

the role of environment in disease development (see Figure 9.10 for a model of the

interplay between genetics and epigenetics; Bjornsson et al., 2004).

Incorporating epigenetics into genetic analysis can also enhance the predictive

functional analysis of SNPs by highlighting regions of DNA that are accessible or

inaccessible to protein binding by transcription factors and other regulatory pro-

teins. SNPs may also lead to loss or gain of cytosine–guanine dinucleotide (CpG)

methylation sites. Rakyan et al. (2004) suggested that such an event might affect the

overall methylation profile of a locus and, consequently, promoter activity and gene

expression. Alternatively, a non-CpG SNP located within an epigenetically sensitive

regulatory element could also influence the epigenetic make-up of that region. There-

fore, mutations in regulatory sequences could influence epigenetic profiles, resulting

in altered phenotypes.
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Several tools are available to assist in the analysis of epigenomic data. The UCSC

genome browser presents epigenetic data generated by the ENCODE consortium

across 44 discrete regions, covering ∼1 per cent of the genome (ENCODE Project

Consortium, 2004). Fortunately, the IBD5 locus falls into one of the ENCODE

regions, allowing detailed evaluation of epigenomic data across the entire locus.

Figure 9.11 shows a selected range of ENCODE epigenetic features across exon 1 of

SLC22A4; many other features have been excluded for brevity. The features shown

include chromatin immunoprecipitation (ChIP) data (Rodriguez and Huang, 2005),

a DNA structural profile (Balasubramanian et al., 1998), DNase I hypertensive sites

A

B

C

D

E

F

Figure 9.11 Evaluating epigenomic data across exon 1 of SLC22A4 with the UCSC genome

browser. The figure shows a view of multiple epigenomic features across exon 1 of the SLC22A4

gene. The browser displays a range of epigenomic data generated by the ENCODE consortium.

(A) ChIP data from four independent laboratories; (B) DNA structural profile based on predicted

hydroxyl radical cleavage intensity on naked DNA; (C) DNase I hypersensitive sites; (D) DNA

methylation; (E) formaldehyde-assisted isolation of regulatory elements (FAIRE), a procedure

used to isolate chromatin resistant to the formation of protein-DNA cross-links; (F) DNase I

sensitivity/hypersensitivity
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(Crawford et al., 2006), DNA methylation sites (Robertson and Wolffe, 2000), and

formaldehyde-assisted isolation of regulatory elements (FAIRE) (Buck et al., 2005) – a

procedure used to isolate chromatin that is resistant to the formation of protein-DNA

cross-links. It is not within the scope of this chapter to explain each of these data

sets; however, in each case, a review of each data type is referenced. The UCSC also

contains very detailed descriptions of the experimental methods used to generate

each data track; this is accessible by clicking the grey button on the far left of the

UCSC view. Essentially, these different data sources give similar information relating

to the accessibility of DNA to binding by specific regulatory proteins. For example,

the ‘Affy H3K9K14ac2 8h’ track shows regions that co-precipitate with antibodies

against diacetylated H3 histones in retinoic acid-stimulated HL-60 cells harvested

after 0, 2, 8, and 32 h. For brevity, only the 8-h time point is shown; data on four other

DNA-binding proteins has also been excluded. ChIP is a valuable method for identi-

fication of regulatory elements. By this method, De Gobbi et al. (2006) were able to

identify a SNP that created an inappropriate new transcriptional promoter element

causing β-thalassaemia. A number of SNPs are co-located within these epigenetic

features, although, notably, none are located in the H3 histone-binding region. These

SNPs might have the potential to alter DNA binding by regulatory proteins, either

directly by altering the DNA-binding motifs or indirectly by leading to a change in the

epigenetic state of the DNA, as by altering methylation by removing or introducing

a CpG dinucleotide. Further investigation of these SNPs is recommended.

The data generated across the ENCODE regions give a glimpse of the future com-

plexity of epigenomic data on a genome-wide scale. One project is already well under

way to investigate the entire epigenome. The Human Epigenome Project (HEP) aims

to identify, catalogue, and interpret genome-wide DNA methylation phenomena

(Rakyan et al., 2004). Preliminary HEP data are already available and viewable in the

MVP viewer(http://www.epigenome.org). Unfortunately, no HEP data are available

across the IBD5 region; however, in Figure 9.12, we present HEP data in the MVP

viewer across SLC22A1, a close homologue of SLC22A4. The figure shows a view

of DNA methylation across CPG sites in the first exon of SLC22A1 gene. Below,

SNPs and other genomic features from the UCSC genome browser are displayed.

Reviewing the data in Figure 9.12, several points are apparent. First, methylation

shows tissue-specific distribution; exon 1 of SLC22A1 is highly methylated in all tis-

sues tested, with the exception of the liver, which shows lower levels of methylation.

Second, methylation appears to show intersample variation, especially in the liver.

Three SNPs are located in the methylated region – it may be worthwhile to evalu-

ate these for impact on CpG residues. This can be carried out by submitting both

alleles of the SNP to a CpG prediction tool, such as EMBOSS CpGplot. Using this

tool on both alleles returns an interesting result. The non-synonymous T>C SNP,

rs12208357, coding for a Cys61Arg change, also appears to alter the localized CpG

profile, conceivably influencing the regulation of SLC22A1.

These are just a few examples of the kinds of epigenomic data that are available.

As epigenomic technologies mature and genome-wide data sets become available,

great advances may be made in understanding both epigenetics and gene regulation.
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CD4 lymphocytes

CD8 lymphocytes

dermal fibroblasts

dermal keratinocytes

dermal melanocytes
Embryonic liver

embryonic skeletal muscle

heart muscle

liver

placenta

skeletal muscle

sperm

A)

B)

Figure 9.12 Evaluating epigenomic data across SLC22A1 with the MVP viewer and the UCSC

genome browser. (A) View of DNA methylation across CPG sites in the first exon of the SLC22A1

gene, using the MVP viewer (http://www.epigenome.org). DNA methylation levels are displayed

in the form of a matrix. Each shaded square within the matrix represents one CpG site. Shading

represents graded levels of methylation, light grey representing 0 per cent and black representing

100 per cent. Clicking on a square reveals the tissue source of the sample (indicated in this panel

to the left of the matrix) and the level of methylation observed at that particular CpG site. Samples

are grouped by tissue type. Missing squares indicate CpG sites for which methylation levels could

not be determined. (B) The equivalent region is displayed in the UCSC genome browser, showing

percentage of GC ratio, conserved transcription factor-binding sites, known genes, vertebrate

conservation and known SNPs
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Progress is already being made in linking alterations in gene expression with genetic

variation (Cheung et al., 2005; see Chapter 16); however, making the link with reg-

ulatory elements is currently very difficult. The availability of epigenome-wide data

sets like HEP is likely to revolutionize this area of biology.

9.4.8 Evaluating structural variation across a locus

Localized genomic rearrangements and large-scale copy number polymorphisms

(CNPs) are a source of genetic variation that should be considered in any genetic

analysis. Amplification and deletion of genomic regions can lead to differences in

gene copy numbers (and expression levels) between individuals, contributing to the

human phenotypic diversity (Feuk et al., 2006).

Conrad et al. (2006) used SNP genotype data to identify polymorphic deletions

in the genomes of HapMap CEU parent-offspring trios. They identified 586 distinct

deletion polymorphisms spanning 267 genes in one or more of the families. Based on

this analysis, they estimated that typical individuals are hemizygous for roughly 30–50

deletions larger than 5 kb, totaling around 550–750 kb of euchromatic sequence across

their genomes. These CNPs may create problems for genotyping experiments, as they

are likely to affect Mendelian inheritance patterns, Hardy–Weinberg equilibrium, and

the general robustness, and reproducibility of genotypes (Wirtenberger et al., 2006).

However, studies by Newman et al. (2006) and McCarroll et al. (2006) have shown

that SNPs flanking CNPs effectively tag them by LD. Thus, an association with a

SNP immediately neighbouring a CNP could well be in LD with a CNP-bearing

haplotype.

Several tools to study CNPs and other structural variation are available (Table 9.3).

The UCSC genome browser has a track called ‘WSSD duplication’, which displays

thousands of putative CNP regions identified by alignment of whole-genome shotgun

sequences to the human genome (for an explanation of this method, see She et al.,

2004). There is also the Database of Genomic Variants, a resource dedicated to the

curation of structural variants that have been reported in the literature (Iafrate et al.,

2004). A review of each of these resources fails to identify any form of structural

variation across the IBD5 region, so on this occasion I think we can probably rule

out this source of variation.

9.5 Drawing together biological rationale – hypothesis
building

After review of all the evidence from the genomic annotations, expression and lit-

erature across the IBD5 locus, there is convincing evidence for at least eight genes,

several of which have a clear rationale in inflammatory bowel diseases. A summary of
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Table 9.2 Characteristics of IBD5 risk haplotype candidate genes

Rationale in Crohn’s

Gene Name/function Known expression disease (CD)

P2HA2 Prolyl 4-hydroxylase, a key

enzyme in collagen

synthesis

High expression in

colon (Unigene)

Increased activity leading to

excessive collagen during

wound healing, resulting

in stricture in CD

PDLIM4 PDZ and LIM domain

Protein 4, modulates actin

turnover and association

with actinin and actins

Low expression in

colon (Unigene)

Alterations in actin could

influence increase in

intestinal permeability

seen in CD

BC030525 Novel gene; unknown

function

No evidence of

expression in

colon

None apparent

SLC22A4 Sodium-ion dependent, low

affinity carnitine

transporter

Highly expressed in

intestinal cell types

affected by CD

including epithelial

cells (Stanford

SOURCE)

Impaired function may lead

to decreased uptake of

carnitine and increased

uptake of pathological

compounds, resulting in

inappropriate

inflammatory host

response

FLJ44796 Novel gene; unknown

function, contains reverse

transcriptase domain

Low expression in

colon (Unigene)

None apparent

SLC22A5 Functions both as organic

cation transporter and

sodium-dependent

high-affinity carnitine

transporter

Highly expressed in

intestinal epithelial

cells (Stanford

SOURCE).

Upregulated in

small bowel

duodenum, and

downregulated in

colon (GNF)

Impaired function may lead

to decreased uptake of

carnitine and increased

uptake of pathological

compounds, resulting in

inappropriate

inflammatory host

response

BC043424 Novel gene; unknown

function. Antisense

transcript transcribed

across SLC22A4 locus

Moderate expression

in colon (Unigene)

Antisense transcription

across the SLC22A4 locus

may silence transcription

of SLC22A4?

LOC441108 Similar to yeast, Rad50, a

protein involved in DNA

double-strand break repair

Moderate expression

in colon (Unigene)

None apparent

this evidence is presented in Table 9.2. Perez-Iratxeta et al. (2005) have attempted to

automate some of the decision-making processes leading to the prioritization of can-

didate genes, with some success. The Web tool G2D (Genes to Diseases) prioritizes

genes across a user-entered chromosomal region according to their possible relation

to an inherited disease by a combination of data mining of OMIM, PubMed MESH
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terms and Gene Ontology (GO) classification. The tool allows users to inspect any

region of the human genome to find candidate genes related to a genetic disease or

phenotype defined in OMIM. It does this by identifying GO terms that match MESH

terms for an OMIM record. The GO terms are then compared to GO annotations

of genes and transcripts in a query locus. Genes which show a significant match of

GO terms are reported to the user. A query of G2D, using the IBD5 OMIM record

(606348) and the locus for the IBD5 risk haplotype, identifies SLC22A4 (but, inter-

estingly, not SLC22A5, which has similar GO annotation) and PDLIM4, principally

on the basis of GO annotation similarities to the OMIM record.

Review of all the evidence linking the IBD5 risk haplotype genes to CD suggests

that several genes could reasonably play a role in CD. Therefore, the next appropriate

step would be to focus more closely on specific variants in each of the candidate genes

that might help to provide a molecular basis for the association. Essentially, this is

a process of hypothesis building and prioritization, ultimately leading to laboratory

follow-up to test these hypotheses.

9.6 Identification of potentially functional
polymorphisms

Aside from the ordered convenience that genome browsers bring to SNP data, with

tools such as custom tracks at the UCSC, they also place SNPs that show evidence

of association into a full and diverse genomic context (as seen in Figure 9.7), giving

information on nearby genes, transcripts and promoters. At the simplest level, iden-

tification of potentially functional SNPs is a matter of identifying SNPs that overlap

highly conserved regions or putative gene or regulatory features. The UCSC genome

browser presents some detailed information on putative promoter regions, including

CpG islands and conserved TFBS (transcription factor-binding sites) information.

The UCSC browser also shows genome conservation among a wide range of ver-

tebrate species. Genome conservation between vertebrates is generally restricted to

genes (including undetected genes) and regulatory regions (Aparicio et al., 1995).

Hence, this is a simple but powerful method for identifying SNPs in regions that

are potentially functionally conserved. Once a putative functional polymorphism

is identified, the impact of different alleles can be evaluated by running the alleles

through the tool originally used to predict the sequence feature. These could include

tools for promoter prediction, splice site prediction or gene prediction. There is a

great deal of coverage of SNP functional analysis in Chapters 11–14 in this book, so

it is unnecessary to go into detail in this chapter. One final point on the functional

characterization of SNPs is that although our knowledge of genome function is im-

proving, it is still very limited, and so it is almost impossible to conclude that a SNP is

not functional. For these reasons, conclusions on SNP function need to be balanced

with evidence of association.
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Reviewing the associated SNPs that make up the IBD5 risk haplotype and the

HapMap SNPs showing LD with these SNPs, a few SNPs look potentially interesting

in functional terms. One SNP, rs272893, codes for an Ile306Thr substitution in

SLC22A4. Interestingly, a review of the UniProt entry for SLC22A4 shows that this

SNP has already been functionally characterized and has been shown to have no

impact on the physiological function of SLC22A4 (Kawasaki et al., 2004). Peltekova

et al. (2004) specifically evaluated the IBD5 candidate genes and presented evidence

of a role of variants of both SLC22A4 and SLC22A5 in CD susceptibility. They

identified two SNPs in LD that showed a stronger association with CD susceptibility

than the IBD5 risk haplotype, forming a putative two-allele risk haplotype. One of

the SNPs was a Leu503Phe substitution in SLC22A4 – a change from a medium-sized

and hydrophobic residue to a large aromatic residue, which might be disruptive to

protein structure. Physiological characterization of this variant showed a significantly

reduced ability to transport carnitine, the natural substrate, or SLC22A4. The second

SNP, −207G>C, was identified in the core promoter of SLC22A5. This was shown

to fall within a heat-shock transcription factor (HSF)-binding element. Using gel

shift assays to evaluate HSF binding to constructs bearing the two alleles, they found

strong binding to the G allele and no binding to the C allele, demonstrating a possible

regulatory impact in vivo in SLC22A5.

The data presented by Peltekova et al. (2004) quite convincingly point to both

SLC22A4 and SLC22A5 as the most likely candidates for CD susceptibility; however,

Reinhard and Rioux (2006) pointed out that this conclusion can be challenged.

Peltekova et al. (2004) used the htSNP, IGR2078, to tag the IBD5 risk haplotype.

This SNP is ∼100 kb away from the SLC22A4/5 variants and separated by three

intervals of recombination. Considering this, it would be preferable to compare the

strength of association between the functional SNPs and a htSNP, uninterrupted by

recombination intervals in the same haplotype block.

9.7 Conclusions

Although, clearly, there is still some uncertainty about the molecular basis of CD

susceptibility in the IBD5 locus, it does seem likely that with some further molecu-

lar analysis, SLC22A4 and/or SLC22A5 may eventually be unequivocally associated

with CD, as they both show expression in the appropriate tissues and have a strong

rationale in the disease. But these conclusions are all graced with the benefit of hind-

sight (the most powerful analysis method!). Considered as a whole, the IBD5 locus

contains four or five strong candidates for involvement in CD. This is not an atypical

situation and clearly illustrates the challenge of complex disease genetics. To succeed

in this paradigm, the geneticist will need to find the (true) associations, refine the

region as much as possible, and master the in silico data to build a biological rationale

around each candidate gene, finally taking in genetic, genomic and epigenomic in-

formation to define the most appropriate follow-up strategy to align the association
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Table 9.3 Tools for genomic characterization of genetic loci

Tool URL

Genome visualization

UCSC genome browser genome.ucsc.edu

ENSEMBL http://www.ensembl.org

Ensembl Archives archive.ensembl.org/

NCBI MapViewer http://www.ncbi.nlm.nih.gov/mapview/map search.cgi/

LD and haplotype data

HapMap website http://www.hapmap.org

HapMap Genome Browser http://www.hapmap.org/cgi-perl/gbrowse/gbrowse/

HapMart hapmart.hapmap.org/BioMart/martview

HaploView http://www.broad.mit.edu/mpg/haploview/

Tagger http://www.broad.mit.edu/mpg/tagger/

Structural genome analysis

Database of Genomic Variants projects.tcag.ca/variation/

Structural variation database humanparalogy.gs.washington.edu/

Gene-expression analysis

GNF Symatlas symatlas.gnf.org/SymAtlas/

UCSC Gene Sorter http://genome.ucsc.edu/cgi-bin/hgNear?

Epigenetic/epigenomic analysis

MVP viewer http://www.epigenome.org

CpG plot http://www.ebi.ac.uk/emboss/cpgplot/

Methylation PCR design http://www.urogene.org/methprimer/index1.html

Building biological rationale

Stanford SOURCE source.stanford.edu

DAVID david.abcc.ncifcrf.gov/

UniProt http://www.uniprot.org

Prospector http://www.genetics.med.ed.ac.uk/prospectr/

to a molecular mechanism. This calls for some mastery of a dauntingly wide range

of tools and data (Table 9.3). Hopefully this chapter helps to make these sources of

information less daunting and clarifies how good bioinformatics can help to guide

this process to a successful conclusion.
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10.1 Introduction

A wealth of tools and methodology exists to aid in the identification of genetic variants

that influence a trait of interest. The trait may be a biological measurement, possibly

indicating risk of disease, or it may be the response to an environmental stimulus,

such as a drug. This chapter sets out to do three things: introduce key methodology

such as linkage analysis and association analysis, give a taste of available software and

work through some examples. The majority of tools discussed may be downloaded,

together with full documentation, by following links at http://linkage.rockefeller.edu.

Web addresses for the few exceptions are provided in the text. Almost all are available

free of charge.

10.2 Linkage analysis

Linkage analysis is applied in the early stages of searching for genes that cause a

particular trait, and it is one means by which an initial, often broad, chromosomal

interval of interest is defined. It is a process that uses family data to evaluate the

correspondence between the inheritance pattern of genetic markers and the inheri-

tance pattern of a disease or trait. Disease linkage manifests as a marker allele being

inherited in diseased individuals more often than would be expected by chance.

Linkage analysis may be parametric, to test whether the inheritance pattern of the

trait fits a specific model of inheritance, or it may be non-parametric (model-free).

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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The former is more powerful under a correctly specified model and is most informa-

tive for large, multiply affected pedigrees. The latter is more powerful when the mode

of inheritance is unknown, as in complex trait analysis for which small pedigrees are

often ascertained.

10.2.1 Parametric linkage analysis

By the parametric approach (and in certain non-parametric cases), evidence of link-

age is measured by the LOD score (Morton, 1955). The term ‘LOD score’ stands for

logarithm of the odds to the base 10, and its calculation proceeds by an assessment

of the recombination fraction, often denoted by theta (θ). Theta is the probability

of a recombination event between two loci on the same chromosome; as such, it is a

function of distance. Two unlinked loci are given by θ = 0.5, and the closer a pair of

loci, the lower their recombination fraction. The LOD may be expressed as follows,

using L to denote likelihood.

LOD = log10

L (θ = θ̂)

L (θ = 0.5)

The likelihood in the numerator is based upon the maximum likelihood estimate of

the recombination fraction, derived from the data. It is compared to that calculated

under the null hypothesis of no linkage (θ = 0.5). A high LOD score is thus consistent

with the presence of linkage. Due to the computational complexity of the likelihood

calculation, software for exact parametric linkage analysis is constrained either by

pedigree size or by the number of markers included in the calculation.

The software VITESSE (O’Connell and Weeks, 1995) allows rapid, exact para-

metric linkage analysis of extended pedigrees. At the expense of some speed, an

alternative, FASTLINK (Cottingham et al., 1993), allows the analysis of large pedi-

grees that also contain loops (marriages between related individuals). Both VITESSE

and FASTLINK are based on an earlier program, LINKAGE (Lathrop et al., 1984),

and are available for UNIX, VMS and PC (DOS) systems. Using these pieces of soft-

ware, analysis is typically conducted by means of a sliding window of one, two or

four markers along the chromosome, although larger windows are also possible.

Parametric linkage analysis in more moderately sized pedigrees was greatly facili-

tated by the advent of GENEHUNTER (Kruglyak et al., 1996). A major feature of this

program is that it allows the rapid, simultaneous analysis of dozens of markers (often

an entire chromosome) in a multipoint fashion, thereby providing increased power

over single-marker analyses when map positions are known (Fulker and Cardon,

1994; Holmans and Clayton, 1995; Olson, 1995). In order to accommodate uncer-

tainty in marker ordering, an option to perform single marker tests is also available.

Further advances were seen with the release of the software MERLIN (Abecasis

et al., 2002). The latter is a C++ program for UNIX or LINUX, again with a

command-line interface. It offers further improvements in computational speed

and reduction in memory constraints, making it more suited to very dense genetic
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maps. It has the attractive properties of incorporating error detection routines to

improve power, and simulation routines to estimate P values. Graphical output is

also provided.

10.2.2 Nonparametric (model-free) linkage analysis

Nonparametric linkage (NPL) analysis does not allow direct estimation of the recom-

bination fraction, but one source of multiple testing – that derived from examining

multiple models – is removed. The general principle is that relatives who share simi-

lar trait values exhibit increased sharing of alleles at markers that are linked to a trait

locus. See Holmans (2001) for a review of the method.

Allele sharing may be defined as identical by state (IBS) or identical by descent

(IBD). Two alleles are IBS if they have the same DNA sequence. They are IBD if, in

addition to being IBS, they are descended from (and are copies of) the same ancestral

allele (Sham, 1998). A statistical test is performed to compare the observed degree

of sharing to that expected under the assumption that the marker and the trait are

not linked. While the test statistic may take the form of a chi-square, normal or F

statistic, often it is transformed to allow it to be expressed in LOD units.

NPL analysis often examines IBD or IBS allele sharing in sets of affected sib-pairs

(ASPs) in which both siblings exhibit the trait of interest. In the absence of linkage,

ASPs are expected to share 0, 1 or 2 alleles IBD, with probabilities 0.25, 0.5 and 0.25

respectively. The presence of linkage to a tested marker leads to a departure from these

proportions that may be detected by the chi-square test (Cudworth and Woodrow,

1975). Another model-free test, the mean test, evaluates the null hypothesis that

the proportion of IBD allele-sharing equals 0.5. The latter is implemented in the

programs SAGE (1999) and SIBPAIR (Terwilliger, 1996), allowing for larger sibships

and cases where IBD status cannot be determined unequivocally.

For dichotomous trait data measured on larger pedigrees, the degree of IBD shar-

ing among affected pedigree members may be assessed, for example, by using the

Sall or Spairs scoring functions of Whittemore and Halpern (1994). These IBD-based

scoring functions are then used to assign weights to conditional inheritance prob-

abilities summed in the calculation of an asymptotically normally distributed NPL

score. This form of NPL score is widely used and is implemented, for example, in

GENEHUNTER-PLUS (Kong and Cox, 1997) and in MERLIN (Abecasis et al., 2002).

For normally distributed quantitative traits (or those capable of being transformed

to normality), variance-component analysis represents a powerful approach to the

study of pedigrees of any size (Goldgar, 1990; Amos, 1994; Blangero and Almasy,

1996). The method is implemented in MERLIN (Abecasis et al., 2002) and extensively

in SOLAR (Blangero and Almasy, 1996), in which the size of each effect may be

estimated and tested by a LR test. This is a powerful approach, and a major advantage

is its scope for incorporating into models the effects of covariates, epistasis and gene–

environment interaction. For highly complex problems, Markov Chain Monte Carlo

methods are also available, as implemented, for example, in LOKI (Heath, 1997)
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and BLOCK (Jensen et al., 1995). When the parameter set is large, however, the

computational burden of these methods can be prohibitive.

10.2.3 Example: MERLIN (Abecasis et al., 2002)

MERLIN (Multipoint Engine for Rapid Likelihood Inference) is a software pack-

age for single-point and multipoint linkage analyses of pedigree data (Abecasis et al.,

2002). MERLIN can be used for analysis of parametric linkage, non-parametric link-

age (NPL) and quantitative trait linkage (QTL), incorporating variance-component

analysis, IBD and kinship coefficient calculations, haplotyping, and genotype er-

ror detection. MERLIN was designed for the analysis of dense genetic maps of

both biallelic and multiallelic markers. It uses sparse inheritance trees to repre-

sent gene flow in pedigrees and is one of the fastest packages for pedigree analy-

sis. The website http://www.sph.umich.edu/csg/abecasis/Merlin offers an excellent

tutorial.

Data import

The input files may be either in ‘LINKAGE format’, referring to the software in which

it was first introduced (Lathrop et al., 1984; Terwilliger and Ott, 1994), or in QTDT

format (Abecasis et al., 2000). In using QTDT format, MERLIN requires a pedigree

file (.ped), a data file (.dat) and a map file (.map). It is worth noting that the .ped

file looks the same for both LINKAGE and QTDT formats. Part of a coded pedi-

gree file follows, where, for simplicity, three markers genotyped in two families are

shown:

390 138 0 0 1 1 1 3 5 7 0 0

390 139 0 0 2 1 1 6 7 7 0 0

390 132 138 139 2 2 1 1 5 7 0 0

390 137 138 139 1 2 0 0 5 7 0 0

460 206 208 204 2 1 2 2 6 7 1 1

460 207 208 204 1 1 2 4 6 7 1 1

460 204 0 0 2 1 2 4 6 6 1 1

460 208 0 0 1 1 2 2 7 7 1 1

460 205 208 204 1 1 2 4 6 7 1 1

Each line corresponds to a single individual. The columns are as follows: kindred

ID, individual ID, father’s ID, mother’s ID, sex (1 = male, 2 = female), affection

status (U or 1 = unaffected; A or 2 = affected; X or 0 = missing) and marker

genotypes. Genotypes are coded as pairs of space-delimited integers: one integer for

each allele, with missing values coded as either X or 0. In practice, multiple paired

columns of genotypes would be included in map order for each individual. For the
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X chromosome, male genotypes are coded as pairs of identical alleles. Quantitative

traits can also be added, again using X to denote missing values. This file therefore

provides pedigree structure information, genotypes and phenotypes.

The data file .dat describes the contents of the .ped file, starting with column 6;

the first five columns are standard. Each row corresponds to a data item. The first

column in .dat indicates the data type: A for affection status, T for quantitative trait,

C for covariate and M for marker. The second column indicates the label of each

item. In our example, the first five rows of .dat take the following form:

A Affection

M 1

M 2

M 3

M 4

A summary of the pedigree and data files may be obtained by typing the following

command. It provides a useful check that all the data have been formatted and loaded

correctly.

prompt>pedstats –d npl.dat –p npl.ped

Lastly, the map file, .map lists the marker details in map order. The following example

shows the first five rows of a map file, where each row gives the chromosome, the

marker name and the map position in centimorgans (cM).

4 1 12.46

4 2 12.74267

4 3 13.95624

4 4 15.91956

4 5 17.96277

NPL analysis for a qualitative trait

At the command prompt, the user invokes a series of flags to indicate the files and

options that are required for the analysis. NPL analysis can be executed using the

following one-line command.

prompt>merlin –d npl.dat –p npl.ped -m npl.map --steps 4 --npl --markerNames --pdf >

npl output

The user specifies an input data file (−d parameter), pedigree file (−p parameter)

and map file (−m parameter). MERLIN is then asked to perform a NPL analysis at

four equally spaced points in each marker interval (--steps 4), using the Whittemore

and Halpern NPLall statistic to test for allele sharing among affected individuals
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Figure 10.1 Graphical output from MERLIN after an NPL analysis of markers across chromo-

some 4

(--npl ). The user has the option of showing marker labels in the output, instead

of cM positions (--markerNames). NPL output can also be piped to an output file

by using the > operator. Lastly, the user has the option of producing a graphical

output that displays the LOD score across the analysed region (--pdf ), as shown in

Figure 10.1. The numerical output takes the following form:

Phenotype: Affection [ALL] (162 families)

===========================================
Pos Zmean p value delta LOD p value

min −16.88 1.0 −0.271 −21.59 1.0

max 19.37 0.00000 0.622 46.33 0.00000

1 1.34 0.09 0.123 0.46 0.07

12.517 1.35 0.09 0.124 0.47 0.07

12.573 1.37 0.09 0.126 0.48 0.07

12.630 1.38 0.08 0.127 0.49 0.07

12.686 1.39 0.08 0.129 0.49 0.07

. . .

13 3.39 0.0003 0.311 2.98 0.00011

26.443 3.39 0.0003 0.310 2.97 0.00011

26.510 3.39 0.0003 0.309 2.96 0.00011

26.577 3.39 0.0003 0.308 2.95 0.00011

26.643 3.40 0.0003 0.307 2.94 0.00012

14 3.40 0.0003 0.306 2.93 0.00012

27.267 3.29 0.0005 0.307 2.86 0.00014

27.825 3.19 0.0007 0.307 2.77 0.0002

28.382 3.09 0.0010 0.306 2.66 0.0002

28.939 3.00 0.0014 0.302 2.54 0.0003
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The first two rows show the minimum and maximum possible scores given the data

structure. These are followed by the NPL results at each location; in other words at

each marker and at each of four steps between. In the current example, a linkage peak

is shown close to marker 14 with a Z-score of 3.40 (P value of 0.0003), corresponding

LOD score of 2.93 (P value of 0.00012).

As shown in Figure 10.1, a graphical representation of the results allows a rapid

assessment of evidence for linkage and in this case evidence peaks close to marker

14. Localization cannot, however, be assumed to be precise, and separation of at

least 10 cM may be seen between studies (Hauser and Boehnke, 1997). It is therefore

usual to construct a support interval around a strong linkage signal (Conneally et al.,

1985). For example, having converted to LOD units, a one-unit support interval is

the interval that includes all (possibly disjoint) map positions with LOD score less

than one LOD unit below the peak score. A conservative approach is to adopt a 1.5

to 2 LOD support interval. All points within the support interval are considered to

be of interest.

A determination of information content (the amount of IBD information ex-

tracted by the genotype data) is achieved in MERLIN with the – information switch.

A graphical representation of information content plotted against map position is

invaluable in interpreting the results of NPL analysis. Dips in the graph allow regions

to be highlighted in which the typing of additional markers could be beneficial.

Another useful MERLIN feature, the --ibd switch, provides a very rapid means of

generating IBD probabilities, and its output may be used as input for other software

such as QTDT (Abecasis et al., 2000), to be discussed later. Another piece of software,

SimWalk2 (Sobel and Lange, 1996), generates IBD probabilities for a wider range of

family structures; but for small to moderate-sized pedigrees, MERLIN is faster.

10.3 Association analysis

Association analysis may be regarded as a test for the presence of a difference in allele

frequency between cases and controls. A difference does not necessarily imply disease

causality, as many factors, including population history and ethnic make-up, may

yield this effect. In a well-designed study, however, evidence of association provides

a flag for further study. In some instances, it is due to the marker being physically

close to the causal variant.

Association testing for case-control or population data is often carried out with

general (non-genetic) statistical software packages, such as SAS, R or S-PLUS. The

chi-square test is applied to a contingency table, in which case/control status is

tabulated by frequencies of either genotypes or alleles. The test takes the usual form,

χ2 =
∑ (Obs − Exp)2

Exp
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where Obs and Exp are the observed and expected frequencies respectively, and

the sum is taken over all cells in the table. The number of degrees of freedom is

(r − 1)(c − 1), where r is the number of rows, and c is the number of columns

in the table. Equivalently, logistic regression can be applied, using disease status as

the dependent variable and alleles or genotypes as the independent variables. See

Clayton (2001) for a detailed review of the method. The remaining sections of this

chapter all involve applications and extensions of the traditional association test.

10.3.1 Transmission disequilibrium tests

In recent years, there has been an upsurge in interest in family-based testing, owing

to the concern that ethnic mismatching of non-family cases and controls (popu-

lation stratification) can sometimes yield false-positive evidence of association. In

particular, the transmission/disequilibrium test (TDT) (Spielman et al., 1993) has

gained prominence as a test of linkage in the presence of association, that does not

give false evidence of linkage due to population stratification. The TDT is applied

by counting alleles transmitted from heterozygous parents to one or more affected

children in nuclear families. The alleles not transmitted to affected children may be

regarded as control alleles, perfectly ethnically matched to the ‘case’ alleles seen in

the affected children. The test takes the form of McNemar’s test, which, under the

null hypothesis of no linkage, follows a chi-squared distribution with one degree of

freedom. The TDT is also a valid test for association, but only when applied to alleles

transmitted from heterozygous parents to just one affected child per family.

Assuming a biallelic locus, let b denote the counts of heterozygous parent-to-

offspring transmissions in which allele 1 goes to an affected child, while allele 2 is

not transmitted. Let c denote the counts of transmissions the other way around, in

which allele 2 is inherited in an affected child, while allele 1 is not transmitted. The

test takes the following form:

χ2
1 = (b − c)2

(b + c)

A number of groups have focused on generalizing the TDT to quantitative traits or

to designs in which parental genotypes are not available. The sib-TDT, or S-TDT

(Spielman and Ewens, 1998), does not use parental genotypes, and, like the original

TDT, it is not prone to false positives due to population stratification. For association

testing, the S-TDT requires that the data in each family consist of at least one affected

and one unaffected sibling, each with different marker genotypes. This test and

the original TDT are widely implemented; for example, in the Java-based program

TDT/S-TDT (Spielman and Ewens 1996, 1998).

Multiallelic markers may be tested by ANALYZE (Terwilliger, 1995). This has

the advantage of taking LINKAGE format files as input and so provides a natural
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follow-up to a genome scan. It does, however, require that LINKAGE (Lathrop et al.,

1984) be installed on one’s system. Other software able to handle multiallelic markers

include ETDT (Sham and Curtis, 1995) and GASSOC (Schaid, 1996).

For quantitative traits, a major development was the release of QTDT (Abacasis

et al., 2000), software, which allows TDT testing under a variance components frame-

work. It is applicable to sibships with or without parental genotypes and incorpo-

rates a broad range of quantitative trait tests – those proposed by Rabinowitz (1997),

Allison (1997), Monks et al. (1998), Fulker et al. (1999) and Abecasis et al. (2000).

It is written in C++, to be run on UNIX and has a command-line interface. Its

input files are based on LINKAGE format, but, in addition, one input file of IBD

probabilities must be prepared in advance. QTDT assumes the IBD format generated

by the programs SimWalk2 (Sobel and Lange, 1996) and MERLIN (Abecasis et al.,

2002). Covariates may also be modelled, but should be kept to a minimum in order

to maintain performance.

10.3.2 Haplotype reconstruction

A haplotype is a string of consecutive alleles lying on the same chromosome. Each

individual therefore has a pair of haplotypes for any chromosomal interval – one

inherited from the paternal side and one inherited maternally. In statistical genetics,

their importance lies in the fact that tests of association may be applied to haplotypes

instead of single loci. This may yield increased power if the variant of interest is not

being tested directly or if adjacent loci are contributing to a single effect (see Clark

et al., 1998; Nickerson et al., 1998). Haplotypes may be inferred from the genotypes

of parents or other family members (Weeks et al., 1995) or by laboratory methods

(Clark 1990; Nickerson et al., 1998). Often, however, they are estimated by means

of the expectation-maximization (E-M) algorithm (Dempster et al., 1977; Little and

Rubin, 1987; Excoffier and Slatkin, 1995; Hawley and Kidd, 1995; Long et al., 1995).

The E-M algorithm is a method that aims to provide maximum likelihood param-

eter estimates in the presence of incomplete data. In the case of haplotype frequency

estimation, it proceeds as follows (Schneider et al., 2000):

1. An initial set of plausible haplotype frequencies is assigned – for example, the

product of the relevant allele frequencies may be used.

2. The E-step: assuming Hardy–Weinberg equilibrium, the haplotype frequencies

are used to estimate the expected frequencies of ordered genotypes.

3. The M-step: the expected genotype frequencies are used as weights to produce

improved estimates of haplotype frequencies.

4. Steps 2 and 3 are repeated until the haplotype frequencies reach equilibrium.
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Note that, as with other iterative techniques, it is wise to compare the results of

multiple starting points, as the E-M algorithm may converge to a local, rather than

global optimum. It is not always reasonable to assume that the maximum likelihood

haplotype configuration has been reached.

Software written specifically for haplotype analysis includes EHPLUS (Zhao et al.,

2000), a reworked and extended version of the earlier program EH (Xie and Ott,

1993). It is written in C and is available in both UNIX and PC versions. EHPLUS

can be applied to either case-control data or data assumed to come from a random-

mating population. It accommodates large numbers of haplotypes and incorporates

a companion program, PMPLUS, which reformats genotype data ready for use.

Estimated haplotypes and their frequencies are output and may be subjected to

association tests. A distinctive feature of these association tests is that PMPLUS

provides P values for non-parametric tests or for parametric tests assuming a user-

specified disease model or maximized over multiple disease models. Permutation

features allow the calculation of empirical P values for these tests.

Further software for sophisticated haplotype analysis is available from ftp://ftp-

gene.cimr.cam.ac.uk/software/clayton/. Resources include SNPHAP, a program that

uses the E-M algorithm to estimate haplotype frequencies for large numbers of

diallelic markers using genotype data. Another program, TDTHAP (Clayton and

Jones, 1999), allows the TDT to be applied to extended haplotypes. STATA routines

to aid SNP selection by haplotype tagging (Johnson et al., 2001) are available at

ftp://ftp-gene.cimr.cam.ac.uk/software/clayton/stata/htSNP/.

Haplotype reconstruction from family data can be achieved with SimWalk2 (Sobel

and Lange, 1996). The derived haplotypes may then be imported to a pedigree-

drawing package, such as Cyrillic (Chapman, 1990), for viewing recombinants in

positional cloning. MERLIN (Abecasis et al., 2002) and GENEHUNTER (Kruglyak

et al., 1996) also output haplotypes estimated from family data. Other software,

such as TRANSMIT (Clayton, 1999) and FBAT (e.g., Laird, 2004), allows association

testing of family-based haplotypes.

A newer piece of software, UNPHASED (Dudbridge, 2003), combines and builds

upon many of the advantages of earlier code. It accommodates both single-marker

and haplotype association testing with either quantitative or binary traits. The

UNPHASED suite of programs allows one to test for association in unrelated in-

dividuals (QTPHASE, COCAPHASE), nuclear families (TDTPHASE), or extended

pedigrees (PDTPHASE, QPDTPHASE). UNPHASED handles both biallelic and

multiallelic markers, and provides the user with a wide range of command-line

options, providing considerable flexibility in data analysis. For example, in perform-

ing haplotype analyses, the user can specify an analysis with a sliding window of a

particular haplotype length (i.e., number of consecutive markers) or can specify that

a particular set of non-consecutive markers define the haplotypes to be tested. The

user can also specify various other options, such as dropping or pooling rare hap-

lotypes, calculation of the pairwise linkage disequilibrium measures D ′ and r 2 (see

later), or including data from only one affected sib per family. In addition to testing
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for association with phenotype, the E-M algorithm employed by UNPHASED can be

used to estimate haplotype frequencies in subjects with phase unknown genotypes.

The UNPHASED program suite runs on UNIX, LINUX and Windows platforms.

10.3.3 Example: UNPHASED (Dudbridge, 2003)

Data import

Each of the five programs comprising the UNPHASED suite requires a pedigree

file to be input in standard LINKAGE format. This is the format of the .ped file

described earlier and used as input to MERLIN. To recap, the file consists of one row

per individual and tab or space-delimited columns laid out as follows: Kindred ID,

Subject ID, Father ID, Mother ID, Sex, Affection Status, Allele1a, Allele1b, Allele2a,

Allele2b . . .

The Kindred ID can be alphanumeric, but all other columns must be numeric.

For a binary trait, the Affection Status column would contain ‘2’ for cases (affected)

or ‘1’ controls (unaffected); when association is being tested to a quantitative trait

(QT), the Status column would contain each subject’s numerical QT value. The

UNPHASED documentation notes that an optional data file can be used to assign

marker names and define input file formats other that shown above.

Here we illustrate Windows use of UNPHASED software by using QTPHASE

to analyse data that was simulated to evaluate ability to detect association between

haplotypes and bone mineral density (BMD), a quantitative trait indicative of bone

strength. A study by Giraudeau et al. (2004) describes testing for association between

BMD and haplotypes of the gene cathepsin K (CTSK), and the results described here

are for a simulated, CTSK-like gene (sCTSK). Genotypes for four SNPs in sCTSK

were evaluated in unrelated subjects; thus each subject had a different KindredID

as well as specification of unknown (‘0’) for each FatherID and MotherID. Hence

the first three lines of the input file (named sCTSK BMD.prn) had the following

space-delimited format:

Ped1 1 0 0 1 360.2 1 2 3 4 1 2 2 3

Ped2 2 0 0 1 328.5 2 2 3 3 1 2 2 2

Ped3 3 0 0 2 343.8 1 1 4 4 2 2 3 3

As a first step, QTPHASE.exe is commanded to conduct a global test of association

(analogous to an omnibus ANOVA) to determine whether mean BMD associated

with any sCTSK haplotype significantly differs from mean BMD associated with

any other sCTSK haplotype(s). As shown in the first line of Figure 10.2, the issued

command was:

QTPHASE sCTSK BMD.prn –window 4 –EM
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Figure 10.2 Test of haplotype association with a quantitative trait using the QTPHASE compo-

nent of the UNPHASED software suite

which instructs QTPHASE to estimate haplotype frequencies by the E-M algorithm

and to use a sliding haplotype window of length 4 (note that as with MERLIN, a

dash precedes each command line option). All subsequent lines in Figure 10.2 show

QTPHASE output, which can be optionally directed to a file using the UNPHASED

-output option). The output informs the user of a highly significant association

between BMD and sCTSK haplotypes with a global P value = 1.45031 × 10−5. For

each sCTSK haplotype, it also shows the estimated haplotype frequency, mean BMD

value, and a single pooled error variance for the four estimated means.

To follow up the global P value test, QTPHASE also provides a test for a significant

difference between the two means associated with any pair of haplotypes, thus en-

abling the user to identify pairwise differences that contribute to a global result. This

is done by including – compare haplotype1 – with haplotype2 on the QTPHASE com-

mand line. For example, to compare the final two haplotypes shown in the output in

Figure 10.2, we appended -compare 2 3 1 3 – with 2 3 2 3 at the end of the command

in first line of Figure 10.2. This generated output similar to that shown in Figure

10.2, except that a few additional lines specified the two haplotypes being compared

and gave a P value of 0.0669 for the corresponding one degree of freedom test. It

is important to note that the UNPHASED suite of programs enables users to verify
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asymptotic P values by calculating permutation-derived P values through shuffling

the phenotype and genotype data. We also found that the haplotype frequencies

estimated by UNPHASED are identical to frequencies estimated by the haplotype

software EHPLUS (Xie and Ott, 1993; Zhao et al., 2000).

10.4 Linkage disequilibrium

Linkage disequilibrium (LD) is a lack of independence, in the statistical sense, be-

tween the alleles at two loci. LD exists between two linked loci when particular alleles

at these loci occur on the same haplotype more often than would be expected by

chance alone. This phenomenon can provide valuable information in locating dis-

ease variants from marker data, as a marker in LD with the causal variant provides a

flag for its location. LD information also provides a means by which the efficiency of

high-density marker maps can be increased. If markers are in strong LD with each

other, there is an argument for genotyping only a subset of them.

The extent of pairwise LD may be measured by the value D as follows (Lewontin,

1964). Assume two diallelic loci are linked and let pij be the proportion of chromo-

somes that have allele iat the first locus and allele j at the second locus. For example,

p12 is the frequency of the haplotype with allele 1 at the first locus and allele 2 at

the second locus. The disequilibrium coefficient D is the difference between the ob-

served haplotype frequency p12 and the haplotype frequency expected under linkage

equilibrium, the latter being the product of the two allele frequencies, say, p1+ and

p+2. It may be written as follows:

D = p12 − p1+ p+2

A more commonly quoted measure of LD is D′ (Lewontin, 1964). This is a nor-

malized form, with numerator equal to D and denominator equal to the absolute

maximum D that could be achieved given the allele frequencies at the two loci. D’

can take values from −1 to +1 but, in general, its absolute value is presented and

discussed. A value of 1 indicates absence of recombination event, whereas values less

than 1 indicate that two loci have been separated through recombination. Interme-

diate values of D′ may be difficult to interpret, as the measure tends to be inflated

when sample size is small or allele frequencies are low.

The squared correlation coefficient, r 2 is sometimes preferred to quantify and

compare the amount of LD between pairs of loci. r 2 is determined by dividing D ′ by

the product of the four allele frequencies. When r 2 = 1, two markers provide identical

information, not only having D ′ = 1 but also having equal allele frequencies. The

main advantage of r 2 is its inverse relationship with the sample size required to

detect genetic association between markers that are in complete LD (Pritchard and

Przeworski, 2001). For instance, if cases and controls have only been genotyped for

markers in the vicinity of a functional variant, the sample size should be increased
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by a factor 1/ r 2 in order to achieve the same power as would have been achieved by

generating data at the susceptibility locus itself. r 2 is, however, more sensitive to allele

frequencies than |D ′| and can be difficult to interpret when the two loci in question

differ in allele frequencies.

P values obtained from pairwise significance tests of LD are also used to describe

the pattern of LD. However, they should be used with care, as P values depend

strongly on sample size. In large sample sizes, statistically significant P values can

be obtained for low LD values. It is therefore not recommended to use P values to

compare LD between studies with different sample sizes.

Other methods of estimating LD include the moment method, applicable to newly

formed populations under certain assumptions concerning the evolutionary process

(Hastabacka et al., 1992; Lehesjoki et al., 1993; Kaplan et al., 1995). Maximum like-

lihood methods have also been explored (Hill and Weir, 1994; Kaplan et al., 1995).

Composite likelihood methods were proposed to evaluate the information from mul-

tiple pairs of loci simultaneously. Examples of software for the composite likelihood

approach include DMAP (Devlin et al., 1996) and ALLASS (Collins and Morton,

1998). The latter uses the Malecot isolation by distance equation and has the advan-

tage of accommodating multiple founder mutations. Each method, however, relies

upon population assumptions and may suffer reduced power when these are not

met.

Understanding the pattern of LD has become of great interest in recent times, both

for marker selection and for defining candidate regions. Many other valid measures

of pairwise LD exist and have been reviewed elsewhere (Hedrick, 1987; Devlin and

Risch, 1995). In all cases, their individual interpretation depends on the context and

nature of the data at hand (Jorde, 2000; Ardlie et al., 2002; Wall et al., 2003).

Tests of various measures of LD can be achieved with software such as Arlequin

(Schneider et al., 2000). This is a C++ program available for the PC(Win), Linux

and MacOS systems. The statistical significance of observed LD is estimated for

phase-known (haplotype) data by Fisher’s Exact Test. For phase-unknown data, a

likelihood ratio test is applied. An alternative tool is GDA (Lewis and Zaykin, 2001),

the PC(Win) companion program to the book, Genetic Data Analysis II (Weir, 1996).

Both are well documented and perform a broad range of population genetic tests.

GOLD (Abecasis and Cookson, 2000), available for PC(Win), is another program

to calculate D and D′, and it is noteworthy in being one of the first to output

them in graphical form. For each marker pair, the pairwise disequilibrium statistics

are colour coded (bright red to dark blue) and plotted. The output is valuable for

presentation purposes and provides a useful summary of the properties of dense

maps. The software takes haplotype estimates as input, and in the case of family

data, these must be reconstructed with software such as SimWalk2 (Sobel and Lange,

1996) prior to use. Case-control data are not well supported by GOLD, which relies

for this purpose upon a limited interface to the software, EH (Xie and Ott, 1993).

GOLDsurfer (Pettersson et al., 2004) builds upon GOLD and has the attractive

property of allowing simultaneous presentation of a variety of LD statistics and
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disease association statistics, in a three-dimensional plot. GOLDsurfer is embedded

within a graphical software package available from http://www.umbio.com.

Haploview (Barrett et al., 2005) is a recent software package for LD and haplotype

analyses of biallelic markers. Haploview can analyse family- or non-family-based

data. This software is designed to compute pairwise LD statistics, define haplotype

blocks (genomic segments of high LD) and identify tagging SNPs for larger groups of

markers. An accelerated E-M algorithm, similar to the method described in Qin et al.

(2002), estimates haplotype frequencies. Single-marker and haplotype association

tests can be performed for case/control data and family trios. A permutation test is

also available to correct for multiple testing. An invaluable feature of Haploview is

that it generates LD plots that display pairwise measures of LD, haplotype blocks

and tagging SNPs. The user can choose among different LD measures, and three

different algorithms are available for constructing haplotype blocks and selecting

tagging SNPs. Haploview can be run on Windows, Mac OS X and Linux platforms

and is designed to work on a Java Runtime Environment.

10.4.1 Example: HAPLOVIEW (Barrett et al., 2005)

Data import

Haploview can analyse phase-known or phase-unknown data imported in the stan-

dard LINKAGE format. This format can be used for either family or non-family

data (see earlier examples). Data can also be imported from the HapMap project

website (http://www.hapmap.org). With the advent of the HapMap, it has become

increasingly common for investigators to evaluate regional LD and select markers for

experimentation based upon their performance within the HapMap. For the current

example, we used the HapMap website to select 381 markers across a 1-Mb subregion

spanning the MHC region (human chromosome 6, 29,001,919-29,996,718 [NCBI

34]). The HapMap data file was saved as MHC.hmp.

LD analysis of data from the HapMap website

1. Within Haploview, select Load HapMap data and load the HapMap file,

MHC.hmp, as shown in Figure 10.3. In the current example, a value of zero has

been entered to force all pairwise LD calculations to be performed (the default

segment size is 500 kb). By default, subjects with more than 50 per cent missing

genotypes are excluded from the subsequent analysis.

2. After loading the data set, Haploview displays the Check Markers window

(Figure 10.4), which presents a series of data quality checks. These include, for

each marker, the RS number, the map position, the observed heterozygosity, the
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Figure 10.3 Haploview screen showing the loading of a chromosome 6 data file from HapMap

predicted heterozygosity, a check for Hardy–Weinberg equilibrium, the percentage

of non-missing genotypes, the frequency of genotyped family trios, the Mendelian

inheritance error rate, and the minor allele frequency. The Rating column filters

out markers that fail quality control. The user can remove or add markers manually

as necessary.

Figure 10.4 Haploview screen showing the marker quality check
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Figure 10.5 Haploview screen showing an LD plot of markers on chromosome 6 together with

inferred haplotype blocks

3. Select LD Plot tab to display graphically pairwise measures of LD (Figure 10.5).

Each square displays the amount of LD between a pair of markers. The strength

of LD between two markers is given by the intensity of the colour of a box. By

default, Haploview displays D’ values, but the user can choose among several LD

statistics. In Figure 10.5, thick black triangles depict haplotype blocks, which are

genomic segments of high LD. In Haploview, blocks are assigned according to a

user-specified definition. Definitions available are confidence intervals (Gabriel

et al., 2002), the four-gamete rule (Wang et al., 2002) and the internally developed

solid spine of LD, a block type in which the two end markers are in strong LD

with intervening markers but intervening markers are not necessarily in LD with

each other. By default, Haploview identifies blocks by the definition of Gabriel

et al. (2002). Any marker can be removed or added into a block by clicking on

its ID number. Groups of markers can also be manually selected to create new

haplotype blocks.

4. Select the Haplotype tab to generate haplotypes within each block. As shown in the

resultant Figure 10.6, each row represents a different haplotype with its estimated

population frequency given on the right side of a block. By default, Haploview
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Figure 10.6 Haploview screen showing inferred haplotypes and the co-occurrence relationships

among haplotypes in different inferred blocks

displays all haplotypes with a population frequency greater than 1 per cent. Mark-

ers within each block are shown above the block, and a small inverted triangle is

given beneath IDs of tagging SNPs. Lines between two blocks indicate transitions

from one block to the next, with thicker lines showing more frequent combina-

tions. Thick lines indicate that more than 10 per cent of the chromosomes have

the haplotype indicated on the left and the haplotype indicated on the right. Thin

lines indicate that 1–10 per cent of the chromosomes have both haplotypes. In the

crossing areas, a multiallelic D ′ value is given. This value corresponds to the level

of recombination between two blocks, considering each haplotype within a block

as an allele. A value of one indicates no evidence for historical recombination

between two blocks, whereas a value close to zero indicates a great amount of

historical recombination between two blocks.

Haploview is easy to use. It has a dynamic interface that provides graphical represen-

tations of LD relationships between markers in close proximity, haplotype blocks and

tagging SNPs. At any time, the user can include or exclude markers and set up new

thresholds for subsequent analyses. These modifications are instantly reproduced in

the LD and haplotype analyses.
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10.5 Quantitative trait locus (QTL) mapping
in experimental crosses

In contrast to human studies, in which variances of phenotypic differences are used

to establish the presence of linkage, QTL mapping in experimental crosses involves

comparing means of progeny inheriting specific parental alleles. This is simpler and

more powerful (Kruglyak and Lander, 1995). It can be achieved by any of a number of

standard statistical methods, such as t-tests, analysis of variance (ANOVA), Wilcoxon

rank-sum and regression techniques. Again, missing data can be accommodated by

an application of the EM algorithm.

Of the very broad array of possible diploid crosses, the following are particu-

larly common. They are derived from a pair of divergent inbred lines in which the

genotypes at the majority of loci are homozygous and distinct, say, aa and bb for

a particular locus in the two lines respectively. The filial F1 generation results from

crossing these two lines to produce individuals with heterozygous genotype ab. In

the backcross (BC) design, F1 is crossed with one of the parent strains. For example,

in the case of a cross with the aa parent, half the offspring produced are ab and half

are aa. In the filial F2 design, the F1 is selfed, or two F1 individuals are crossed so that

offspring are aa, ab, and bb in the ratio 1:2:1. Lastly, in the recombinant inbred line

(RIL), each F2 enters individually a single-seed, descent-inbreeding programme, so

that all progeny are homozygous for the chosen allele.

The original analysis framework was based upon a marker-by-marker analysis.

Of particular relevance to sparse maps, simple interval mapping (IM or SIM) allows

the evaluation of any position within a marker interval. The maximum likelihood

approach to IM proceeds by the calculation of a LOD score (Lander and Botstein,

1989). Similarly, and with lower computational burden, least-squares regression

achieves the same goal (Haley and Knott, 1992; Martinez and Curnow, 1992). IM

may be carried out by a range of software, including MAPMAKER/QTL (Lander

et al., 1987). This may appeal to regular users of GENEHUNTER, as the syntax is

similar. It relies upon data preprocessing in MAPMAKER/EXP (Lander et al., 1987),

and provides simple graphical output.

Two newer and related methods are composite interval mapping (CIM) and mul-

tiple QTL mapping (MQM). Both involve performing a genome scan by moving

stepwise along the chromosome and testing for the presence of the QTL with a pre-

defined set of markers as cofactors (Jansen, 1992, 1993; Zeng, 1993, 1994; Jansen and

Stam, 1994; Kao et al., 1999; Zeng et al., 1999). In other words, in the sparse map case,

interval mapping is combined with multiple regression on markers. This approach

allows one to control, to some extent, for effects of other QTLs. Software such as QTL

Cartographer (Basten et al., 1994, 1997) and PLABQTL (Utz and Melchinger, 1996)

allow the selection of such cofactors by stepwise regression. These programs offer op-

tions that will automatically include or exclude background markers by user-defined

criteria.
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Lastly, Bayesian methods allow the consideration of multiple QTLs, QTL positions

and QTL strengths (Jansen, 1996; Satagopan et al., 1996; Uimari et al., 1996; Sillanpaa

and Arjas, 1998, Borevitz et al., 2002). Multimapper (Sillanpaa, 1998), for example,

allows the automatic building of models of multiple QTLs within the same linkage

group. It is designed to work as a companion program to QTL Cartographer (Basten

et al., 1994, 1997) and allows a more detailed follow-up of regions of interest. As with

other Markov Chain Monte Carlo methods, however, this approach is computer

intensive and may suffer from problems of convergence to a local, rather than global

optimum, or of lack of convergence if run for a short time.

Ten of the most prominent programs for QTL mapping are reviewed in greater

detail by Manley and Olson (1999). The majority will perform IM and CIM for

backcross, filial F2 and recombinant inbred lines. Cordell (2002) provides worked

examples of the use of three of them, MAPMAKER/QTL, QTL Cartographer and

MapQTL (van Ooijen and Maliepaard, 1996a, 1996b).

In the future, genetically heterogeneous stocks may gain in prominence (Mott

et al., 2000). Talbot et al. (1999) were able to achieve a mapping resolution of less

than 1 cM by the study of heterogeneous stocks from eight known inbred mouse

progenitor strains that had been intercrossed over 30–60 generations. The group has

released software called HAPPY (Mott et al., 2000) that requires knowledge of the

ancestral alleles in the inbred founders, together with the genotypes and phenotypes

in the final generation. It applies variance component methods to test for linkage to

the QTL.

10.5.1 Example: Map Manager QTX (Manley et al., 2001)

Map Manager QTX is available for both MacOS and PC(Win). It has no licence fee

and was selected here for the usefulness of its graphic user interface. It aids exploratory

data analysis and mapping. It has both IM and CIM capability and can reformat data

for use in other important software such as QTL Cartographer. Interval mapping

is based on the Haley and Knott (1992) procedure, and CIM is achieved by adding

background loci. Significance can be assessed by permutation (Churchill and Doerge,

1994).

The genotype data may derive from inbred or non-inbred stock, and options

are provided for a variety of experimental designs. Extensive documentation can

be downloaded in either pdf or Hypertext formats. The Tutorial is especially help-

ful, but readers should be aware that its files are somewhat inconspicuously tucked

in with Sample Data files, rather than being included in the Map Manager QTX

manual.

For the current example, genotype data were downloaded from the Mouse Genome

Database (2001) (http://www.informatics.jax.org/). Specifically, it consists of mouse

chromosome 1 genotypes from the Copeland–Jenkins backcross, and a selected sub-

set of 10 markers spanning the entire ∼100 cM length of the chromosome. Marker
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En1 is located near the middle of the chromosome, between markers Col6a3 and

D1Fcr15, and it was used to simulate the quantitative trait (QT) for the 193 back-

cross mice. Homozygotes (denoted as b) at En1 received a QT value of 50 ± 20

(mean ±S.D.), while heterozygotes (s) at En1 received a QT value of 100 ± 20. En1

was then removed from the data set, and Map Manager QTX was used to analyse QT

association with the remaining nine markers as shown below.

Data import

Map Manager QTX is launched by a mouse click on the Map Manager icon

(QTXb13.exe), thus opening the main menu. The genotype data (alternatively termed

‘Phenotype data’ by Map Manager QTX) is imported by selecting File >Import >Text.

The name of each marker and the genotypes (phenotypes) of the cross progeny are

imported as a single line of text. The marker name is separated from the genotypes

by a tab character, but the genotypes, each represented as above by a single letter, can

be either given as an unbroken string of characters or space-separated. In our case,

the first two lines of input therefore took the following form (with missing genotypes

given by a hyphen):

Actn3<tab>sssbbbbbsbsbsbsssbbsbbsbbbbssbsbbsbsb-bbb-ssss<CarriageReturn>

Laf4<tab>-sbbbb--sb-------bb--bsbb-bbsb--s-bbbbbsbssb-bs<CarriageReturn>

Quantitative trait data are then read in from a second text file via File >Import >Trait

Text. The format is almost identical, except that the name of the trait replaces marker

name, and the trait value for each mouse must be separated from adjacent values by

at least one space. Again, the name of the quantitative trait and all of the values for

cross progeny must be in a single line of text.

Successful import of a text genotype file produces a small pop-up window (the

dataset window), as shown in Figure 10.7, top left. Within it is a menu allowing

selection of Phen, Map, Stat or Ref. Selecting one of these and double-clicking on a

chromosome name in the dataset window produces the chosen window, as shown in

Figure 10.7. The Phenotype window (top right) displays the marker names on the left

side of the window, with one column for each member of the progeny. The body of

the Phenotype window shows the genotype at each locus and also indicates locations

of recombination events with an X. Pairs of question marks denote the possible loca-

tions of crossovers whose more precise location cannot be specified due to missing

genotype data. The Map window (bottom left) shows a genetic Map with estimated

distance (in cM) between markers, and the Statistics window (bottom right) sum-

marizes useful numerical information, such as the number of recombination events

between adjacent markers and LOD evidence for linkage.
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Figure 10.7 Screens in Map Manager QTX. The data-set window (upper left), the phenotype

window (upper right), the map window (lower left), and the statistics window (lower right). Geno-

types with permission from Mouse Genome Database (2001). Map Manager QTX, www.mapmanager.

org/mmQTX.html. Described in Manly, K. F., Cudmore, Jr., R. H., Meer, J. M. (2001) Map Manager

QTX, cross-platform software for genetic mapping. Mammalian Genome 12: 930–932

Single marker association

Testing for association between an individual marker and a quantitative trait

is accomplished by first selecting a P value cut-off in the Main menu under

Options >Search&Linkage criteria, and then choosing QT >Links Report in the Main

menu. This produces a window allowing the user to select both the name of the

quantitative trait to test and the background QTLs to be included in the analysis.

Figure 10.8 shows the table or Links Report that was produced by testing each of

the nine markers in our panel for association with the simulated trait. Note that only

eight markers appear in the table, as one marker did not meet the P < 0.05 criterion.

Note also that marker Col6a3 is highlighted as giving the strongest association and

therefore as being the best marker to include as a background QTL in analyses of

other chromosomal loci.

Simple interval mapping

Simple interval mapping of a QT across a series of markers is accomplished by

choosing QT >Interval Mapping from the Main menu. This produces a window
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Figure 10.8 Output from single marker association testing in Map Manager QTX: The

‘Links Report’. ‘Add’ denotes the additive regression coefficient for the association.

Genotypes with permission from Mouse Genome Database (2001). Map Manager QTX,

www.mapmanager.org/mmQTX.html. Described in Manly, K. F., Cudmore, Jr., R. H., Meer, J. M.

(2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12:

930–932

which again allows the user to specify the trait to be analysed and whether any

background QTLs are to be included in the analysis. Once options in this window

are specified, Map Manager QTX produces a table and a figure displaying the Interval

Mapping results. Figure 10.9 shows the result of interval mapping our simulated trait

across the nine markers on mouse chromosome 1. As indicated by the position of

the cursor, the peak of the likelihood ratio statistic falls very close to the true location

of the simulated QT locus, between markers Col6a3 and D1Fcr15.

10.6 Closing remarks

This chapter provides a high-level overview of some key topics in statistical genetics

with the emphasis on applications rather than theory. For the sake of brevity, some

important topics have not been broached. For example, careful data management and

error checking are prerequisites of the application of any of the methods described.

Visualizing, summarizing and cleaning data at the outset save time and help to ensure

appropriate interpretation later on. A great deal of software is available to assist in the

preparation of human family-based data. A brief review is given by Almasy (2002).

The advent of the high-density SNP maps, the availability of HapMap data and

advances in technology have revolutionized the way human geneticists work. Em-

phasis has shifted away from family-based studies and firmly toward case-control
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Figure 10.9 Output from Map Manager QTX. Results of interval mapping across nine mark-

ers. Genotypes with permission from Mouse Genome Database (2001). Map Manager QTX,

www.mapmanager.org/mmQTX.html. Described in Manly, K. F., Cudmore, Jr., R. H., Meer, J. M.

(2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12:

930–932

association studies. Affymetrix, Illumina and Perlegen Sciences have broken new

ground in allowing scientists to generate data on hundreds of thousands of genetic

markers per subject. In response, research groups are completely re-evaluating their

approach to loading, storing and analysing genetic data. Projects that used to involve

thousands of data points, now involve billions of them. The importance of finding

ways of distinguishing signal from noise has never been so great.

With the increasing number of markers comes an increasing number of statistical

tests, and now more powerful data sets are needed. To be successful in determining

the genetic basis of disease or drug response, research groups worldwide will need

to collaborate openly and pool resources. The wholesale availability of the HapMap

data has set a fine example, and already groups such as the Wellcome Trust are

promising to generate and share further large data sets (http://www.wtccc.org.uk/).

However, pooling of data should not be done blindly. Population substructure, if not



OTE/SPH OTE/SPH

JWBK136-10 February 16, 2007 15:19 Char Count= 0

REFERENCES 241

properly recognized, can affect interpretation of data (e.g., Excoffier, 2001; Marchini

et al., 2004). In today’s climate, this classical population genetics topic is gaining

renewed importance, and tools to detect and address it are burgeoning (e.g., Devlin

and Roeder, 1999; Pritchard et al., 2000a, 2000b; Marchini et al., 2005; Kohler and

Bickeboller, 2006; Zheng et al., 2006).
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11.1 Introduction

Human diseases with a strong genetic component are generally characterized by a

profound range of phenotypic variability manifested in variable age of onset, sever-

ity, organ-specific pathology and response to drug therapy. The causes underlying

this variability are likely to be diverse, influenced by differing levels of genetic and

environmental modifiers. The vast majority of human genetic variants are likely to

be neutral in effect, but some may cause or modify disease phenotypes. The chal-

lenge for bioinformatics is to identify the genetic variants that are most likely to

show a non-neutral allelic effect. Geneticists studying complex disease are already

seeking to identify these genetic determinants by genetic association of phenotypes

with markers. The literature is now replete with reported associations, but moving

from associated marker to disease allele is proving to be very difficult. So why are we

so unsuccessful in making this transition? If we disregard false-positive associations

(see Chapter 9), it may be that the diverse and subtle effects of genetic variation are

helping disease alleles to elude us. Genetic variation can cause disease at any number

of stages between promotion of gene transcription and post-translational modifi-

cation of protein products. Many geneticists have chosen to focus their efforts on

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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the most obvious form of variation – non-synonymous coding variation in genes.

While this category of variation is undoubtedly likely to contribute considerably to

human disease, this may overlook many equally important categories of variation

in the genome, namely, the effects of variation on gene transcription, temporal and

spatial expression, transcript stability, and splicing.

Clearly, not all polymorphisms are equal. Analysis of polymorphism distribution

across the human genome shows significant variations in polymorphism density and

allele frequency distribution. Chakravarti (1999) showed an immediate difference

between the density of SNPs in exonic regions and intragenic and intronic regions.

SNPs occurred at average intervals of 1.2 kb in coding regions and 0.9 kb in intra-

genic and intronic regions. These differences point to different selection intensities in

the genome, particularly in protein-coding regions, where SNPs may result in alter-

ation of amino-acid sequences (non-synonymous SNPs (nsSNPs)) or the alteration

of gene-regulatory sequences. These observations are intuitive – obviously, natural

selection is likely to be strongest across gene regions, essentially encapsulating the

objective of genetics – to identify non-neutral alleles with a role in disease.

So how should we go about identifying disease alleles? One approach used to

identify disease mutations is direct screening of good candidate genes for mutations

present in affected, but not unaffected, family members. This approach is very useful

in the study of monogenic diseases and cancers, where transmission of the disease al-

lele can generally be demonstrated to be restricted to affected individuals/tissues. But

in complex diseases, the odds of identifying disease alleles by population screening

of candidate genes would seem to be very high, and proving their role is problematic,

as disease alleles are likely to be present in cases and controls. Instead, we detect

common marker alleles in LD with rarer disease alleles. This methodical approach

to disease gene hunting localizes disease alleles rather than identifying them directly,

and the next step is to identify the disease allele from a range of alleles in LD with the

associated marker. For conclusive identification of this allele, a functional mechanism

for the allele in the disease needs to be identified.

11.1.1 Moving from associated genes to disease genes

Many potential associations have been reported between markers and disease phe-

notypes. Aside from the potential for false-positive association, magnitude of effect

in complex disease is also a problem. There may be a few gene variants with major

effects, but, generally, complex disease is very heterogeneous and polygenic; it there-

fore follows that studies of single gene variants will be inconclusive and inconsistent –

this is just something we have to work with. We may also find a bewildering array

of complex disease genes with somewhat indirect roles in disease, such as modifier

genes and redundant genes that have many effects on phenotype. Understanding the

mode of action of these associated alleles will help in determining how susceptibility

genes may give rise to a multifactorial phenotype. Bioinformatics may be critical in

this process. Follow-up studies need to be designed to ask the right questions, to get
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the right candidates tested, and to confirm the biological role of positive associations.

It may also be necessary to attempt to characterize polymorphisms with a potential

functional impact, to help to identify the molecular mechanisms by a combination

of bioinformatics and laboratory follow-up. Many of these informatics approaches

are similar to the approaches originally used to identify candidates, but, of necessity,

these analyses benefit from a far more detailed approach as in depth analyses transfer

to in-depth laboratory investigation.

Moving from an ‘associated gene’ to a ‘disease gene’ is not a purely academic

objective. Genetics may sometimes be our only insight into the nature of a disease.

Such insights may help to develop therapies that restore the normal function of disease

genes in patients, or, better still, they may help prevent disease in the first place. Better

diagnosis and treatments are also prospects afforded by better understanding of the

pathology of disease. A validated ‘disease gene’ is one of the most tangible steps

toward this end.

11.1.2 Candidate polymorphisms

To turn the arguments for association analysis on their head, there is also a theory

that the direct identification of disease alleles may not be entirely futile. The com-

mon disease/common variant (CD/CV) hypothesis predicts that the genetic risk of

common diseases is often due to disease-predisposing alleles with relatively high fre-

quencies (Reich and Lander, 2001). There is not currently enough evidence to prove

or disprove this hypothesis; however, several examples of common disease variants

have been identified, some of which are listed in Table 11.1, and the allele frequency

of these variants in the public databases is also listed.

The possibility that many disease alleles are common presents an intriguing chal-

lenge to genetics (and bioinformatics); if the CD/CV hypothesis prevails, a substantial

number of disease alleles may already be present in polymorphism databases such

as dbSNP, and they may be characterized in the HapMap. These might be termed

‘candidate polymorphisms’. To extend this idea, just as genes with a putative biolog-

ical role in disease are often prioritized for genetic association analysis, ‘candidate

polymorphisms’ can be prioritized by predicted effect on the structure and function

Table 11.1 Disease alleles supporting the common disease/common variant hypothesis

Gene (allele) Minor allele freq. (Caucasian) Disease/trait association OMIM review

APOE ε4 16 per cent (14 per cent) Alzheimer’s disease and 107741

cardiovascular disease

Factor Vleiden R506Q 2–7 per cent (ND) Deep vein thrombosis 227400

KCNJ11 E23K 14 per cent (25 per cent) Type II diabetes 600937

COMT V158M 0.1–62 per cent (45 per cent) Catechol drug 116990

pharmacogenetics

PPARG Pro12Ala 88 per cent (Pro12) Type II diabetes 601487

CARD15 3020C ins 4–8 per cent Crohn’s disease 605956
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of regulatory regions, genes, transcripts or proteins. Thus, selection of candidate

polymorphisms is an extension of the candidate gene selection process – but in this

case, a link needs to be established between a predicted functional allelic effect and

a target phenotype. As discussed earlier, DNA polymorphism can affect almost any

biological process. Much of the literature in this area has focused on the most obvious

form of variation – non-synonymous changes in coding regions of genes. Alterations

in amino-acid sequences have accounted for a great number of Mendelian diseases.

Coding variants may affect protein folding, active sites, protein–protein interactions,

protein solubility or stability. But the effects of DNA polymorphism are by no means

restricted to coding regions; variants in regulatory regions may alter the consensus of

transcription factor-binding sites or promoter elements, variants in the untranslated

regions (UTR) of mRNA may alter mRNA stability, and variants in the introns and

silent variants in exons may alter splicing efficiency.

Approaches to evaluating the potential functional effects of DNA polymorphisms

are almost limitless, but there are very few tools designed specifically for this task.

Instead, almost any bioinformatics tool that makes a prediction based on a DNA

or protein sequence can be commandeered to analyse polymorphisms – simply by

analysing wild-type and mutant sequences and looking for an alteration in predicted

outcome by the tool. Polymorphisms can also be evaluated at a simple level by looking

at physical considerations of the properties of genes and proteins, or they can be

evaluated in the context of a variant within a family of homologous or orthologous

genes or proteins.

11.2 Principles of predictive functional analysis
of polymorphisms

Faced with the diversity of disease phenotypes, analysis of polymorphism data

calls for equally diverse methods, to assess functional effects that might cause these

phenotypes. The complex arrangements that regulate gene transcription, translation

and function are all potential mechanisms through which disease could act; there-

fore, analysis of potential disease alleles needs to evaluate almost every eventuality.

Figure 11.1 illustrates the logical decision-making process that needs to be applied

to the analysis of polymorphisms and mutations. The tools and approaches for the

analysis of variation are completely dependent on the location of the variant within

a gene or regulatory region. Many of these questions can be answered very quickly

with genomic viewers such as Ensembl or the UCSC human genome browser (see

Chapter 4 for a tutorial on these tools). Placing a polymorphism in full genomic

context is useful to evaluate variants in terms of location within or near genes

(exonic, coding, UTR, intronic, promoter region) and other functionally significant

features, such as CpG islands, repeat regions or recombination hotspots. Once

approximate localization is achieved, specific questions need to be asked to place the

polymorphism in a specific genic or intergenic region. This will help to narrow down

the potential range of functional effects attributable to a variant, and this will, in turn,
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3  UTR?

miRNA
Binding Site?
RNA folding?

No

Yes

Figure 11.1 A decision tree for polymorphism analysis

help to identify the appropriate laboratory follow-up approach to evaluate function.

Table 11.2 illustrates some carefully selected examples of non-coding polymor-

phisms in genes and transcripts; these publications were specifically selected, as

each also includes a detailed laboratory based follow-up to evaluate each form of

polymorphism. We refer the reader to these publications as a potential guide to

assist in laboratory investigation.
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Table 11.2 Functional polymorphisms in genes and gene regulatory sequences

Location Gene/disease Mechanism

Transcription

factor binding

TNF in cerebral

malaria

–376A SNP introduces OCT1 binding site altering

TNF expression, associated with fourfold

increased susceptibility to cerebral malaria

(Knight et al., 1999)

Promoter CYP2D6 Common –48T > G substitution disrupts the TATA

box of the CYP2D6 promoter, causing 50 per cent

reduction in expression (Pitarque et al., 2001)

Promoter RANTES in HIV

progression

–28G mutation increases transcription of the

RANTES gene slowing HIV-1 disease

progression (Liu et al., 1999)

cis-regulatory

element

Bruton’s tyrosine

kinasein X-linked

agammaglobuli-

naemia

+5G/A (intron1) shows reduced BTK

transcriptional activity, suggesting a novel

cis-acting element, involved in BTK

downregulation, but not splicing (Jo et al., 2001)

Lariat region HNF-4alpha NIDDM associated C/T substitution in

polypyrimidine tract in intron 1b in an

important cis-acting element directing intron

removal (lariat region) (Sakurai et al., 2000)

Splice

donor/acceptor

sites

ATP7A in Menke’s

disease

Mutation in donor splice site of exon 6 of ATP7A

causes a lethal disorder of copper metabolism

(Moller et al., 2000)

Intronic ‘RAGU’

consensus

flanking splice

donor site

Neurofibrimin 1 gene

(NF1) in

neurofibromatosis

type 1

Mutation in intron 3, position 5 G > C causes exon

3 to be completely skipped. Splice mutations

identified with genomic DNA samples and a

minigene assay (Barralle et al., 2003)

Cryptic donor/

acceptor sites

β-Glucuronidase

gene (GUSB) in

MPS VII

A 2-bp intronic deletion creates a new donor splice

site activating a cryptic exon in intron 8

(Vervoort et al., 1998)

Exonic splicing

enhancers

(ESE)

BRCA1 in breast

cancer

Both silent and nonsense exonic point mutations

were demonstrated to disrupt splicing in BRCA1,

with differing phenotypic penetrance (Liu et al.,

2001)

Intronic splicing

enhancers

(ISE)

α-Galactosidase in

Fabry’s disease

G > A transversion within 4 bp of splice acceptor

results in greatly increased alternative splicing

(Ishii et al., 2002)

Exonic splicing

silencers (ESS)

CD45 in multiple

sclerosis

Silent C77G disrupts ESS that inhibits the use of the

5′ exon four splice sites (Lynch and Weiss, 2001)

Intronic splicing

silencers (ISS)

TAU in dementia with

parkinsonism

Mutations in TAU intron 11 ISS cause disease by

altering Exon 10 splicing (D’Souza and

Schellenberg, 2000)

Polyadenylation

signal

FOXP3 in IPEX

syndrome

A > G transition within the polyadenylation signal

leads to unstable mRNA with 5.1 kb extra UTR

(Bennett et al., 2001)
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11.2.1 A decision tree for polymorphism analysis

The first step in our decision tree for polymorphism analysis (Figure 11.1) is a simple

question – is the polymorphism located in an exon? Answering this accurately may not

always be simple or even possible with only in silico resources. As we have already seen

in the previous section, delineation of genes is really the key step in all subsequent

analyses; once we know the location of a gene, all other functional elements fall

into place from their location in and around genes. As will be described in Section

11.3, the art of delineating genes must include methods for extending sequences

to identify the true boundaries of a gene, not just its coding region. This activity

may seem superfluous in the ‘post-genome’ era, but, in fact, we still know very little

about the full diversity of genes, and the vast majority of genes are still incompletely

characterized. Gene prediction and gene cloning have generally focused on the open

reading frame – the protein-coding sequence (ORF/CDS) of genes. For the most

part, UTR sequences have been neglected in the rush to find an open reading frame

(ORF) and a protein. In the case of polymorphism analysis, these sequences should

not be overlooked, as the extreme 5′ and 3′ limits of UTR sequence delineate the true

boundaries of genes. This delineation of gene boundaries is illustrated in a canonical

gene model in Figure 11.2. As the model shows, most of the known regulatory

elements in genes are localized to specific regions by the location of the exons. For

example, the promoter region is generally located in a 1−2-kb region immediately

upstream of the 5′ UTR, and splice regulatory elements flank intron/exon boundaries.
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Figure 11.2 The anatomy of a gene. This figure illustrates some of the key regulatory regions

that control the transcription, splicing and post-transcriptional processing of genes and tran-

scripts. Polymorphisms in these regions should be investigated for functional effects
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Many of these regulatory regions were first identified in Mendelian disorders, and

now some are being identified in complex phenotypes. Table 11.2 lists some of the

disease mutations and polymorphisms that have helped to shape our knowledge of

this complex area.

11.3 The anatomy of promoter regions and
regulatory elements

Prediction of eukaryotic promoters from genomic sequence remains one of the most

challenging tasks for bioinformatics (Bajic et al., 2004). The biggest problem is over-

prediction; current methods, on average, predict promoter elements at 1-kb intervals

across a given genomic sequence. This is in stark constrast to the estimated average

40−50-kb distance of functional promoters in the human genome (Reese et al.,

2000). Although it is possible that some of these predicted promoter elements may

be used cryptically, the vast majority of predictions are likely to be false positives. To

avoid false predictions, it is essential to provide promoter prediction tools with the

appropriate sequence region, that is, the region located immediately upstream of the

gene transcriptional start site (TSS). Accurate TSS definition has been hampered by

the fact that the vast majority of cDNA-derived mRNAs are truncated at the 5′ end.

However, through experimental enrichment of full-length ‘capped’ 5′ clones, the

TSS(s) and corresponding promoter sequences for 8308 human genes are now avail-

able from the Database of Transcription Start Sites (DBTSS) (Table 11.3; Yamashita

et al., 2006). Smaller experimentally derived and verified TSS/promoter data sets are

also now available. The Eukaryotic Promoter Database (EPD) provides sequences

for ∼2000 experimentally defined promoters (Schmid et al., 2004). Trinklein et al.

(2004) identified 1300 bidirectional promoters located between gene pairs arranged

head to head on opposite strands and separated by less than 1000 bp; 90 per cent

of the bidirectional promoters tested in a reporter assay showed significant activity

over negative controls.

In the absence of an experimentally derived TSS data source, the tool Promoser

can be used to identify TSS sites computationally by considering alignments of

a large number of partial and full-length mRNA and EST sequences to genomic

DNA, with provision for alternative promoters. The rewards of applying accurate

promoter prediction to the functional analysis of SNPs is illustrated in a study by

Hoogendoorn et al. (2003); one-third of SNPs located within the 500-bp region

upstream of experimentally verified TSSs (from the EPD data set) affected tran-

scription levels by 50 per cent or more in transient cell-based promoter assays.

Functional deletion analysis of 45 experimentally validated promoters from EN-

CODE regions showed that the sequence –300 to –50 bp from the TSS positively

contributed to core promoter activity (Cooper et al. 2006). In addition, putative

negative elements were identified –1000 to –500 bp upstream of the TSS for 55

per cent of genes tested, suggesting that it may be important to analyse 2 kb or
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Table 11.3 Tools for functional analysis of gene regulation and splicing

Experimentally determined TSS/promoter resources

EPD http://www.epd.isb-sib.ch/

DBTSS http://dbtss.hgc.jp/

Transcription start site (TSS) / promoter prediction

Promoser http://biowulf.bu.edu/zlab/PromoSer/

First Exon Finder http://rulai.cshl.org/tools/FirstEF/

Promoter 2.0 http://www.cbs.dtu.dk/services/Promoter/

NNPP http://www.fruitfly.org/seq tools/promoter.html

Transcription factor-binding site prediction

ConSite http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite

TFSEARCH http://www.cbrc.jp/research/db/TFSEARCH.html

Cis-regulatory module prediction

PreMod http://genomequebec.mcgill.ca/PReMod/welcome.do

Other DNA and mRNA regulatory elements

UTRdb http://bighost.area.ba.cnr.it/BIG/UTRHome/

ESE finder http://exon.cshl.org/ESE/

Rescue ESE http://genes.mit.edu/burgelab/rescue-ese/

miRBase http://microrna.sanger.ac.uk/targets/v2/

Detection of novel regulatory elements and comparative genome analysis

PipMaker http://bio.cse.psu.edu/pipmaker/

TRES http://bioportal.bic.nus.edu.sg/tres/

Regulatory Vista http://www-gsd.lbl.gov/vista/rVistaInput.html

Integrated platforms for gene, promoter and splice site prediction

TRED http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home

Webgene http://www.itba.mi.cnr.it/webgene/

NNPP, SPLICE, Genie http://www.fruitfly.org/seq tools/

more upstream, particularly when the full extent of the 5′ UTR or TSS is not well

defined.

Once a potential TSS has been identified, many tools can be applied to identify pro-

moter elements and transcription factor-binding sites. The human genome browsers

(UCSC and Ensembl) are the single most valuable resources for the analysis of pro-

moters and regulatory elements. Specifically, Ensembl annotates putative promoter

regions with the Eponine tool. The UCSC browser annotates transcription factor-

binding sites that fall within human/mouse/rat conserved regions. This is a valuable

confirmation of potential functional conservation; a binding site is considered to be

conserved across the alignment if its score meets the threshold score for that binding

site in all three species, thereby reducing the notorious risk of false-positive TFBS

prediction. In higher eukaryotes, transcription factors rarely operate by themselves,

but bind DNA in cooperation with other factors within a cluster known as a cis-

regulatory module (CRM). Very recently, the first genome-wide map of predicted

CRMs formatted for direct loading into the UCSC genome browser for intersection
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with SNPs has become available (Blanchette et al., 2006) (PreMod, Table 11.3). This

is a valuable data set that can increase confidence in the prediction of SNPs likely to

alter regulation of gene expression.

These are very useful for rapid evaluation of the location of variants in relation

to these features, although these data must be used with caution, as whole-genome

analyses may over-predict or overlook evidence for alternative gene models. The

approaches for promoter and transcription factor-binding site analysis are reviewed

thoroughly in Chapter 12.

Characterization of gene promoters and regulatory regions is not only valuable for

functional analysis of polymorphisms, but it can also provide important information

about the regulatory cues that govern the expression of a gene. This may be valuable

for pathway expansion to assist in the elucidation of the function of candidate genes

and disease-associated genes.

11.4 The anatomy of genes

11.4.1 Gene splicing

Alternative splicing is an important mechanism for regulation of gene expression,

expanding the coding capacity of a single gene to allow production of different

protein isoforms, which can have very different functions. The completion of the

human genome draft has given an interesting new insight into this form of gene reg-

ulation. Despite initial estimates of a human gene complement of >100 000 genes,

direct analysis of the sequence suggests that man may only have 25 000−30 000

genes, which is only a two- to threefold gene increase over invertebrates. Indeed,

a genome-wide survey of human alternative pre-mRNA splicing by exon-junction

microarrays indicates that at least 74 per cent of human multiexon genes are al-

ternatively spliced (Johnson et al., 2003). This highlights the significance of post-

transcriptional modifications, such as alternative splicing, as an alternative means to

express the full phenotypic complexity of vertebrates without a very large number of

genes.

11.4.2 Splicing mechanisms, human disease and
functional analysis

Regulation of splicing is mediated by the spliceosome, a network of small nuclear ri-

bonucleoprotein (snRNP) complexes and members of the serine/arginine-rich (SR)

protein family. At its most basic level, pre-mRNA splicing involves precise removal

of introns to form mature mRNA with an intact ORF. Correct splicing requires

exon recognition with accurate cleavage and rejoining at the exon boundaries desig-

nated by the invariant intronic GT and AG dinucleotides, respectively known as the
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splice donor and splice acceptor sites (Figure 11.2). Other more variable consensus

motifs have been identified in locations adjacent to the donor and acceptor sites.

These include a weak exonic ‘CACCAG’ consensus flanking the splice donor site,

an intronic ‘RAGU’ consensus 3′ of the donor site, an intronic polypyrimidine (Y:

C or T)-rich tract flanking the splice acceptor site, and a weakly conserved intronic

‘YNYURAY’ consensus 18−40 bp from the acceptor site, which acts as a branch

site for lariat formation (Figure 11.2). Other regulatory motifs are known to be

involved in splicing, including exonic splicing enhancers (ESE) and intronic splic-

ing enhancers (ISE), both of which promote exon recognition. Exonic and intronic

splicing silencers (ESS and ISS respectively) have an opposite action, inhibiting the

recognition of exons. DNA recognition motifs for splicing enhancers and silencers

are generally quite degenerate. The degeneracy of these consensus recognition mo-

tifs points to quite promiscuous binding by SR proteins. These interactions can also

explain the use of alternative and inefficient splice sites, which may be influenced

by competitive binding of SR proteins and hnRNP determined by the relative ra-

tio of hnRNP to SR proteins in the nucleus. A natural stimulus that influences the

ratio of these proteins is genotoxic stress, which can lead to the often observed phe-

nomenon of differential splicing in tumours and other disease states (Hastings and

Krainer, 2001).

Mutations affecting mRNA splicing are a common cause of Mendelian disorders,

and 10−15 per cent of Mendelian disease mutations affect pre-mRNA splicing (Hu-

man Gene Mutation Database, Cardiff, UK). These mutations can be divided into two

subclasses, according to their position and effect on the splicing pattern. Subclass I

(60 per cent of the splicing mutations) includes mutations in the invariant splice-site

sequences, which completely abolish exon recognition. Subclass II includes muta-

tions in the variant motifs, which can lead to both aberrantly and correctly spliced

transcripts, by either weakening or strengthening exon-recognition motifs. Subclass

II also includes intronic mutations, which generate cryptic donor or acceptor sites

and can lead to partial inclusion of intronic sequences. These Mendelian disease mu-

tations have helped to define our understanding of splicing mechanisms, and in view

of the proven complexity of splicing in the human genome (Lander et al., 2001), it

seems reasonable to expect splicing abnormality to play a significant role in complex

diseases, but examples are rare. This is explained in part by the power of family-based

mutations, the inheritance of which can be traced between affected and unaffected

relatives. It is difficult to determine similar causality for a population-based poly-

morphism.

11.4.3 Functional analysis of polymorphisms in putative
splicing elements

If taken individually, many sequences within the human genome match the consensus

motifs for splice sites, but most of them are not used. In order to function, splice sites
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need appropriately arranged positive (ESEs and ISEs) and negative (ESSs and ISSs)

cis-acting sequence elements. These cis-acting arrangements of regulatory elements

can be both activated and deactivated by DNA sequence polymorphisms (for a review,

see Wang et al., 2005). DNA polymorphisms at the invariant splice acceptor (AG)

and donor (GT) sites are generally associated with severe diseases, and so are likely

to be correspondingly rare (for example, only 429 out of 3.8 million HapMap SNPs

are located in splice sites as defined by EnsEMBL genes (unpublished data)). But,

as already described, recognition motifs for some of the elements that make up the

larger splice site consensus are very variable, so splice site prediction from undefined

genomic sequence is still imprecise at the best of times. Bioinformatics tools can fare

rather better when applied to known genes with known intron/exon boundaries – this

information can be used to carry out reasonably accurate evaluations of the impact

of polymorphisms in putative splice regions. Several tools can predict the location

of splice sites in a genomic sequence; all match and score the query sequence against

a probability matrix built from known splice sites (Table 11.3). These tools can be

used to evaluate the effect of splice region polymorphisms on the strength of splice

site prediction by alternatively running wild-type and mutant alleles. As with any

other bioinformatics prediction tool, it is always worth running predictions on other

available tools to look for a consensus between different prediction methods. These

tools can also evaluate the propensity of an exon to undergo alternative splicing.

For example, an unusually low splice site score may indicate that aberrant splicing

may be more likely at one exon than at exons with higher splice site scores. The

phase of the donor and acceptor sites also needs to be taken into account in these

calculations. Coding exons exist in three phases, 0, 1 and 2, based on the codon

location of the splice sites. If alternative donor or acceptor sites are in unmatched

phases, a frame-shift mutation will occur.

Splice site prediction tools will generally predict the functional impact of a poly-

morphism within close vicinity of a splice donor or acceptor site, although they will

not predict the functional effect of polymorphisms in other elements such as lariat

branch sites. Definition of consensus motifs for these elements (Figure 11.2) makes

it reasonably easy to assess the potential functional impact of polymorphisms in

these gene regions by simply inspecting the location of a polymorphism in relation

to the consensus motif. As with all functional predictions, laboratory investigation

is required to confirm the hypothesis.

ESEfinder (Cartegni et al., 2003) and RESCUE-ESE (Fairbrother et al., 2002)

are Web tools that facilitate rapid analysis of exon sequences to identify putative

ESEs (Table 11.3). The tools rely on different methodologies; ESEfinder matrices

are derived by an in vitro functional ‘SELEX’ method, whereas RESCUE-ESE is

based purely on computational prediction. As a result, ESE motifs recognized by

ESEfinder and ESE-RESCUE do not significantly overlap (Wang et al., 2005), and it is

therefore advisable to use both tools to identify potential regulatory motifs in exons of

interest.
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Although a systematic approach to identify and analyse ESS sites has been devel-

oped (Sironi et al., 2004), bioinformatics tools to predict the locations of these motifs

and ISE and ISS sites are not currently available.

11.4.4 Polyadenylation signals

Polyadenylation of eukaryotic mRNA occurs in the nucleus after cleavage of the

precursor RNA. Several signals are known to determine the site of cleavage and

subsequent polyadenylation, of which the best known is a canonical hexanucleotide

(AAUAAA) signal 20−50 bp from the 3′ end of the pre-RNA. This works with a

downstream U/GU-rich element that is believed to regulate the complex of pro-

teins necessary to complete 3′ processing (Pauws et al., 2001). The specific site

of cleavage of pre-RNA is located between these regulatory elements and is de-

termined by the nucleotide composition of the cleavage region with the follow-

ing nucleotide preference A>U>C>>G. In a study of 9625 known human genes,

Pauws et al. (2001) found that 44 per cent of human genes regularly use more

than one cleavage site, resulting in the generation of slightly different mRNA

species.

Mutations in the canonical AAUAAA polyadenylation signal have been shown to

disrupt normal generation of polyadenylated transcripts (Bennett et al., 2001). This

signal is needed for both cleavage and polyadenylation in eukaryotes, and failure to

polyadenylate prevents maturation of mRNA from nuclear RNA (Wahle and Keller,

1992). The complete aggregate of elements that make up the polyadenylation sig-

nal, including the U/GU-rich region, may not be universally required for processing

(Graber et al., 1999). Single nucleotide variations in this region cannot be conclu-

sively identified as functional, although any polymorphism in this region might be

considered a candidate for further consideration.

11.4.5 Analysis of mRNA transcript polymorphism

The potential functional effects of genetic polymorphism can extend beyond a di-

rect effect on the genomic organization and regulation of genes. Messenger RNA

is far more than a simple coded message acting as an intermediary between genes

and proteins. mRNA molecules have different fates related to structural features em-

bedded in discrete regions of the molecule. The processing, localization, translation

or degradation of a given mRNA may vary considerably, depending upon the en-

vironment in which it is expressed. Figure 11.3 illustrates a simplified model of an

mRNA molecule, indicating the key features and regulatory motifs that could po-

tentially be disrupted by polymorphism. At the most basic level, an mRNA molecule

consists of a protein-coding ORF, flanked by 5′ and 3′ UTRs. Most polymorphism
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Figure 11.3 The anatomy of an mRNA transcript. This figure illustrates some of the key reg-

ulatory and structural elements that control the translation, stability and post-transcriptional

processing of mRNA transcripts. Polymorphisms in these regions should be investigated for func-

tional effects

analysis in the literature has tended to focus on the coding sequence of genes, but

evidence suggests that UTR sequences also serve important roles in mRNA function

and regulation. At the risk of generalizing, we may say that 5′ UTR sequences are im-

portant, as they are known to accommodate the translational machinery, while small

non-coding RNAs have recently been shown to regulate gene expression by binding

complementary sites in the 3′ UTR of target genes (Sontheimer and Carthew, 2005;

see Chapter 13 for a review of the role of non-coding RNAs in gene regulation).

In Table 11.4, we highlight some examples of polymorphisms which affect mRNA

transcripts.

11.4.6 Initiation of translation

If a gene is known, the ORF will probably be well defined, but if a novel transcript

is being studied, the ORF needs to be identified. We refer the reader to Chapter 5,

which contains details on the extension of mRNA transcripts and ORF-finding pro-

cedures. The accepted convention is that the initiator codon will be the first in-frame

AUG encoding the largest ORF in the transcript. There is evidence of a scanning

mechanism for initiation of translation. The initiator codon generally conforms to a

‘CCACCaugG’ consensus motif known as the Kozak sequence (Kozak, 1996). How-

ever, Peri and Pandey (2001) and others have recently reappraised this convention,

finding that more than 40 per cent of known transcripts contain in-frame AUG

codons upstream of the actual initiator codon, some of which conform more closely

to the Kozak motif than the authentic initiator codon. Their revised Kozak consen-

sus ‘C32C39A47C41C45A100U100G100G53’ was much weaker. These observations have

cast some doubt on the validity of the scanning mechanism for initiation of trans-

lation. Some have argued that the frequent occurrence of AUG codons upstream
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Table 11.4 Functional non-coding polymorphisms in mRNA transcripts

Location Gene/disease Mechanism

miRNA binding

site in 3′ UTR

SLITRK1 in Tourette’s

syndrome

A SNP in a miRNA-binding site of SLITRK1

replaces a G:U wobble with normal base pairing,

leading to enhanced miRNA binding and

increased gene expression (Abelson et al., 2005)

Internal ribosome

entry segment

(IRES)

Proto-oncogene

c-myc in multiple

myeloma

C-T mutation in the c-myc-IRES causes aberrant

translational regulation of c-myc, enhanced

binding of protein factors, and enhanced

initiation of translation, leading to oncogenesis

(Chappell et al., 2000)

Kozak initiation

sequence

Platelet glycoprotein

Ib-alpha (GP1BA)

in ischaemic stroke

C/T polymorphism at the –5 position from the

initiator ATG codon of the GP1BA gene is

located within the ‘Kozak’ consensus nucleotide

sequence. The presence of a C at this position

significantly increases the efficiency of expression

of the GPIb/V/IX complex (Afshar-Kharghan

et al., 1999).

Anti-termination

mutation and

3′ UTR stability

determinants

Alpha-globin in

alpha-thalassaemia

UAA to CAA to anti-termination mutation allows

translation to proceed into the 3′ UTR, masking

stability determinants to decrease mRNA

half-life substantially (Conne et al., 2000)

UTR stability Protein tyrosine

phosphatase-1B

(PTP1B)

1484insG in 3′ UTR causes PTP1B overexpression,

leading to insulin resistance (Di Paola et al.,

2002)

of the putative initiator codon may indicate misassignment of the initiatior codon

or cDNA library anomolies (Kozak, 2000); others point to the empirical increase in

gene expression measured in the laboratory when initiator codons conforming to the

Kozak consensus are compared to other sequences. This debate may never resolve

conclusively, and it seems certain that the mechanism for translation initiation is still

not fully understood.

Some polymorphisms in Kozak sequences appear to have a direct bearing on

human disease. Kaski et al. (1996) reported a T > C SNP with an 8−17 per cent

minor allele frequency at the –5 position from the initiator ATG codon of the GP1BA

gene. This SNP is located within the most 5′ (and weakest) part of the Kozak con-

sensus sequence. The cyotsine (C) allele at this position conforms more closely

to the consensus, and subsequent studies of the SNP found that it was associated

with increased expression of the receptor on the cell membrane, both in trans-

fected cells and in the platelets of individuals carrying the allele. The polymorphism

was also associated with cardiovascular disease susceptibility (Afshar-Kharghan

et al., 1999).

An alternative mechanism for translation initiation has been identified that

does not obey the ‘first AUG rule’; this involves cap-independent internal
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ribosome binding mediated by a Y-shaped secondary structure, denoted the ‘in-

ternal ribosome entry site’ (IRES), located in the 5′ UTR of 5−10 per cent of

human mRNA molecules (see Le and Maizel, 1997, for a review of these ele-

ments). IRES elements are complex stem loop structures, and there is no reliable

sequence consensus to allow prediction of the possible functional effects of poly-

morphisms in these elements. Instead this needs to be attempted by RNA sec-

ondary structure prediction tools such as MFOLD (see below). The sequences and

links to published information for 50 IRESes located on eukaryotic transcripts are

available from IRESdb (http://ifr31w3.toulouse.inserm.fr/IRESdatabase/) (Bonnal

et al., 2003).

11.4.7 mRNA secondary structure stability

While we have already established that nucleotide variants in mRNA can alter or

create sequence elements directing splicing, processing, or translation of mRNA,

variants may also influence mRNA synthesis, folding, maturation, transport and

degradation. Many of these diverse biological processes are strongly dependent on

mRNA secondary structure. Secondary structure is essentially determined by ri-

bonucleotide sequence; therefore, folding of mRNA is also likely to be influenced by

SNPs and other forms of variation at any location in a transcript. Shen et al. (1999)

studied two common silent SNPs in the coding regions of two essential genes –

a U1013C transition in human alanyl tRNA synthetase (AARS) and a U1674C

transition in human replication protein A, a 70-kDa subunit (RPA70). Minor al-

lele frequency was 0.49 for the AARS U allele and 0.15 for the RPA70 C allele.

Using structural mapping and structure-based targeting strategies, they demon-

strated that both SNPs had marked effects on the structural folds of the mRNAs,

suggesting phenotypic consequences of SNPs in mRNA structural motifs. RNA sta-

bility is an intriguing disease mechanism; unfortunately, beyond this and a handful

of other published studies (see Conne et al., 2000, for a review), the true extent

of detectable differences in mRNA folding caused by polymorphism is quite un-

known, possibly reflecting the difficulties involved in studying such mutational effects

in vitro.

Several tools can help to construct in silico secondary structure models of poly-

morphic mRNA alleles. One of the best is MFOLD (M. Zuker, Washington Univer-

sity, St Louis, MO, USA). This is maintained on the Zuker Laboratory home page,

which also contains an excellent range of RNA secondary structure-related resources

(http://bioinfo.math.rpi.edu/∼zukerm/rna/). MFOLD will construct a number of

possible models based on all structural permutations of a user-submitted mRNA

sequence. Submission of mutant and wild-type mRNA alleles to this tool will give

the user a fairly good indication of whether an allele can alter mRNA secondary

structure. This can help to prioritize alleles for laboratory investigation in mRNA

stability studies.
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11.4.8 Regulatory control of mRNA processing and translation

Beyond splicing and promoter-based regulation, mRNAs are also tightly controlled

by regulatory elements in their 5′ and 3′ untranslated regions (Figure 11.3). Proteins

that bind to these sites are key players in controlling mRNA stability, localization

and translational efficiency. Consensus motifs have been identified for many of these

factors, usually corresponding to short oligonucleotide tracts, which generally fold

in specific secondary structures that are protein-binding sites for various regula-

tory proteins. Some of these regulatory signals tend to be protein family specific,

while others have a more general effect on diverse mRNAs. AU-rich elements (AREs)

are the largest class of cis-acting 3′ UTR-located regulatory molecules that con-

trol the cytoplasmic half-life of a variety of mRNA molecules (reviewed by Barreau

et al. 2006). One main class of these regulatory elements consists of pentanucleotide

sequences (AUUUA) in the 3′ UTR of transcripts encoding oncoproteins, cytokines,

and growth and transcription factors. Many RNA-binding proteins, mostly mem-

bers of the highly conserved ELAV family, recognize and bind AREs (Chen and Shyu,

1995). Defective function of AREs can lead to the abnormal stabilization of mRNA;

this forms the basis of several human diseases, including mantle cell lymphoma, neu-

roblastoma, and several immune and inflammatory diseases. Polymorphisms which

disrupt AU-rich motifs in a 3′ UTR sequence may be worth evaluation as potentially

functional polymorphisms. Some databases to assist in the identification of these

motifs are described below.

11.4.9 Tools and databases to assist mRNA analysis

To assist in the analysis of diverse and often family-specific regulatory elements,

such as ARE elements, Mignone et al. (2005) have developed UTRdb, a specialized

non-redundant database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs

(http://bighost.area.ba.cnr.it/BIG/UTRHome/). In April 2006, UTRdb contained

83 184 non-redundant human entries; these are enriched with specialized infor-

mation absent from primary databases, including the presence of RNA regulatory

motifs with experimental proof of a functional role. It is possible to BLAST search the

database for the presence of annotated functional motifs in a query sequence. Jacobs et

al. (2002) have also developed Transterm, a curated database of mRNA elements that

control translation (http://uther.otago.ac.nz/Transterm.html). This database exam-

ines the context of initiation codons for conformation with the Kozak consensus and

also contains a range of mRNA regulatory elements from a broad range of species.

Access is provided via a web browser in several different ways. A user-defined se-

quence can be searched against motifs in the database, or elements can be entered by

the user to search specific sections of the database (e.g., coding regions, 3′ flanking

regions or the 3′ UTRs) or the user’s sequence. All elements defined in Transterm

have associated biological descriptions with references.
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11.5 Pseudogenes and regulatory mRNA

As a final word on the analysis of mRNA transcripts, it is important to be aware

that not all mRNAs are intended to be translated. Some genes may produce tran-

scripts that are truncated, retain an intron, or are otherwise configured in a way

that precludes translation. It is difficult to clarify the role of some of these tran-

scripts. If a transcript has multiple premature termination codons, it is likely to

be a pseudogene; others may have no obvious ORFs and may be pseudogenes,

or they may be regulatory mRNA molecules. Analysis of polymorphisms in these

molecules is difficult, as they are very poorly defined in terms of functionality.

Many non-coding RNA (ncRNA) molecules have been described that act as ri-

boregulators directly influencing post-transcriptional regulation of gene expres-

sion. SNPs located in either the genes encoding regulatory mRNAs or in the

target sites of genes regulated by these molecules have the potential to modify

gene-expression levels. miRBase (Table 11.3) provides an automated pipeline for

predicting miRNA-binding sites in target genes, and predicted sites are also dis-

played in the UCSC browser. (For a thorough review of the properties of reg-

ulatory mRNA and functional analysis of these genes and their target sites, see

Chapter 14.)

11.6 Analysis of novel regulatory elements and motifs in
nucleotide sequences

Geneticists are working at the vanguard of efforts to close the gap between our

current understanding and the full complexity of human gene regulation. Genetics

has already contributed greatly to the identification of new regulatory elements, often

located far from gene promoters, by the identification of regulatory mutations and

polymorphisms (Morley et al., 2004).

In this chapter, we have reviewed a number of regulatory mechansims and mo-

tifs in DNA sequences, including motifs in promoter regions, splice sites, introns

and transcripts. Functional analysis of polymorphisms located in the consensus se-

quences identified for some of these elements may be an important indicator of a

potential functional effect. However, despite advances in bioinformatic tools, predic-

tive functional analysis of sequence polymorphism is still difficult to validate without

laboratory follow-up. Even with the benefit of laboratory verification, identification

of deleterious alleles can be laborious, and the results of analyses do not always hold

true between in vitro and in vivo environments. In a sense, evolution is an in vivo

experiment on a grand scale; therefore, Sydney Brenner (2000) and others have pro-

posed the concept of ‘inverse genetics’ to cover the use of information recovered

from different genomes to clarify function. Brenner suggested comparing genomes
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to highlight conserved areas ‘in a vast sea of randomness’. This is an elegant approach

for the characterization of polymorphisms. Characterization by conventional genet-

ics demands analysis of large sample numbers, complex in vitro analysis, or laborious

transgenic approaches. In the case of inverse genetics, evolution and time have al-

ready done the work in a long-term ‘experiment’ that would be impossible to match

in the laboratory.

Inverse genetics also has a wider application – analysis of a single promoter se-

quence will often identify many putative regulatory elements by chance alone. How-

ever, simultaneous analysis of many evolutionarily related but diverse promoter se-

quences will clearly identify known and novel conserved motifs that are likely to be

functionally important to a particular family of genes. This approach, known as phy-

logenetic footprinting, has been used to elucidate many common regulatory modules

(Gumucio et al., 1996; Blanchette et al., 2006) and conserved non-coding sequences

corresponding to functional regulatory regions (see Nardone et al., 2004, for a re-

view). Kleiman et al. (1998) used a similar approach to identify a novel potential

element in the polyadenylation regulatory apparatus, a TG deletion (deltaTG) in the

3 ′UTR of the HEXB gene, 7 bp upstream of the polyadenylation signal. The deltaTG

HEXB allele, which occurred at 10 per cent frequency, showed 30 per cent lower

enzymatic activities than wild-type individuals. Polyacrylamide gel electrophoresis

analysis of the allele revealed that the 3′ UTR of the HEXB gene had an irregu-

lar structure. After studying a large range of eukaryotic mRNAs, including human,

mouse and cat HEXB genes, they found that the TG dinucleotide was part of a con-

served sequence (TGTTTT) immersed in an A/T-rich region observed in more than

40 per cent of mRNAs analysed. This study clearly illustrates how effective bioinfor-

matic analysis of mRNA-processing signals may require more than sequence analysis

of known regulatory motifs. Clearly, tools are needed to identify novel regulatory

elements.

The UCSC genome browser conveniently displays a number of data sets relevant to

the identification and subsequent refinement and analysis of conserved non-coding

sequences (CNS). The ‘conservation’ track displays a measure of evolutionary con-

servation in 17 vertebrates, including mammalian, amphibian, bird and fish species.

Comparisons of closely related species, such as man and chimpanzee, will identify

regions where divergence is most readily tolerated by highlighting differences rather

than similarities, whereas comparisons of distantly related organisms, such as mouse

and chicken, will identify highly constrained sequences (Cooper et al., 2003). Se-

quence comparison of moderately related species, such as human and mouse, is

ideal for a survey analysis to begin to define CNS regions, and multiple species com-

parison can be used to increase the power of the technique and refine the regions

further (Thomas et al., 2003). Once a CNS region has been identified, other precom-

puted features displayed on the genome browser, such as conserved transcription

factor-binding sites and DNase hypersensitive sites, can provide further evidence of

a functional regulatory role.
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11.6.1 TRES (http://bioportal.bic.nus.edu.sg/tres/)

TRES is a very flexible tool that can assist in the identification of novel elements

from user-defined sequences. This approach is not just applicable to evolutionarily

related sequences (see Chapter 6 for detailed coverage of this area); it can also be

used to study unrelated sequences that may share similar regulatory cues, such as

genes which show similar patterns of gene expression. TRES can compare as many

as 20 nucleotide sequences. The tool is multifunctional, and it can identify either

conserved sequence motifs between submitted sequences or known transcription

factor-binding sites shared between sequences, using nucleotide frequency distribu-

tion matrices described in the TRANSFAC database (Heinemeyer et al., 1999).

TRES also has a versatile search mode to detect palindromic motifs or inverted

repeats shared between sequences. These have unique features of dyad symmetry that

can form hairpins or loops to facilitate protein binding in homo- or heterodimer

form. Many transcription factors have palindromic recognition sequences and bind

as dimers; these motifs may be important to allow greater regulatory diversity from

a limited number of transcription factors (Lamb and McKnight, 1991). Although

TRES is generally focused on the identification of transcription factor-binding sites

and promoter elements, its sequence motif identification facilities make it suitable

also to identify other motifs in non-coding sequences, including UTR sequences and

intronic sequences.

11.7 Functional analysis of non-synonymous
coding polymorphisms

The impact of mutations and polymorphisms in protein sequences needs to be

characterized on a case-by-case basis. To return to our decision tree for polymorphism

analysis (Figure 11.1), the consequence of an amino-acid substitution is defined by

three key areas:

a. the physicochemical environment in which the amino acid exists

b. the structural context of the amino acid

c. the functional context of the amino acid within the protein.

Investigation of amino-acid variants should take all of these areas into account to

arrive at the most reliable hypothesis for the putative functional impact of a variant.

At the time of writing the first edition of this book, this process was very challenging,

with limited resources for performing these analyses and no curated data sets of

preanalysed variants. Fortunately, the situation has improved markedly in the inter-

vening years, and now there are rich resources available to carry out analysis of this
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nature, and there are also a number of precomputed analyses of amino-acid variants

from which to obtain a second opinion or an initial pointer (see Section 11.7.5).

In most cases, this will leave the geneticist with a choice – to rely on automated

annotation of variants (a good stand-by) or to carry out ad hoc analysis (perhaps the

reference standard). The following sections review the process of analysis of amino-

acid variants. This can serve either as an explanation of automated data sets or as an

outline of the steps required for ad hoc analysis.

11.7.1 Assessing the physicochemical environment
of an amino-acid substitution

If we look first at the context of the amino acid, different cellular locations can have

very different physicochemical environments, which can, in turn, have different

effects on the properties of amino acids (these differences are addressed in detail

in Chapter 13). The cellular location of proteins can be divided at the simplest

level between intracellular, extracellular or transmembrane environments. The latter

location is the most complex, as amino acids in transmembrane proteins can be

exposed to all three cellular environments, depending upon the topology of the

protein and the location of the particular amino acid within the known or predicted

topology of the protein. In this case, the accuracy of protein topology prediction is

particularly important; fortunately, tools such as UniProt (http://www.uniprot.org)

offer detailed topological annotation for most known proteins. In the case of novel

proteins, a number of tools can be used to predict topology (see Table 11.5). For

predicting secondary structure in novel proteins, it is generally worth running several

tools to try to obtain a consensus between tools.

Microenvironments around a specific amino acid may also differ in extracellu-

lar and intracellular proteins, depending on the location of the residue within the

protein. Amino-acid residues may be buried in a protein core, or exposed on the

protein surface. Once the environment of an amino-acid substitution has been de-

fined, the properties of the different alleles (residues) can be assessed in the context

of the physicochemical environment by a number of different tools (Table 11.5). For

reference, we have provided four amino-acid substitution matrices in Appendix II

of this book. These matrices can be used to evaluate amino-acid changes in extracel-

lular, intracellular and transmembrane proteins; where the location of the protein

or amino acid residue is unknown, a matrix for ‘all proteins’ is also available. Pre-

ferred (conservative) substitutions have positive scores, neutral substitutions have a

zero score, and unpreferred (non-conservative) substitutions are scored negatively.

These matrices are an example of ‘inverse genetics’ in action (Brenner, 2000), be-

ing constructed by observing the propensity during evolution for the exchange of

one amino acid for another in the given amino-acid environment based on com-

parison of very large sets of related proteins (for more details, see Chapter 13 and

http://www.russell.embl-heidelberg.de/aas).
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Table 11.5 Tools for functional analysis of amino acid polymorphisms

Protein Secondary structure prediction

TMPRED http://www.ch.embnet.org/software/TMPRED form.html

TMHMM http://www.cbs.dtu.dk/services/TMHMM/

PREDICTPROTEIN http://www.embl-heidelberg.de/predictprotein/

GPCRdb 7TM snake plots http://www.gpcr.org/7tm/seq/snakes.html

Protein 3D structure analysis

Protein data bank (PDB) http://www.rcsb.org/pdb/Welcome.do

MODBASE http://salilab.org/modbase

DeepView/Swiss PDB viewer http://www.expasy.org/spdbv/

Cn3D http://www.ncbi.nih.gov/Structure/CN3D/cn3d.shtml

STRAP http://www.charite.de/bioinf/strap/

Identification of protein functional motifs

INTERPRO http://www.ebi.ac.uk/interpro/scan.html

PROSITE http://www.ebi.ac.uk/searches/prosite.html

SIGNALP, NetPhos, NetOGlyc http://www.cbs.dtu.dk/services/

& NetNGlyc

Swissprot (Functional annotation) http://www.expasy.ch/cgi-bin/sprot-search-ful

Evaluation of amino acid properties

Properties of amino acids http://www.russell.embl-heidelberg.de/aas/

PROWL http://prowl.rockefeller.edu/aainfo/contents.htm

SNPPER AA properties http://snpper.chip.org/bio/show-amino

Pre-computed multiple alignments

DBAli http://salilab.org/dbali

SPEED http://bioinfobase.umkc.edu/speed/

Tools for prediction of non-synonymous SNP function

LS-SNP http://alto.compbio.ucsf.edu/LS-SNP/

SIFT http://blocks.fhcrc.org/sift/SIFT.html

PolyPhen http://genetics.bwh.harvard.edu/pph/index.html

SNPS3D http://www.snps3d.org/

SNPeffect http://snpeffect.vib.be/index.php

TopoSNP http://gila-fw.bioengr.uic.edu/snp/toposnp/

MutDB http://www.mutdb.org/

Pipeline tools for one stop Gene to SNP functional analysis

UCSC http://genome.ucsc.edu

pupaSNP http://www.pupasnp.org/

FastSNP http://fastsnp.ibms.sinica.edu.tw/

11.7.2 Defining the protein structural context
of an amino-acid substitution

Defining the environment of an amino acid may be relatively straightforward if the

protein is known, and good protein annotation exists. Analysis is even more effective

if there is a known tertiary (3-D) structure (Skolnick et al., 2000). There are a number
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of ways to access protein structural information; for example, it can be conveniently

accessed from UniProt (http://www.uniprot.org). Sometimes the user may also need

to consult the ‘Niceprot View’ linked at the top of the UniProt interface, as the available

data seem to vary slightly between these two views on the SwissProt database. When

the crystal structure of a protein has been determined, a link will be provided to the

PDB database, the central repository of protein structural information. Alternatively,

the NCBI protein search interface links to Blink, a useful source of precomputed

protein annotation, including hits to known protein 3-D structures (e.g., the entry

for ADRB3, http://www.ncbi.nlm.nih.gov/sutils/blink.cgi?pid=4557267).

The 3-D structures of proteins are determined by experimental methods, such as X-

ray crystallography and NMR spectroscopy. At the time of writing (July 2006), 37 658

experimentally determined structures were in the Protein Data Bank (PDB) database,

the international protein structure repository, and 7181 of these were derived from

human proteins. This total figure is redundant, as a structure may be determined

by multiple groups, in the same species or in species that are closely related on a

protein level, such as mouse and human. The PDB provides a filter for highly similar

structures to provide one or more representatives; if this is applied, there are ∼14 000

non-redundant structures in the database.

Despite the best efforts of protein crystallographers, the protein structures of the

majority of human proteins have not yet been directly determined (in fact, this may

not be possible in the near future; see below). In many cases, however, the structure of

an orthologue or close homologue of a human protein has been determined. In this

case, it is possible to construct a reasonably accurate protein structural model based

on an alignment between the protein with a known structure and the homologous

protein. MODBASE (http://salilab.org/modbase; Pieper et al., 2006) is a database

that contains precomputed comparative protein structure models for all available

protein sequences that can be matched to at least one known protein structure.

The MODBASE database is updated regularly to capture new sequences and struc-

tures, and it currently contains reliable models for 908 507 sequences (July 2006).

MODBASE also allows generation of new comparative models for proteins of interest

with the automated modelling server MODWEB (http://salilab.org/modweb).

While tools such as MODBASE go part of the way toward providing comprehensive

models of protein structure for all human proteins, there are some implicit limitations

to the study of protein structure and hence our understanding of structure. Protein

crystallography methods are practically limited to proteins that can be expressed

in vitro in a soluble form. Hence, it is very difficult to determine the crystal struc-

ture of transmembrane proteins, as they are typically insoluble. G-protein-coupled

receptors (GPCRs) are a good example of this; despite the size of the GPCR superfam-

ily (>500 members in man) and their importance as drug targets, a crystal structure

has been determined, to date, for only one member of the family, bovine rhodopsin.

Therefore, all GPCR homology models in MODBASE are based on the structure of

bovine rhodopsin, despite levels of similarity that can be as low as 20−30 per cent.

In some cases, it may be possible individually to purify and determine the structure
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of a specific domain of a transmembrane protein, such as a kinase domain. Xie and

Bourne (2005) carried out a survey of the current number of human genes that have

some homology to a protein with a known protein structure or domain. They found

that 37 per cent of the functional classes of proteins identified in the genome shared

homology with at least one known structural domain, while 25 per cent shared ho-

mology with an entire protein structure. They predicted that even if structures were

determined for all classes of human proteins that can be expressed and purified for

crystallography, structural coverage of at least one domain would increase to only

69 per cent of functional classes, 44 per cent of functional classes sharing homology

with an entire structure. From these figures, it is clear that protein structural in-

formation will be available for the evaluation of amino-acid variation only some of

the time. When this information is unavailable, other sources of information, such

as multiple alignments and secondary structural analysis and annotations, become

much more important (see Section 11.7.4).

11.7.3 Reviewing the impact of amino-acid variation
in protein structures

A wide range of tools are available for viewing and analysing protein structures (Table

11.5). From the point of view of genetic analysis, one of the most effective tools is

DeepView, which is freely available to download (Schwede et al., 2003). This tool

has a number of features that make it very suitable for the analysis of amino-acid

variants. Most notably, it allows the user to load a known structure and highlight

residues, it allows the user to mutate residues, and, finally, it allows the user to identify

other residues which might interact with a selected residue by identifying all residues

within a user-defined 3-D radius around the selected residue. This makes it possible to

identify residues that might interact with structural and functional protein features,

such as active sites in 3-D-folded protein space. A detailed case study of exactly this

kind of analysis involving the use of DeepView is presented in Chapter 19 (Section

19.3.2).

The use of protein sequence homology to build models of protein structure relies

heavily on the quality of the alignment between the protein with the known structure

and the protein being modelled by homology. Selected residues of the protein being

analysed can be assigned to residues of the protein with the known structure, allowing

structural and functional annotation. One issue that may confuse such analysis is

the numbering of amino-acid residues. In the protein structure record, each residue

is specified by a number; this numbering which may not necessarily start from one,

and it may skip numbers. Consequently, it will differ from the residue numbering in

annotation of the entire protein record, as in a SwissProt record. Therefore, it may

be necessary to check the order of amino acids between the structural record and the

protein sequence record to ensure that the same protein regions are being compared.
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11.7.4 Defining the functional context of an
amino-acid substitution

In taking into account the immediate physicochemical, structural context and an-

notated features of an amino-acid variant, the final step in characterization is to

evaluate the conservation of the amino-acid position in an alignment of related pro-

teins. Alignment of mutated amino-acid sequences with vertebrate and invertebrate

orthologues and homologues in a protein family will indicate whether the residue

is highly conserved throughout the gene family. Beyond evolutionary clues, there

are many different sources of protein annotation (including precomputed protein

family alignments) and tools to evaluate the impact of substitutions in known and

predicted protein features; some of the best are listed in Table 11.5. The overriding

principle of amino-acid variant analysis is to get to know a protein, first seek known

annotation, then seek to annotate where annotation does not exist, and finally look

at the impact of the variant in relation to all that you now know. Figure 11.4 shows

an example of an evaluation of a mutation in Jagged1, a ligand for the Notch recep-

tor family. Krantz et al. (1998) identified an Arg184Cys missense mutation in pa-

tients with Alagille syndrome (OMIM 118450). In terms of amino-acid substitutions,

Arg > Cys is quite non-conservative (the extracellular substitution matrix score for

this change is –5). Alignment of the mutated human amino-acid sequence with ver-

tebrate and invertebrate orthologues and homologues in the Jagged family identifies

the Arg184 residue as a highly conserved position throughout this protein family. A

mutation to a cysteine at this position would be expected to lead to the aberrant for-

mation of disulphide bonds with other cysteine residues in the Jagged protein. This is

Figure 11.4 Functional evaluation of an Arg184Cys mutation in the Jagged protein family.

Arg184Cys causes Alagille syndrome (OMIM 118450). Alignment of the mutated human amino-

acid sequence with vertebrate and invertebrate orthologues and homologues in the Jagged

family identifies the Arg184 residue in a highly conserved position throughout this gene family.

A mutation to a cysteine at this position would be expected to lead to the aberrant formation

of disulphide bonds with other cysteine residues in the Jagged protein; this is likely to have a

disruptive effect on the structure of the Jagged1 protein
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likely to have a disruptive effect on the structure of the Jagged1 protein, presumably

leading to the Alagille syndrome phenotype. (See Chapter 13 for a description of the

effects of inappropriate disulphide bond formation.)

11.7.5 Large-scale functional annotation of nsSNPs in the
public domain

As mentioned at the start of this section, in the years following the first edition of this

book, a number of public domain resources were developed that offer precomputed

functional annotation of known mutations and polymorphisms, in both coding

and non-coding regions. There are also other, less specialist resources covering both

coding and non-coding SNPs; these are reviewed in Section 11.8. The quality of

these annotations can vary, and it is important to check how often the analysis is

updated. Some of the most widely used (and therefore best maintained) are LS-

SNP (Karchin et al., 2005), SIFT (Ng and Henikoff, 2006) and PolyPhen (Ramensky

et al., 2002), and some other resources are listed in Table 11.5. Several publications

have compared different tools, usually finding different answers between tools for

the same variant, highlighting the need to consult a range of tools (Letourneau et al.,

2005; Matyas et al., 2006). How these tools are used is really up to the investigator.

They can be used as a second opinion to add weight to the results of an analysis,

or they can be used initially to identify SNPs with potential functional effects for

further analysis. It is probably fair to say that the results and conclusions of these

predominantly automated analysis approaches could always be enhanced by further

detailed (manual) analysis, so generally they should be considered as a starting point

rather than an end point.

11.8 Integrated tools for functional analysis of
genetic variation

As the limits of our understanding of genome, gene and protein function are con-

stantly expanding, so too are the methods that can be applied to the analysis of the

impact of variation on these functions. Polymorphism analysis can be a highly in-

tensive process, calling on the most skilled analysis approaches. However, this does

not always need to be the case; below, we highlight some alternatives. The first, the

UCSC table browser, is a great way to identify all polymorphisms that are located in

regions with a potential for function, therefore making each polymorphism a can-

didate to be genotyped for an impact on this function. The second alternative is to

use precomputed data on SNP function. A wealth of information is now available

in this area, and there is a strong argument that SNPs should be genotyped from as

many of these precomputed resources as possible. The final point to consider is that

if we do not know about a function, we will not be able to predict an impact on this
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function! Genetic analysis, obviously after accounting for type I error, is arguably

the ultimate test for impact on an unknown function.

11.8.1 UCSC table browser

The UCSC table browser is perhaps the single most powerful polymorphism analysis

tool, although this was not the primary objective of its design. The rapidly evolving

myriad of genomic feature annotations captured within the UCSC genome browser

(Table 11.5) can be intersected with various sets of SNPs (including HapMap, dbSNP

or user-defined sets entered as custom tracks) with the UCSC ‘table browser’ function

(Karolchik et al., 2004). By simply selecting the UCSC track of interest, such as ‘TFBS

conserved’ and intersecting with a chosen SNP set, SNPs located within conserved

TFBS sites are returned. This powerful tool is particularly well suited to analyse large

numbers of SNPs, which can be rapidly assigned to exons (known and predicted),

coding regions, potential regulatory regions, including predicted TFBS, microRNA-

binding sites in 3′ UTR, and conserved elements. Assignment of a SNP to a functional

region does not necessarily imply that the SNP will have a functional impact –

further analysis is required to determine this. However, considering our limited

understanding of many functional elements, it is reasonable to suggest that any SNP

that co-locates with a functional element should be a candidate for genotyping. For

this reason, the UCSC table browser is ideal for prioritizing SNPs for genotyping

across genes and candidate regions.

11.8.2 PupaSNP and FastSNP

PupaSNP and FastSNP (Table 11.5) are two tools that can be used to semi-automate

polymorphism analysis. Both are integrated platform applications that analyse all

known (in the case of PupaSNP, also user-submitted) polymorphisms in a given gene

or list of genes. This obviously offers great benefits to the user in terms of speed and

convenience, and as a first-pass analysis, these tools both do a fine job. However, it is

worth taking some time to explore fully all avenues of analysis to add to the output

of these tools.

PupaSNP is for high-throughput analysis of SNPs with potential phenotypic ef-

fect. The tool takes a list of genes as an input and retrieves SNPs from evolutionarily

conserved regions that could affect gene regulation and protein function. PupaSNP

is quite comprehensive and uses a range of tools to investigate the impact of SNPs

on splice boundaries, exonic splicing enhancers, transcription factor-binding sites

(TFBS), and changes in amino acids. It also provides additional functional infor-

mation from gene ontology (a descriptive hierarchy of gene function), OMIM and

model organisms. FastSNP is also worth a mention (Table 11.5). This also provides

a complete platform for SNP analysis, although the number of analyses performed
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is slightly reduced, focusing on TFBS, ESE prediction and amino-acid substitution

analysis.

11.9 A note of caution on the prioritization of in silico
predictions for further laboratory investigation

Just as the complexity of genes, transcripts and proteins is virtually limitless, so,

too, are the possibilities for developing functional hypotheses. If every aspect of the

analyses explored in this chapter was examined in any single polymorphism, it would

probably be possible to assign a potential deleterious function to almost every one.

But, clearly, the human genome does not contain millions of potentially deleterious

mutations (thousands maybe, but not millions!), so it is important to treat in

silico predictions with caution. If a polymorphism shows genetic association with a

phenotype; it is important to consider first whether the polymorphism is causal or in

LD with a causal mutation. Hypotheses need to be constructed and tested in the labo-

ratory; for example, if a polymorphism is predicted to affect splicing, in vitro analysis

methods need to be employed to investigate evidence of alternative transcripts.

11.10 Conclusions

In this chapter, we have presented an overview of some of the approaches to predic-

tive functional analysis of polymorphisms in genes, proteins and regulatory regions.

These methods can be applied at the candidate identification stage or at later stages to

assist in the progression of associated genes to disease genes. The chapter has also ex-

amined the role of bioinformatics in the formulation of laboratory investigation for

confirmation of functional predictions. As we have shown, functional prediction of

the potential impact of variation requires a very good grasp of the full gamut of bioin-

formatics tools used to predict the properties and structure of genes, proteins and reg-

ulatory regions. This huge range of applications makes polymorphism analysis one of

the most difficult bioinformatics activities to get right. The complexity of some anal-

ysis areas is worthy of special attention, particularly the analysis of polymorphisms

in gene regulatory regions, non-coding RNA and protein sequences. The following

three chapters specifically address some of these highly specialized analysis issues.
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12.1 Introduction

Gene expression refers to the cellular processes that lead to functional products

(primarily proteins) from the genetic information stored in the genomic sequences.

Tightly regulated gene expression for specific cell types and developmental stages in

response to different physiological conditions is driven by the orchestration of com-

plex and multilayered gene regulatory networks (GRNs) (Maniatis and Reed, 2002).

Inferring GRNs is of fundamental importance and a great challenge for molecular

biologists and geneticists.

Mutations, including point mutations, insertions and deletions, translocations,

and duplications, play critical roles in determining biological phenotypes and dis-

ease susceptibilities by perturbing the GRNs. Among them, single nucleotide poly-

morphisms (SNPs) generated by point mutations occur approximately one per 1000

bases and are the predominant variations in man. The interplay between the adap-

tive benefits introduced by mutations and natural selection shapes the genome into

unique patterns of genetic variations in different regions. Therefore, investigating

the functional roles of these genetic variations provides a great opportunity for un-

derstanding complex common diseases, such as cancer. The compilation of human

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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and other metazoan genome sequences (see Chapters 4 and 5) and the availability

of genome-wide, high-resolution genotyping data (see Chapter 3) have provided

extraordinary resources for this purpose.

By either family-based linkage analysis or population-based association studies,

an increasing number of genes and genomic loci have been associated with dis-

ease traits, or more recently, gene expression quantitative traits (see Chapter 16).

However, because of the linkage disequilibrium (LD), it remains extremely difficult

to distinguish the real causative pathogenic loci from correlated markers, the key

step to transform genetic findings into mechanistic understanding of GRNs and

effective prevention, diagnosis and treatment of diseases. Nevertheless, this pro-

vides an important starting point to identify functional polymorphisms. Functional

polymorphisms can be classified into two categories: cis-acting regulatory polymor-

phisms, which disrupt or create regulatory elements in DNA or RNA sequences,

and trans-acting polymorphisms, which alter protein structures and activities, and

potentially affect many target loci (Buckland, 2006). Methods to predict the impact

of coding polymorphisms on protein structures will be discussed in Chapter 13.

Here, we introduce the rapidly emerging and improved bioinformatics tools that

can help the analysis of regulatory polymorphisms. We emphasize the principles

underlying the leading algorithms in the field to help geneticists understand their

advantages and disadvantages. We hope that this chapter will be a practical guide

for geneticists to choose available tools and resources to facilitate their experimental

studies.

Gene expression regulation can take place at any step during the path of expres-

sion, including transcription, mRNA splicing and processing, export and subcellular

localization, translation and post-translational modifications. These steps are often

coupled with each other (Maniatis and Reed, 2002). Currently, it is still too early to

build comprehensive and accurate dynamic models for truly realistic GRNs. The ma-

jority of computational methods attempt to detect cis-trans relationships, the basic

building blocks of GRNs, by modern statistical or machine learning approaches. In

this chapter, we will focus on finding cis-regulatory elements or modules (multiple

collaborative elements) at the transcriptional level (DNA) and the splicing (RNA)

level, with emphasis on mammalian species. We choose these two fields because of

the extensive research efforts in recent years and their representativeness. We first

introduce methods for identifying regulatory regions, such as CpG islands and pro-

moters. Then we describe tools to pinpoint specific regulatory elements, using the

analysis of transcription factor-binding sites (TFBSs) as examples. Almost all of these

methods can be employed to identify regulatory elements important for other regula-

tion steps. Specific methods and resources for studying splicing regulatory elements

are then given. Finally, we summarize steps of combining the genomic variation data

and the prediction of regulatory elements, and give examples of how this approach

can help inference from associated alleles to causative alleles. A selection of tools and

resources is given in Table 12.1.
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Table 12.1 Resources related to the analysis of gene regulatory sequences

Resource name URL References

Genome browsers and gene structure analysis

UCSC genome

browser

http://genome.ucsc.edu (Hinrichs et al., 2006)

Ensembl http://www.ensembl.org (Birney et al., 2006)

Entrez gene http://www.ncbi.nlm.nih.gov (Maglott et al., 2005)

Promoter databases and resources

EPD http://www.epd.isb-sib.ch (Schmid et al., 2006)

DBTSS http://dbtss.hgc.jp (Suzuki et al., 2004)

CSHLmpd http://rulai.cshl.edu/CSHLmpd2 (Xuan et al., 2005)

CpGPlot http://www.sanger.ac.uk/Software/EMBOSS (Larsen et al., 1992)

Eponine http://www.sanger.ac.uk/Users/td2/eponine (Down and Hubbard, 2002)

McPromoter http://genes.mit.edu/McPromoter.html (Ohler et al., 2001)

Dragon PF and

GSF

http://research.i2r.a-star.edu.sg/promoter (Bajic et al., 2002)

FirstEF http://rulai.cshl.edu/tools/FirstEF (Davuluri et al., 2001)

Transcription factor binding site databases

TRANSFAC©R http://www.biobase.de/pages/index.php?id=111 (Matys et al., 2003)

JASPAR http://jaspar.cgb.ki.se (Sandelin et al., 2004)

De novomotif finding

CONSENSUS http://bifrost.wustl.edu/consensus (Hertz and Stormo, 1999)

Gibbs motif sampler/http://bayesweb.wadsworth.org/ (Thompson et al., 2003)

gibbs/gibbs.html/

MEME http://meme.sdsc.edu/meme (Bailey and Elkan, 1994)

AlignACE http://atlas.med.harvard.edu (Roth et al., 1998)

MDScan http://ai.stanford.edu/∼xsliu/MDscan (Liu et al., 2002)

DWE http://rulai.cshl.edu/cgi-bin/TRED/

tred.cgi?process=analysisMotifDWEForm (Sumazin et al., 2005)

DME http://rulai.cshl.edu/software/index1.htm (Smith et al., 2005)

CisModule http://www.people.fas.harvard.edu/∼qingzhou/

CisModScan/index.html

(Zhou and Wong, 2004)

Novel TFBS prediction

MATCHTM http://www.biobase.de/pages/index.php?id=291 (Kel et al., 2003)

Storm (in

CREAD)

http://rulai.cshl.edu/cread (Smith et al., 2006)

MAST http://meme.sdsc.edu/meme/mast.html (Bailey and Gribskov, 1998)

CisModuleScan http://www.people.fas.harvard.edu/∼qingzhou/

CisModScan/index.html

(Zhou and Wong, 2004)

Splice site prediction

ASD http://www.ebi.ac.uk/asd-srv/wb.cgi (Thanaraj et al., 2004)

MaxEntScan http://genes.mit.edu/burgelab/maxent/

Xmaxentscan scoreseq.html

(Yeo and Burge, 2004)

Splice site

prediction by

neural network

http://www.fruitfly.org/seq tools/splice.html (Reese et al., 1997)

Splicing enhancer and silencer prediction

ESEfinder http://rulai.cshl.edu/tools/ESE (Cartegni et al., 2003)

RESCUE-ESE http://genes.mit.edu/burgelab/rescue-ese (Fairbrother et al., 2004)

PESX http://cubweb.biology.columbia.edu/pesx (Zhang and Chasin, 2004)

Regulatory SNP analysis

PupaSNP Finder http://pupasuite.bioinfo.cipf.es (Conde et al., 2004)

SNPselector http://primer.duhs.duke.edu (Xu et al., 2005)
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12.2 Predicting regulatory regions

The first step of studying regulatory polymorphisms is to determine whether the

polymorphisms are located in a regulatory region or in a coding region. Different

steps of regulation involve very different regulatory regions. For example, promoter

is the most important regulatory region that controls and regulates the very first step

of gene expression: mRNA transcription. The signal for splicing lies in splice sites

at the boundaries of exons, as well as exonic and intronic sequences flanking the

splice sites. The mRNA stability and localization are usually controlled by regulatory

elements in 5′ UTRs and/or 3′ UTRs. For organisms like man or yeast, whose gene

annotations are relatively complete, genome browsers are very useful for identifying

gene structures and other related annotations (Birney et al., 2006; Hinrichs et al.,

2006). These genome browsers include both transcript supported genes and compu-

tationally predicted genes. Many other resources, including promoter databases and

computational methods for promoter predictions, are also available to characterize

promoters more accurately.

12.2.1 An operational definition of promoter

Promoter is commonly referred to as the DNA region that is required for controlling

and regulating the transcription initiation of the gene immediately downstream. A

typical eukaryotic (Pol II or protein-coding) gene contains a core promoter about

100 bp centred at the transcriptional start site (TSS) and a proximal promoter about

500 bp immediately upstream of the core promoter. For most purposes, people use

the region (–500, +100) with respect to a TSS as a specific definition.

The pre-initiation complex (PIC), which comprises of many general transcription

factors (GTFs), assembles onto the core promoter by interacting with several core

promoter elements, such as TATA-box, Inr, DPE, BRE and DCE. The core promoter

can direct transcription mediated by purified GTFs and Pol II in vitro at the basal level.

The functional form of the PIC in vivo must also contain coactivators/mediators and

its interactions with other TFs, which recruit the complex to the core promoter and al-

low for response of the polymerase to the regulatory signals. During the development,

genes are turned on and off in a pre-programmed fashion, a process orchestrated

by TFs, whose binding sites aggregate in the promoters near their controlled genes.

A combinatorial control is achieved via different combinations of ubiquitous and

cell-specific regulatory factors. Moreover, genes can initiate transcription at mul-

tiple loci (alternative promoters), creating RNA isoforms with different 5′ regions.

Alternative promoters are potentially important for gene-expression regulation or

generating different protein products. Complex regulation in vivo can also involve

many more features, such as enhancers, locus control regions (LCRs), and/or scaf-

fold/matrix attachment regions (S/MARs). Enhancers are also referred to as the distal

promoter elements, which can be either upstream of, downstream of, or within a

gene and can be in any orientation. It should be noted that there is no real distinction
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between proximal and distal (enhancer) regulatory elements, as they often involve

the same set of TF-binding sites. The cooperative binding of some TFs to enhancers

and proximal promoters can lead to the assembly of nucleoprotein structures termed

‘enhanceosomes’. For a comprehensive review on the related biology, see the excellent

book by Carey and Smale (2000).

12.2.2 CpG islands

CpG island is an important signature of 5′ regions of more than 70 per cent mam-

malian genes, often overlapping with, or within 1000 bases downstream of the pro-

moter (Ioshikhes and Zhang, 2000).

Vertebrate genomic DNA is known to be generally depleted of the dinucleotide

CpG. In the human genome, for example, the occurrence of CpG dinucleotides

is five times less than that statistically predicted from the nucleotide composition

(Bird, 1980). CpG depletion is believed to result from methylation of Cs at 80 per

cent CpG dinucleotides, leading to the mutation of the methylated C to T, and

thus the conversion of the CpG dinucleotides to TpG. There are, however, genomic

regions of high GC content, termed ‘CpG islands’, where the level of methylation is

significantly lower than the overall genome. In these regions, the occurrence of CpGs

is significantly higher, close to the expected frequency. As defined by Gardiner-Garden

and Frommer (1987), CpG islands are greater than 200 bp in length, have more than

50 per cent GC content, and have a ratio of the CpG frequency to the product of the

C and G frequencies above 0.6. The CpGPlot program in the EMBOSS package can

be used to map CpG islands according to this definition (Larsen et al., 1992). This

information is also included in the UCSC genome browser (Hinrichs et al., 2006).

12.2.3 Promoter databases and resources

One promoter resource with the best quality is the Eukaryotic Promoter Database

(EPD), in which transcription start sites were determined experimentally (Schmid

et al., 2006). With high-throughput technologies, such as 5′ SAGE (Hashimoto et al.,

2004) or CAGE (Carninci et al., 2005), emerging for mapping TSS, EPD starts collect-

ing TSS from these databases with a built-in quality evaluation procedure. Currently,

EPD (Release 86) contains 4809 promoters, including 2540 vertebrate promoters and

1871 human promoters. Database of Transcriptional Start Sites (DBTSS) is another

useful source; it is based on full-length, oligo-capped cDNA sequences and pro-

vides alternative promoter annotations (Suzuki et al., 2004). The current release of

DBTSS (5.2.0) contains 30 964 human promoters and 425 117 corresponding TSS.

By clustering TSSs, Suzuki et al. found that 8308 human genes and 4276 mouse genes

have alternative promoters.

The Cold Spring Harbor Laboratory mammalian promoter database (CSHLmpd)

(Xuan et al., 2005) is a comprehensive promoter database for man, mouse and rat.
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It used all known as well as predicted transcripts to construct gene sets. The cor-

responding promoter information was collected from multiple resources, including

EPD, DBTSS, GenBank and also computational predictions. They are integrated with

an internal quality quantitation and control system. It enables users to extract the

sequences of their specified regions around TSS, with a specified quality. Promoters

of orthologous genes can be compared to detect sequence conservations in those

regions.

Recent advances in ChIP-chip technology (see Section 12.3.4) provide the op-

portunity to study the genome-wide map of active promoters in specific cell types.

Using this technology, Kim et al. (2005) experimentally located the sites of PIC bind-

ing throughout the genome in human fibroblast cells. Databases based on 5′ SAGE,

CAGE (fantom3) and oligo-capping (DBTSS) technology have also started to pro-

vide tissue information of each TSS. The accumulated tissue-specific mapping will

be very useful for studying how genes are differentially expressed in different tissues.

12.2.4 Computational promoter prediction

Despite the availability of experimentally validated promoter resources, computa-

tional prediction algorithms are still of great importance in identification and char-

acterization of novel genes, as well as large-scale annotations of many other species

after genome sequencing. There have been extensive efforts to improve promoter

predictions computationally (see Werner, 2003, and references therein). The pri-

mary goal of these programs is to identify TSS and/or core promoter elements for

all (protein-coding) genes in a genome, in contrast to the programs identifying spe-

cific transcription factor-binding sites (TFBSs) that are shared by a particular set of

co-regulated genes (see Section 12.3). The underlying principle of these programs

is that promoter regions have some distinctive and characteristic features different

from non-promoters. A classifier is trained on experimentally validated promot-

ers/TSSs (obtained from databases such as EPD or DBTSS), and then used to scan

novel genomic sequences. Different programs differ in the features and classification

algorithms used.

Features important for computational promoter prediction programs include GC

content, CpG ratio, TFBS density, word compositions and core promoter elements.

These have been modelled by many programs. For example, PROMOTERSCAN

(Prestridge, 1995) and AUTOGENE (Kondrakhin et al., 1995) are two of the earli-

est programs utilizing different densities of TFBSs in promoters and non-promoter

sequences, together with a TATA-matrix score. Due to the very limited number of

TFs with known binding motifs (see Section 12.3.2), short sequences (words) more

abundant in promoters than non-promoter regions have been employed for predic-

tion. This idea, with some variations, has been implemented in PromFind (Hutchin-

son, 1996), CorePromoter (Zhang, 1998) and PromoterInspector (Scherf et al., 2000).

CpG Promoter is an effective algorithm discriminating the promoter-associated CpG

islands from the non-promoter-associated ones (Ioshikhes and Zhang, 2000). It uses
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three features to train a quadratic discriminant classifier: length, GC content and

the CpGratio (observed/expected). This algorithm aims only for a promoter region,

not the exact locations of TSSs. Other methods, especially those developed in recent

years, try to integrate as much information as possible to improve the accuracy of

promoter prediction. Here we introduce a few representative ones.

More comprehensive modelling of TFBSs

TSSG and TSSW (Solovyev and Salamov, 1997) both use LDA (linear discriminant

analysis) to combine (a) a TATA score, (b) triplet preferences around TSS, (c) hex-

amer score in three non-overlapping windows of 100 bp upstream TSS, and (d)

putative binding-site scores. The program Eponine (Down and Hubbard, 2002)

models the preferential spacing between binding sites of TFs and TSS as well as the

over-representation of the binding sites. Over-represented binding sites with con-

served spacing receive high scores and are recovered de novo with a relevance vector

machine. It was found that TATA box and the flanking region with GC enrichment

are the most important signals. A linear combination of binding site scores is then

used for prediction.

Physical properties

Regulatory regions often exhibit distinct physical properties such as DNA flexibility

and GC content in their sequences. McPromoter integrates such structural features

into a neural network in conjunction with the Markov modelling of the sequence

information from different segments (upstream, core promoter and downstream)

and is able to reduce false positives (Ohler et al., 2001).

Cross-species conservation

It was observed that some major promoter components such as TSS, TATA and reg-

ulatory motifs are significantly more conserved than the sequences around them. A

recent program PromH (Solovyev and Shahmuradov, 2003) uses linear discriminant

functions that take into account the conservation features and nucleotide sequences

of promoter regions in pairs of orthologous genes. To use PromH, othologous

sequences must be provided. It should be noted that they are not always available

due to the difficulty of aligning orthologous sequences, especially for distal species.

CpG related versus non-CpG related

It is computationally useful and biologically meaningful to treat CpG-related pro-

moters and non-CpG-related ones separately. Non-CpG-related promoters are more
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heterogeneous and therefore more difficult for computational prediction. Two pro-

grams explicitly build different promoter models for these two classes. In FirstEF

(Davuluri et al., 2001), CpG-related promoters and non-CpG-related ones are mod-

elled separately, each using three quadratic discriminant functions to recognize struc-

tural and compositional features of promoter regions, first exons and first splice-

donor sites in conjunction. All these functions are then incorporated into a decision

tree. The predictions of the first exons and promoter regions in the human genome are

available in the UCSC genome browser. Another program, Dragon Promoter Finder

(Dragon PF) (Bajic et al., 2002), uses sensors for three functional regions: promoters,

exons and introns, and then combines them via artificial neural networks (ANNs)

for GC-rich and GC-poor sequences, respectively. Each sensor is based on the fre-

quencies of pentamers at each position. Dragon Gene Start Finder (Dragon GSF)

combines Dragon PF and the prediction of presence of CpG islands by ANN (Bajic

and Seah, 2003).

Performance evaluation

Promoter prediction has been a difficult problem in gene finding and character-

ization. Choosing appropriate programs is very important, since the types of in-

formation built into different models are not completely the same. This is further

complicated by the lack of benchmark data for training and evaluation during orig-

inal publication. A most recent review compared eight programs for whole human

genome predictions (Bajic et al., 2004). According to its comparison, Dragon GSF

and FirstEF might be the good choices to start with for general promoter predictions.

Approximately, they can predict more than half of promoters correctly at the cost

of one or a few false predictions for each correct one, at the resolution of several

hundred to 2 kb. They are quite successful in locating the transcription start sites for

CpG-related promoters, but the performance for non-CpG related ones is less sat-

isfactory due to the diverse nature of vertebrate promoter sequences. Although they

are improving, current programs are still insufficient to pinpoint TSSs; therefore, it

is difficult to distinguish alternative promoters.

12.3 Modelling and predicting transcription
factor-binding sites

Promoter prediction and TFBS identification are closely related. While promoter

prediction is to locate the beginning and cis-regulatory regions of a gene, the fo-

cus of computational methods modelling and predicting TFBSs is to understand

cis-trans interactions for transcription regulation. TFBSs are short (about 6-20 bp

in length), usually degenerate, and often found in promoters. Both experimental
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and computational methods have been developed to identify TFBSs with different

throughputs and at different resolutions. There are two general problems in the com-

putational studies of TFBSs. First, with a set of sequences (e.g., promoters) believed

to be co-regulated, statistical methods are used to identify the pattern of the binding

sites (motif) for regulators. Second, given the motif of a specific TF, computational

methods are used to scan for putative binding sites of that factor. Note that almost

all methods described here are applicable to other types of protein-DNA/RNA In-

teractions, such as the regulation of mRNA splicing and stability.

12.3.1 Motif representation: consensus or matrix

The binding sequence of a TF allows a certain degree of variation, creating a spec-

trum of binding affinity. The variations of binding sites can be collected from known

target genes, mutagenesis studies (Hallikas et al., 2006), phylogenetic shadowing (or-

thologous binding sites in different species) (Ostrin et al., 2006), and in vitro SELEX

experiments (Liu and Stormo, 2005). Several recent technologies, such as SELEX-

SAGE (Roulet et al., 2002) and protein-binding microarray (PBM) (Mukherjee et al.,

2004), allow the determination of binding specificity in a high throughput manner.

The profile or motif of binding sites can then be described with a consensus

sequence. By aligning the sites, the base(s) with the largest affinity (or the most

frequent base among known binding sites) at each position is chosen as a represen-

tative. For example, the consensus of E. coli TATA-box can be written as TATAAT or

TATRNT by the IUPAC code allowing degeneracy. This representation is straight-

forward and useful when the motif is relatively long and conserved. However, TF

motifs of higher eukaryotes are generally degenerate. Consensus cannot quantita-

tively reflect the binding affinities of sites and thus is not optimal for predicting the

occurrence of new sites. In most applications, a position weight matrix (PWM) is a

better choice.

To maintain the binding affinity, point mutations inside binding sites must be

constrained. This requirement, which connects energetic constraints and base fre-

quencies, forms the foundation for statistical mechanic motif modelling (Berg and

von Hippel, 1987). When the non-random base composition of the background or

a control set (e.g., the whole genome) is taken into account, the relation can be

expressed as follows:

s B, j = ln( pB, j /pB,0) (12.1)

where s B, j is the score (PWM element) for a base B at position j ( j = 1, 2, . . . , J , J

is the length of the motif), pB, j is the frequency of the base B at position j , and

pB,0 indicates the background base frequency which does not depend on position.

Choosing pB,0 appropriately (representing the correct background contrast) can be

very important for searching new binding sites in a genome. With the assumption
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that the binding affinity of each position is independent and additive, the total score

of the site is the sum of individual position scores at all J positions:

s =
∑J

j=1
s B j , j , (12.2)

where B j is the base at position j . A straightforward interpretation of the score is the

log likelihood ratio of being a site to being a non-site. Similarly, the log likelihood

ratio of observing K sites can be represented by

S =
∑

k
sk = K

∑J

j=1

∑T

B=A
pB, j log

(
pB, j

/
pB,0

)
. (12.3)

Here

I =
∑J

j=1

∑T

B=A
pB, j log

(
pB, j /pB,0

)
is the information content of the motif and represents the level of degeneracy.

The PWM motif model can be visualized by a ‘pictogram’ or motif logo (Crooks

et al., 2004). In these visualizations, each position is a stack of letters, reflecting the

frequency of observing each nucleotide. The total height of each position can be

scaled according to the information content of that position.

The PWM representation can be generalized to more complex models, such as

high-order Markov models (Zhang and Marr, 1993; Roulet et al., 2002), the maxi-

mum entropy model (Yeo and Burge, 2004), Bayesian networks (Barash et al., 2003),

and generalizations of Bayesian networks (Ben-Gal et al., 2005; Zhao et al., 2005),

when more binding sites are available. However, in most cases, the simpler PWM

model is sufficient.

12.3.2 De novo motif finding

There are approximately 2000 TFs in man and probably also in other mammals

(Messina et al., 2004; Kummerfeld and Teichmann, 2006). TF motifs determined

experimentally have been collected into databases such as SCPD (Zhu and Zhang,

1999), TRANSFAC (Matys et al., 2003), and JASPAR (Sandelin et al., 2004), which,

however, contain limited data. For example, there are currently around 600 ver-

tebrate motifs in TRANSFAC, many of which are redundant and/or derived from

only a few known sites. In order to discover novel motifs, we must resort to de novo

motif-finding algorithms. Given a set of related sequences, as described in Section

12.3.4, these algorithms attempt to find the most over-represented patterns of short

sequences in a reasonable time. Numerous algorithms have been proposed in the

past decade. These algorithms differ in motif representation, objective function and

the procedure for optimization. More importantly, they incorporate different data
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or prior knowledge in the modelling and therefore can fit various situations. In the

following, we introduce computational motif-finding algorithms according to these

considerations, rather than technical details. Interested users are also referred to a

recent review comparing 13 popular methods (Tompa et al., 2005).

Finding the most over-represented motifs

Most earlier approaches attempted to identify motifs with the most over-represented

binding sites. These algorithms achieve the goal by optimizing the local sequence

alignment with Equation 12.3 or its variation as an objective function. Since neither

the motif nor the binding sites are known, this optimization is a combinatorial prob-

lem, which needs heuristic searching strategies to get a reasonably good solution in a

feasible time. Representative heuristic strategies include Greedy Search, implemented

in CONSENSUS (Hertz and Stormo, 1999); expectation maximization (EM), imple-

mented in MEME (Bailey and Elkan, 1994); and the Gibbs sampler (Lawrence et al.,

1993). In the last two approaches, the motif model and site locations are optimized

iteratively by pretending that either the motif or the sites are known at the beginning.

After the best motif is recovered, the sites are erased to identify the second best motifs

and so on. A few other programs, such as MDScan (Liu et al., 2002) and Weeder

(Pavesi et al., 2001), start from searching for over-represented consensus (allowing

degeneracy), rather than from the matrix search directly.

Additional features included in these programs, as well as in their variations such

as AlignACE (Roth et al., 1998), Bioprospector (Liu et al., 2001) and the Impro-

bizer (http://www.cse.ucsc.edu/∼kent/improbizer/), make them smarter. For exam-

ple, MEME allows users to specify whether every sequence has one or multiple

binding sites. MEME, CONSENSUS and Weeder can optimize motif length auto-

matically. MEME and Bioprospector can limit the search to only two block motifs

or palindromic motifs. Higher-order Markov models have been used in Biospector

and MDScan to characterize background sequences more accurately, by which a

significant improvement has been observed.

Note that repeat sequences should be masked before motif finding, and it might

always be worth trying multiple (similar) programs to see whether a motif is detected

consistently. It is reported that some programs are complementary to each other, and

are thus able to improve specificity when used in combination (Tompa et al., 2005).

The identified matrices can be compared with matrices of known TFs to identify

putative regulators (Schones et al., 2005).

Finding discriminative motifs

In contrast to most motif-finding algorithms, discriminative motif finding attempts

to identify the best motifs which discriminate two sets of sequences. This is extremely
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useful in studying gene-expression regulation, for example, to explain different re-

sponses of two groups of genes after a stimuli or to distinguish genes expressed in

different tissues. The most discriminative motif is not necessarily the most abundant.

Master regulators, such as E 2F family members and myc, have thousands of binding

sites over the human genome (Cawley et al., 2004), whereas some TFs may regulate

only a handful of targets. Therefore, discriminative but subtle signals might be over-

whelmed by common binding sites without careful modelling. The word-counting

algorithms compare the relative enrichment of each word (may allow degeneracy)

between the foreground sequences and background sequences. This approach is very

effective in identifying short and less degenerate motifs, such as many typical TF sites

in yeast (Zhang, 1999). Other programs of this category, with slightly different scor-

ing functions, include WORDUP (Pesole et al., 1992), DMOTIFS (Sinha, 2003) and

DWE (Sumazin et al., 2005). To detect more degenerate motifs, we must use the

matrix model. The statistical framework used to find over-represented motifs (Liu et

al., 1995) can be easily extended to model the relative over-representation, as shown

recently (Smith et al., 2005). In addition, the implemented program, discriminative

matrix enumerator (DME), ‘exhaustively’ searches the discretized space of matrices

followed by a local optimization step. This method is very successful in identifying

tissue-specific motifs, which can be highly degenerate (Smith et al., 2005, 2006).

Finding conserved motifs

Sequence conservation across different species is an important indicator of func-

tionality. Phylogenetic footprinting is referred to as the identification of functional

regions by comparing orthologous genomic sequences between species (Fickett and

Wasserman, 2000). With more sequenced genomes available, comparative analysis

of noncoding regions has become an important approach in detecting promoters

or regulatory regions in general (Bejerano et al., 2004; Siepel et al., 2005). Several

earlier methods for detecting conserved blocks from a multiple alignment have been

evaluated by Stojanovic et al. (1999). Programs designed for very long alignments of

syntenic regions have also become available (see (Blanchette et al., 2004, and refer-

ences therein). A more detailed examination of comparative genomic approaches is

presented in Chapter 6.

With the alignment of multiple orthologous sequences, it is possible to detect

short TF motifs that are significantly more conserved than random. This idea has

been applied to screen regulatory elements conserved in multiple yeast species (Kellis

et al., 2003) and recently in four mammalian species (Xie et al., 2005). The motifs

identified include many known ones as well as novel ones.

Given a set of presumably co-regulated sequences and their orthologues, it is

also possible to incorporate both over-representation and conservation into motif-

finding algorithms. A straightforward strategy is to use a two-step procedure: find

conserved regions and then search for over-represented motifs only in those regions



OTE/SPH OTE/SPH

JWBK136-12 February 16, 2007 15:23 Char Count= 0

12.3 TRANSCRIPTION FACTOR-BINDING SITES 293

(Wasserman et al., 2000). The two steps can be applied in the opposite order: first

over-represented motifs are identified separately in each species or in the pooled data,

and then motifs without significant conservation are eliminated (GuhaThakurta

et al. 2002; Pritsker et al. 2004; Li et al., 2005). It was argued that these meth-

ods are somewhat ad hoc and may miss over-represented but divergent motifs or

conserved motifs not very over-represented. Therefore, the two criteria can also be

integrated into a single statistical framework for optimization (Prakash et al., 2004;

Li and Wong, 2005). However, since more parameters need to be estimated from

an often small data set, these methods may also identify noisy motifs (Li et al.,

2005).

It should also be noted that the conservation of regulatory regions may vary widely.

In principle, the regulatory programs that control early development in metazoan

systems tend to be extremely complex, almost always involving distal enhancers

and/or complicated locus control regions (LCRs). Subtle change of these programs

can lead to dramatic effects. Therefore, lineage developmental master TFs and their

binding sites are often more conserved. In contrast, in the terminally differentiated

tissues, the regulatory program is often relatively simple; cis-regulatory regions in

the promoters tend to be closer to TSS and many TFBS are less conserved among

distant species.

Constructing cis-regulatory modules

Since genes are always regulated by multiple TFs and composite binding sites (cis-

regulatory modules (CRMs)), simultaneous detection of CRMs rather than individ-

ual sites may provide a better specificity. A module can be composed of multiple

sites of the same type (homotypic) or different types (heterotypic). Palindromic

motifs can be regarded as a special type of CRMs and are common for TFs. How-

ever, most CRMs studies require that individual motifs be known. De novo CRM

discovery is a much more difficult problem, which usually needs larger data sets

(Bussemaker et al., 2001; Zhou and Wong, 2004; Gupta and Liu, 2005). The Cis-

Module algorithm has been applied to identify CRMs important for muscle-specific

expression in Ciona savignyi (Johnson et al., 2005). REDUCE (Bussemaker et al.,

2001), MotifRegressor (Conlon et al., 2003), MARSMotif (Das et al., 2004), and,

more recently, MatrixREDUCE (Foat et al., 2005) and MARSMotif-M (Das et al.,

2006) are regression-based algorithms that can maximize the explained variation of

gene expression by a limited number of motifs in combination.

12.3.3 Predicting novel binding sites

Given a motif determined experimentally or computationally, an important task is

to search new sequences for novel binding sites, using consensus matching or matrix
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scoring. However, one must first assess the quality of the motif and determine a

threshold before using it for searching new sites. One way to do this is to perform a

standard classification test by which both the threshold score and the motif length

may be optimized by minimizing the classification (Bayesian) error. The MATCH

program (Kel et al., 2003) included in the TRANSFAC database uses precalculated

thresholds with different stringencies. The storm program in the CREAD package is

tailored to search a set of sequences for multiple motifs very quickly (Smith et al.,

2006).

Because of the short length and degeneracy of most TF motifs, the signal to noise

ratio is quite low. Therefore, predicting novel functional binding sites of a known

motif is by no means easier than de novo motif finding (Hu et al., 2005). It was

estimated that for a typical motif, without any other information except the matrix,

the specificity of genomic search can be as low as 0.001, meaning one functional sites

among 1000 predictions (Wasserman and Sandelin, 2004). These false predictions,

which might bind TFs with high affinity in vitro, are never used in vivo, suggesting

that important signals also reside outside the cognate binding sites to distinguish

from decoy sites. These include CRMs, chromatin structure, and DNA stability and

flexibility, which are important for determining the affinity and accessibility of the

binding sites. Conservation information in other species is not accessible for the

cellular machinery, but is effective for eliminating false positives by one order of

magnitude (Wasserman and Sandelin, 2004).

One way to predict CRMs is by evaluating the significance of the co-occurrence of

TFBSs within a certain distance. This approach requires the least prior knowledge.

Claverie and Sauvaget (1985) published one of the earliest methods to detect two

sites in a fixed distance and the same orientation in the heat-shock promoters. Alter-

natively, more subtle rules can be learned from known functional sites co-occurring

in the same regions. Although still limited, several databases, such as COMPEL

and TRRD, have started to collect experimentally validated CRMs (Heinemeyer et

al., 1998), and this will greatly facilitate advances in this field. An interesting ex-

ample is the identification of regulatory modules that confer muscle-specific gene

expression (Wasserman and Fickett, 1998), where logistic regression was used to

combine matrix scores for multiple sites. The authors reported that focusing on

CRMs rather than individual binding sites can reduce false positives by two orders

of magnitude while retaining more than half of the true sites. In a recent study, not

only co-occurrences, but also geometric constraints, were modelled quantitatively

from known examples. The implemented program, called EEL, identified vertebrate

enhancers successfully (Hallikas et al., 2006). Therefore, the analysis of CRMs can im-

prove prediction accuracy to a level that makes follow-up experimental investigations

feasible.

Other functional annotations and co-localization information are also help-

ful. Computational approaches incorporating DNA mechanical properties and

nucleosome structures are still rare, but represent important directions for the

future.
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12.3.4 Experimental approaches to identify co-regulated targets

Two types of high-throughput technologies, namely, microarrays and genomic oc-

cupancy assays, are highly effective to identify co-regulated genes, thereby narrowing

down the putative regions of functional binding sites dramatically. These technolo-

gies are now routinely used to study gene-expression regulation.

Many studies have been based on expression microarrays. For the purpose of

regulation studies, this tool becomes more powerful when data are collected under

multiple conditions or at multiple time-points after the perturbation of the upstream

TF (e.g., TF knockout, mutation in DNA binding domain or knock-down). The un-

derlying assumption is that genes with similar expression profiles (co-expression)

are likely to be regulated by the same factor(s) (co-regulation). Classical approaches

are based on the clustering analysis to identify genes with correlated expression pat-

terns, from which one could try to identify cis-elements enriched in their promoters

(Spellman et al., 1998; Hughes et al., 2000). Some algorithms are specifically de-

signed for motif finding by looking for ‘tight clusters’ of expression profiles (Tseng

and Wong, 2005).

However, co-expression is not equal to co-regulation. When the perturbation is

on some master regulators, it can also activate/repress many downstream TFs, as in

the case of heat shock or other stress responses. Because multiple TFs are involved,

responsive target genes would be a mixture of direct targets for different TFs. ChIP-

chip (Lee et al., 2002; Cawley et al., 2004; Odom et al., 2004; Carroll et al., 2005)

and ChIP-tag technologies (Impey et al., 2004; Sabo et al., 2004; Ng et al., 2005;

Wei et al., 2006) allow for more direct detection of genomic regions occupied by

endogenous transcription factors (see Chapter 9 for some examples of ChIP data).

ChIP-chip cross-links binding proteins to chromatins in vivo. Immunoprecipitated

DNA fragments are then hybridized to genomic DNA microarrays or sequenced

by SAGE-tag technology. The power of these approaches has been demonstrated in

many applications. Despite non-specific binding and cross-linking, it has been shown

that highly enriched chip regions are very accurate in predicting bona fide targets.

In a study of ER binding sites in chromosomes 21 and 22 with ChIP-chip data, all

57 predictions were validated to be real (Carroll et al., 2005). Due to the current

resolution of 500-2000 bp, computational analysis for motif finding and binding site

prediction is indispensable. Almost all the motif-finding and TFBS prediction tools

described in Sections 12.3.2 and 12.3.3 can be applied to chromatin occupancy data.

12.4 Predicting regulatory elements
for splicing regulation

The next level of gene expression regulation is RNA processing, including cap-

ping, splicing, polyadenylation, editing, stability and transport. Many of these (in
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particular, the first three) steps are co-transcriptional and hence coupled to tran-

scriptional regulation (Maniatis and Reed, 2002). In this section, we will focus on

mRNA splicing, especially alternative splicing (AS), which is responsible for generat-

ing diverse protein isoforms from a single gene locus. Recent estimates of alternatively

spliced genes are more than 60 per cent in man and probably other mammals (Lander

et al., 2001; Modrek and Lee, 2002; Johnson et al., 2003). Alternative splicing plays

critical roles in many regulatory pathways in metazoans, including those control-

ling cell growth, cell death, differentiation and development (Black, 2003). Aberrant

splicing has been implicated in a large number of human diseases (Faustino and

Cooper, 2003).

The boundaries of introns and exons are marked by splice sites. The canonical

splice sites are composed of GU dinucleotide in the exon/intron boundary (5′ss or

donor site), and AG dinucleotide in the intron/exon boundary (3′ss or acceptor site).

Each dinucleotide is flanked by a larger, less conserved sequence. The branch site

and polypyrimidine tract close to the 3′ss in the intron are also critical for splic-

ing. Minor types of splice sites (e.g., AU/AC introns), although less than 0.1 per

cent, also exist (Burset et al., 2000). Although the key biochemical steps of splicing

have been worked out, far less is known about the mechanism of accurate splic-

ing regulation. In mammals, the signal carried by the splice sites is insufficient to

drive specific exon recognition. The tight regulation of alternative splice site se-

lection in response to different physiological conditions is mediated through the

interactions of numerous cis-elements outside the splice sites, such as enhancers and

repressors, and a very large protein/snRNA complex, the splicesome, which is com-

posed of hundreds of proteins (Rappsilber et al., 2002; Zhou et al., 2002) and five

critical snRNAs. Furthermore, the splicing studies rely heavily on in vitro systems

(mini-genes). It is difficult to generate a mini-gene construct recapitulating the same

splicing pattern in vivo. Previous computational analyses mainly focused on the de-

tection of AS events and evolutionary properties based on cDNA/EST data. Methods

for facilitating the understanding of the splicing regulation are emerging in recent

years.

12.4.1 Statistical modelling and prediction of splice sites

The motif of splice sites can also be represented by consensus sequences or PWMs, as

described in Section 12.3.1. However, this is perhaps the most appropriate place to

test complex models, because a very large number of known splice sites are available

by transcript-genome alignment. These methods include the higher-order Markov

model (Zhang and Marr, 1993), the maximum entropy model (Yeo and Burge,

2004) and Bayesian networks (Chen et al., 2005), all of which attempt to model the

dependencies among different positions. It was claimed that integrating correlations

between nucleotides helps discriminate authentic splice sites from pseudo splice

sites.
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12.4.2 Identification of splicing enhancers and silencers

Cis-elements for splicing regulation can be in exons or introns, and can be enhancers

or silencers. They are important for both constitutive splicing and alternative splic-

ing (Smith and Valcarcel, 2000). The best-characterized enhancers and silencers are

recognized by one of two splicing factor classes: hnRNPs (heterogeneous nuclear ri-

bonucleoprotein) and SR (serine/arginine rich) proteins. They are usually identified

in tissue-specific exons or disease mutants with aberrant splicing. Many exonic splic-

ing enhancers (ESEs) are purine rich. A well-studied example is the 73-nucleotide

ESE in the alternative exon M2 of the mouse IgM gene. This ESE can stimulate splicing

when inserted into a heterologous regulated intron of the Drosophila doublesex (dsx)

gene (see references in Liu et al., 1998). In another example, a single-nucleotide C/T

silent transition causes the skipping of exon 7 in the human SMN2 gene, which me-

diates the severity of spinal muscular atrophy (SMA) in the absence of the wild-type

SMN1 gene, a paralogue of SMN2 (Lorson et al., 1999). It was demonstrated that the

transition disrupts an SF2/ASF-dependent ESE and creates an ESS bound by hnRNP

A1 (Cartegni and Krainer, 2002; Kashima and Manley, 2003). Comprehensive lists

of exonic and intronic splicing regulatory sequences reported in literature have been

compiled (Ladd and Cooper, 2002; Zheng, 2004). Since elements recognized by a

splicing factor seem to be very degenerate, it is difficult to derive motifs from these

known examples.

SR-protein-binding sites and ESEfinder

The SR proteins are a family of highly conserved, serine/arginine-rich RNA-binding

proteins. They are essential splicing factors with overlapping functions, involved

in early steps of spliceosome assembly. They can regulate the selection of alternative

splice sites in a concentration-dependent manner, in part by antagonizing the activity

of hnRNP A1 (see references in Liu et al., 1998). The binding sites of four SR proteins,

including SF2/ASF, SC35, SRp40 and SRp55, have been determined by the Krainer

Laboratory with a functional SELEX assay (Liu et al., 1998, 2000). The ESE matrix

for each SR protein was then derived from the winner sequences, as described in

Section 12.3.1. These matrices have been included in a web-based resource called

ESEfinder (Cartegni et al., 2003), which can be used to predict and visualize novel

ESEs of these SR proteins.

Exonic splicing silencers

A systematic screening for exonic splicing silencers has been performed by the Burge

Laboratory (Wang et al., 2004). The principle of the system is similar to that of SELEX
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except that (i) the screening is GFP-based, and (ii) random sequences are not selected

for a specific splicing factor, but can be any element with repressive activities. This

screening identified 141 ESS decamers. Most of these are probably repressive when

introduced into heterogeneous gene contexts. These decamers can be clustered by

sequence similarity to identify consensus motifs. Although some of them resemble

the binding sites of known SFs, such as hnRNP A1 and hnRNP H, generally it is not

clear which SFs can specifically recognize these sequences.

Enhancers and silencers derived in silico

Pure computational screening for enhancers and silencers has also been performed

(Fairbrother et al., 2002; Sironi et al., 2004; Yeo et al., 2004; Zhang and Chasin, 2004).

As it is difficult to obtain a list of co-regulated AS events, these studies do not focus

on specific splicing factors. Instead, they assume different densities of regulatory ele-

ments in different genic regions and attempt to identify general enhancing or repres-

sive elements. In particular, in the RESCUE approach, Fairbrother et al. assumed that

for an exon to be constitutively included, weak splice sites have to be complemented by

a higher density of ESEs nearby. They also assumed that the density of ESEs in exonic

regions is higher than that in intronic regions. All hexamers were scored by these two

criteria of relative over-representation. As a result, 238 hexamers were identified as

potential human ESEs (called RESCUE-ESEs), and then were clustered into 10 motifs

by their sequence similarity. Some of these motifs resemble the binding sites of known

SFs. When inserted into the test exon of a mini-gene construct, these hexamers can

indeed enhance exon inclusion. This approach has been extended to mouse, zebrafish

and fugu (Yeo et al., 2004) for predicting intronic splicing enhancers (ISEs). Among

hundreds of the predicted ISEs hexamers, the GGG motif is the most prevalent and

is contained in majority of ISEs hexamers. The predicted ESEs were included in the

RESCUE-ESE server and can be used to scan new sequences (Fairbrother et al., 2004).

Since ESEs are largely imposed on coding constraints, Zhang and Chasin (2004)

argued that the codon usage bias might complicate the ESE identification. Therefore,

in their study, only constitutively spliced, internal, non-coding exons were used.

They assumed that ESEs should have a relative enrichment in these spliced non-

coding exons compared to 5′ UTRs of intronless genes and pseudoexons (intronic

regions flanked by splice-site like sequences with a similar length as real exons).

Using this approach, they identified 2069 octomers as putative ESEs (PESEs) and 974

octomers as putative ESSs (PESSs). An online tool is also available for identifying the

occurrences of these PESEs and PESSs.

It should be noted that the trans-acting factors interacting with these enhancers

and silencers predicted in silico are not obvious, although their splicing role has

been demonstrated in in vitro splicing assays and endogenous genes (Zhang et al.,

2005). Since these elements were originally identified by constitutively spliced exons,

although they are probably important for alternative splicing as well, it is not very clear
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how much bias might be introduced. The constitutive and alternative splicing may

result from the different balances of the same positive and negative splicing sig-

nals. Moreover, at least for several known SFs, their specific elements are associated

predominantly with tissue-specifically spliced exons. These elements are probably

missed by these in silico predictions.

The enhancers and silencers derived by different approaches have also been com-

pared for their ability to predict splicing alterations caused by point mutations. In-

terestingly, although these methods (SELEX, RESCUE ESEs, PESEs) are comparable

in predictive power, the overlap is moderate (Wang et al., 2005; Zhang et al., 2005).

This might imply that a number of ESEs, as well as ESSs, have not been identified.

12.4.3 Splicing microarrays

The catalogue of regulatory elements described above is only the first step towards

understanding splicing regulation. A more challenging step is to understand how

the interaction of these regulatory elements and splicing factors generates highly

regulated splicing patterns in different tissues types or under different conditions

in response to stimuli. The combinatorial interaction of multiple factors may con-

tribute greatly to the subtle regulation. The variation of expression of splicing factors

may also add another layer of complexity. Currently, the detailed mechanistic studies

of splicing regulation are limited to only a few model systems using mini-gene con-

structs. One concern is whether the rules inferred from these models can reflect the

regulation in vivo and whether they are general enough to extend to other genes. As

in the study of transcriptional regulation, the high-throughput technologies measur-

ing splicing activities and protein-RNA interactions under specific conditions can

provide invaluable information.

The feasibility of using microarrays to study the regulation of RNA splicing was first

demonstrated in yeast (Clark et al., 2002). These splicing microarrays are designed to

distinguish splicing variants by probes in exon bodies and exon junctions (Modrek

and Lee, 2002). It was demonstrated that the loss of key mRNA-processing factors

leads to dramatic splicing defects, which can be measured by microarrays. Since

40–60 per cent of the mammalian genes have introns (a typical gene has about eight

introns) compared to 3.8 per cent intron-containing genes in yeast, detecting AS

in a mammalian system with microarrays has become possible only very recently

(Johnson et al., 2003; Pan et al., 2004; Li et al., 2006; Sugnet et al., 2006). The largest

study so far measured AS in more than 50 human tissues and cell lines, using 36-

nucleotide oligonucleotide probes tiled on every consecutive exon junctions of Refseq

genes (Johnson et al., 2003). Since probes are included even for ‘constitutive’ exon

junctions, where there is no cDNA/EST evidence of alternative splicing, this platform

can identify novel AS events in a more unbiased manner than in the EST sequencing

approach. However, it should be noted that these data are noisy, since each AS event is

represented by only one or two probes (in affymetrix arrays, more than 10 probes are
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used to summarize the mRNA abundance level). As there are very limited choices for

probe positions in exon junctions to optimize hybridization efficiency and specificity,

some probes might behave poorly and thus do not reflect the correct abundance of

the splicing junctions. In the recent affymetrix exon microarrays, multiple probes are

tiled on each exon to get more reliable signals of exon inclusion. However, there are no

junction probes, and it is difficult to infer splicing patterns. In several other studies,

arrays are designed for the AS events with transcript evidence (Pan et al., 2004; Ule

et al., 2005; Sugnet et al., 2006). In these designs, each AS event is represented by

multiple probes in exons, introns or exon junctions. Therefore, they can measure AS

more accurately and are suitable to infer rules of splicing regulation. For example,

motifs have been discovered from the flanking intronic regions of brain/muscle

specific AS exons (Sugnet et al., 2006). Other microarray-based assays have also been

developed. For example, in DASL, a high specificity is achieved by the ligation of a pair

of oligos across the splice junction. The primer extension step before ligation makes

the choice of probes more flexible (Fan et al., 2004). This approach has been applied

to screen a panel of prostate cancer tissues and normal tissues to identify signature

splicing events (Li et al., 2006) and compared with conventional microarrays (Zhang

et al., 2006). The combination of splicing microarrays and knock-down experiments

of splicing factors have been demonstrated as a powerful tool to dissect important

pathways regulated through tissue-specific splicing (Ule et al., 2005). Obviously,

splicing microarrays will be routinely used to study GRNs in the coming years.

Several technical difficulties should be noted. As transcription and splicing are

intrinsically coupled, it is very difficult to separate their individual contributions to

the steady-state levels of the transcripts; there have been several attempts (Johnson

et al., 2003; Cline et al., 2005; Li et al., 2006; Shai et al., 2006). Moreover, the alter-

ations detected by microarrays are individual AS events, which are local. Usually, the

complete isoforms and protein products cannot be tracked unambiguously (Wang et

al., 2003). Another challenge, even combined with knock-out experiments, is to dis-

tinguish direct effects and indirect effects, as the direct measurement of protein–RNA

interaction on a large scale is still in its infancy (Ule et al., 2003).

12.5 Evaluating the functional importance
of regulatory polymorphisms

The functional importance of polymorphisms is determined by how they can affect

the regulation of gene expression. In the most common scenario for geneticists, a

polymorphism, such as a SNP, is linked to a disease or gene expression trait, and one

has to ask whether it is a causative allele or just an allele with LD. The first step is to

determine the regulatory region it falls in, the basis to choose appropriate tools. For

polymorphisms in promoters, it would be a strong indication of disrupting tran-

scription if they overlap with a transcription factor-binding sites. Putative binding
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sites can be predicted, as described in Section 12.3. Although the false-positive rate

of such in silico prediction for a single binding site is usually high, accuracy can be

improved by incorporating information from different resources.� If a binding site overlaps with the SNP, do the different alleles have different bind-

ing affinities (motif scores)? A study of 127 SNPs in the promoters of cell-cycle

checkpoint genes found that a majority of them potentially affect binding affinity,

as validated at a high success rate by Gel shift in vitro (Belanger et al., 2005). A

further step is to ask whether the identified binding site co-occurs with others; this

might form a CRM.� Is the SNP in the core promoter? According to the report assays that evaluated the

effect of 674 haplotypes in 247 promoters for promoter activity, there is a strong

indication that functional polymorphisms are close to the TSS (Buckland et al.,

2005). This is probably due to the fact that the density of regulatory elements is

higher near the TSS. Subtle changes in the mechanical or geometric properties of

DNA may also alter the efficiency of transcription (Buckland, 2006) even if the

SNP does not change a binding site directly.� Is the overlapped region conserved? The UCSC genome browser is an excellent

resource for interactive analysis of cross-species conservation. See Bejerano et al.

(2005) for a step-by-step tutorial on how to screen conserved regions for functional

elements.� Is there any in vivo binding evidence? Besides the known binding sites collected

in different databases, it is also worth checking whether a genome-wide assay for

chromatin occupancy has been performed for the TF under study.� Is there any functional annotation (such as gene ontology, tissue-specific expres-

sion or protein interaction) for the associated gene? Is it involved in the pathway

implicated in the disease?

These in silico analyses are economical and fast and often can provide good evidence

about the potential importance of the gene. The candidates which pass these filtering

steps may be validated by a reporter assay before further investigation.

If the SNP is located in the exonic region or flanking intronic region, it might alter

mRNA splicing.� Disruption of splice sites is very suggestive of aberrant splicing.� Otherwise, we must determine whether it disrupts or creates splicing enhancers or

silencers. Successful examples have been demonstrated to identify point mutations

affecting ESEs with ESEfinder (Liu et al., 2001; Cartegni and Krainer, 2002). It is
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easier to predict erroneous exon skipping than other splicing errors (e.g., cryptic

splicing), as shown in these examples.� Can splicing alteration lead to dramatic change of protein product? Skipping of

an internal coding exon whose length is not a multiple of three or a non-sense

mutation generally induces mRNA non-sense mediated decay (NMD) or a large

truncation at the 3′ part of the protein. If the exon overlaps with an important

domain, skipping of the exon can also have dramatic effects. Different isoforms

can be virtually translated into different proteins, which can then be analysed for

their protein structures (see Chapter 13).

Several tools have been developed for partial automation of these analyses (Conde

et al., 2004; Xu et al., 2005).
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Amino-Acid Properties and
Consequences of Substitutions

Matthew J. Betts and Robert B. Russell

Structural and Computational Biology Programme, EMBL, Meyerhofstrasse 1, 69117

Heidelberg, Germany

13.1 Introduction

Since the earliest protein sequences and structures were determined, it has been clear

that the positioning and properties of amino acids are key to understanding many

biological processes (Pal et al., 2006). For example, the first-determined protein

structure, haemoglobin, provided a molecular explanation for the genetic disease

sickle cell anaemia. A single nucleotide mutation leads to a substitution of glutamate

in normal individuals with valine in those who suffer the disease. The substitution

leads to a lower solubility of the deoxygenated form of haemoglobin, and it is thought

that this causes the molecules to form long fibres within blood cells that lead to the

unusual sickle-shaped cells that give the disease its name.

Haemoglobin is just one of many examples now known where single mutations

can have drastic effects on protein structure, function and associated phenotype.

The current availability of thousands or even millions of DNA and protein sequences

means that we now have knowledge of many mutations, either naturally occurring

or synthetic. Mutations can occur within one species, or between species at a wide

variety of evolutionary distances. Whether mutations cause diseases or have subtle

or drastic effects on protein function is often unknown; however, large-scale efforts

are under way to quantify these effects (Cavallo and Martin, 2005; Karchin et al.,

2005).

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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The aim of this chapter is to give some guidance on how to interpret mutations

that occur within genes that encode for proteins. Both of us have been approached

previously by geneticists who want help interpreting mutations by protein sequence

and structure information. This chapter attempts to summarize our thought pro-

cesses when giving such help. Specifically, we discuss the nature of mutations, and

the properties of amino acids in a variety of different protein contexts. The hope is

that this discussion will help in anticipating or interpreting the effect that a particular

amino-acid change will have on protein structure and function. We will first highlight

features of proteins that are relevant to considering mutations: cellular environments,

three-dimensional structure and evolution. Then we will discuss classifications of the

amino acids by evolutionary, chemical or structural principles, and the role of amino

acids of different classes in protein structure and function in different contexts. Last,

we will review several studies of mutations, including naturally occurring varia-

tions, SNPs, site-directed mutations, mutations that allow adaptive evolution, and

post-translational modification.

13.2 Protein features relevant to amino-acid behaviour

It is beyond the scope of this chapter to discuss the basic principles of proteins,

since this can be gleaned from any introductory biochemistry textbook. However, a

number of general principles of proteins are important to place any mutation in the

correct context.

13.2.1 Protein environments

A feature of key importance is cellular location. Different parts of cells can have very

different chemical environments with the consequence that many amino acids behave

differently. The biggest difference is between soluble proteins and membrane proteins.

Whereas soluble proteins tend to be surrounded by water molecules, membrane

proteins are surrounded by lipids. Roughly speaking, this means that these two

classes behave in an ‘inside-out’ fashion relative to each other. Soluble proteins tend

to have polar or hydrophilic residues on their surfaces, whereas membrane proteins

tend to have hydrophobic residues on the surface that interacts with the membrane.

Soluble proteins also come in several flavours. The biggest difference is between

those that are extracellular and those that are cytosolic (or intracellular). The cytosol

is quite different from the more aqueous environment outside the cell; the density

of proteins and other molecules affects the behaviour of some amino acids quite

drastically, especially cysteine. Outside the cell, cysteines in proximity to one another

can be oxidized to form disulphide bonds, sulphur–sulphur covalent linkages that

are important for protein folding and stability. However, the reducing environment

inside the cell makes the formation of these bonds very difficult; in fact, they are so

rare as to warrant special attention.
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Cells also contain numerous compartments, the organelles, which can also have

slightly different environments from each other. Proteins in the nucleus often interact

with DNA, meaning they contain different preferences for amino acids on their

surfaces (e.g., positive amino acids or those containing amides most suitable for

interacting with the negatively charged phosphate backbone). Some organelles, such

as mitochondria or chloroplasts, are quite similar to the cytosol, while others, such

as lysosomes or Golgi apparati, are more akin to the extracellular environment. It is

important to consider the likely cellular location of any protein before considering

the consequences of amino-acid substitutions.

A detailed hierarchical description of cellular location is one of the three

main branches of the classification provided by the Gene Ontology Consortium

(Ashburner et al., 2000), the others being ‘molecular function’ and ‘biological pro-

cess’. The widespread adoption of this vocabulary by sequence databases and others

should enable more sophisticated investigation of the factors governing the various

roles of proteins.

13.2.2 Protein structure

Proteins themselves also contain different microenvironments. For soluble proteins,

the surface lies at the interface with water and thus tends to contain more polar

or charged amino acids than one finds in the core of the protein, which is more

likely to comprise hydrophobic amino acids. Proteins also contain regions that are

directly involved in protein function, such as active sites or binding sites, in addition

to regions that are less critical to the protein function, and where mutations are likely

to have fewer consequences. We will discuss many specific roles for particular amino

acids in protein structures in the sections below, but it is important to remember

that the context of any amino acid can vary greatly depending on its location in the

protein structure.

13.2.3 Protein evolution

Proteins are nearly always members of homologous families. Knowledge of the family

a protein belongs in will generally give insights into the possible function, but several

things should be considered. Two processes can give rise to homologous protein

families: speciation or duplication. Proteins related by speciation only are referred to

as ‘orthologues’, and, as the name suggests, these proteins have the same function

in different species. Proteins related by duplications are referred to as ‘paralogues’.

Successive rounds of speciation and intragenomic duplication can lead to confusing

situations where it becomes difficult to say whether paralogy or orthology applies.

To be maintained in a genome over time, paralogous proteins are likely to evolve

different functions (or have a dominant negative phenotype, and so resist decay by

point mutation (Gibson and Spring, 1998)). Differences in function can range from
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subtle differences in substrate (e.g., malate versus lactate dehydrogenases), to only

weak similarities in molecular function (e.g., hydrolases), to complete differences in

cellular location and function (e.g., an intracellular signalling domain homologous to

a secreted growth factor (Schoorlemmer and Goldfarb, 2001)). At the other extreme,

the molecular function may be identical, but the cellular function may be altered, as

in the case of enzymes with differing tissue specificities.

Similarity in molecular function generally correlates with sequence identity.

Mouse and human proteins with sequence identities in excess of 85 per cent are

likely to be orthologues, provided there are no other proteins with higher sequence

identity in either organism. Orthology between more distantly related species (e.g.,

man and yeast) is harder to assess, since the evolutionary distance between organ-

isms can make it virtually impossible to distinguish orthologues form paralogues by

simple measures of sequence similarity. An operational definition of orthology can

sometimes be used, for example, if the two proteins are each other’s best match in

their respective genomes. However, there is no substitute for constructing a phyloge-

netic tree of the protein family to identify which sequences are related by speciation

events. Assignment of orthology and paralogy is perhaps the best way of determining

likely equivalences of function. Unfortunately, complete genomes are unavailable for

most organisms. Some rough rules of thumb can be used: function is often conserved

down to 40 per cent protein sequence identity, with the broad functional class being

conserved to 25 per cent identity (Wilson et al., 2000).

When considering a mutation, it is important to consider how conserved the

position is within other homologous proteins. Conservation across all homologues

(paralogues and orthologues) should be considered carefully. These amino acids are

likely to play key structural roles, or a role in a common functional theme (i.e.,

catalytic mechanism). Other amino acids may play key roles only in the particular

orthologous group (i.e., they may confer specificity on a substrate), thus meaning

they vary when considering all homologues.

13.2.4 Protein function

Protein function is key to understanding the consequences of amino-acid substitu-

tion. Enzymes such as trypsin (Figure 13.1) tend to have highly conserved active sites

involving a handful of polar residues. In contrast, proteins that function primarily

only to interact with other proteins, such as fibroblast growth factors (Figure 13.2),

interact over a large surface, virtually any amino acid being important in mediating

the interaction (Plotnikov et al., 1999). In other cases, multiple functions make the

situation even more confusing; for example, a protein kinase (Hanks et al., 1988) can

both catalyse a phosphorylation event and bind specifically to another protein, such

as cyclin (Jeffrey et al., 1995).

It is not possible to discuss all of the possible functional themes here, but we

emphasize that functional information, if known, should be considered whenever

studying the effects of substitution.
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Ser

His

Asp

Figure 13.1 RasMol (Sayle and Milner-White, 1995) figure showing the catalytic Asp/His/Ser

triad in trypsin (PDB code 1mct (Berman et al., 2000)). Figure generated by the authors using

data from Sayle and Milner-White, 1995. Permission not required

Figure 13.2 Molscript (Kraulis, 1991) figure showing fibroblast growth factor interaction with

its receptor (code 1cvs (Plotnikov et al., 1999)). Residues at the interface are labelled. The two

molecules have been pulled apart for clarity. Figure generated by the authors using data from

Kraulis, 1991, and Plotnikov et al., 1999. Permission not required
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13.2.5 Post-translational modification

Although there are only 20 possible types of amino acid that can be incorporated in

a protein sequence upon translation of DNA, there are many more variations that

can occur through subsequent modification. In addition, the gene-specified protein

sequence can be shortened by proteolysis, or lengthened by addition of amino acids

at either terminus.

Two common modifications, phosphorylation and glycosylation, are discussed

in the context of the amino acids where they most often occur (tyrosine, serine,

threonine and asparagine; see below). We direct the reader to the review by Krishna

and Wold (1993) for more information on many other known types and specific

examples. The main conclusion is that modifications are highly specific, with speci-

ficity provided by primary, secondary and tertiary protein structure, although the

detailed mechanisms are obscure. The biological function of the modified proteins

is also summarized, from the reversible phosphorylation of serine, threonine, and

tyrosine residues that occurs in signalling, to the formation of disulphide bridges

and other cross-links that stabilize tertiary structure, and on to the covalent attach-

ment of lipids that allows anchorage to cell membranes. More detail on biological

effects is given by Parekh and Rohlff (1997), especially where it concerns possible

therapeutic applications. Many diseases arise by abnormalities in post-translational

modification, and these are not necessarily apparent from genetic information alone.

13.3 Amino-acid classifications

We have a natural tendency to classify, as it makes the world around us easier to

understand. As amino acids often share common properties, several classifications

have been proposed. This is useful, but a little dangerous if over-interpreted. Always

remember that, for the reasons discussed above, it is very difficult to put all amino

acids of the same type into an invariant group. A substitution in one context can be

disastrous in another. For example, a cysteine involved in a disulphide bond would

not be expected to be mutatable to any other amino acid (i.e., it is in a group on

its own), one involved in binding to zinc could probably be substituted by histidine

(group of two), and one buried in an intracellular protein core could probably mutate

to any other hydrophobic amino acid (a group of 10 or more). We will discuss other

examples below.

13.3.1 Mutation matrices

One means of classifiying amino acids is a mutation matrix (or substitution or

exchange matrix). This is a set of numbers that describe the propensities of exchanging

one amino acid for another (for a thorough review and explanation, see Durbin
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et al., 1998). These are derived from large sets of aligned sequences by counting the

number of times that a particular substitution occurs, and comparing this to what

would be expected by chance. High values indicate that a substitution is seen often

in nature and so is favourable, and vice versa. The values in the matrix are usually

calculated on some model of evolutionary time, to account for the fact that different

pairs of sequences are at different evolutionary distances. Probably the best-known

matrices are the point accepted mutation (PAM) matrices of Dayhoff et al. (1978)

and the BLOSUM matrices (Henikoff and Henikoff, 1992).

Mutation matrices are very useful as rough guides to how good or bad a particular

change will be. Another useful feature is that they can be calculated for different data

sets to account for some of the protein features that affect amino-acid properties,

such as cellular locations (Jones et al., 1994) or different evolutionary distances

(e.g., orthologues or paralogues (Henikoff and Henikoff, 1992)). Several mutation

matrices are reproduced in the appendix to this chapter.

13.3.2 Classification by physical, chemical and
structural properties

Although mutation matrices are very useful for protein sequence alignments, espe-

cially in the absence of known three-dimensional structures, they do not precisely

describe the likelihood and effects of particular substitutions at particular sites in

the sequence. Position-specific substitution matrices can be generated for the family

of interest, such as the profile-HMM models generated by HMMER (Eddy, 1998)

and provided by Pfam (Bateman et al., 2000), and those generated by PSI-BLAST

(Altschul et al., 1997). However, these are automatic methods suited to database

searching and identification of new members of a family, and do not really give any

qualitative information on the chemistry involved at particular sites.

Taylor presented a classification that explains mutation data through correlation

with the physical, chemical and structural properties of amino acids (Taylor, 1986).

The major factor is the size of the side chain, closely followed by its hydrophobicity.

The effects of different amino acids on protein structure can account for mutation

data when these physicochemical properties do not. For example, hydrophobicity

and size differ widely between glycine, proline, aspartic acid and glutamic acid.

However, they are still closely related in mutation matrices because they prefer sharply

turning regions on the surface of the protein; the phi and psi bonds of glycine are

unconstrained by any side chain, Proline forces a sharp turn because its side chain is

bonded to the backbone nitrogen as well as to carbon, and aspartate and glutamate

prefer to expose their charged side chains to solvent.

The Taylor classification is normally displayed as a Venn diagram (Figure 13.3).

The amino acids are positioned on this by multidimensional scaling of Dayhoff ’s

mutation matrix, and then grouped by common physicochemical properties. Size

is subcategorized into small and tiny (with large included by implication). Affinity
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Figure 13.3 Venn diagram illustrating the properties of amino acids

for water is described by several sets: polar and hydrophobic, which overlap, and

charged, which is divided into positive and negative. Sets of aromatic and aliphatic

amino acids are also marked. These properties were enough to distinguish between

most amino acids. However, properties such as hydrogen-bonding ability and the

previously mentioned propensity for sharply turning regions are not described well.

Although these factors are less important, on average, and would confuse the effects

of more important properties if included on the diagram, the dangers of relying

on simple classifications are apparent. This can be overcome somewhat by listing

all amino acids that belong to each subset (defined as an intersection or union of

the sets) in the diagram – for example, ‘small and non-polar’ – and including extra

subsets to describe important additional properties. These subsets can be used to

give qualitative descriptions of each position in a multiple alignment, by associating

the positions with the smallest subset that includes all the amino acids found at that

position. This may suggest alternative amino acids that could be engineered into the

protein at each position.

13.4 Properties of the amino acids

The sections that follow will first consider several major properties that are often used

to group amino acids together. Note that amino acids can be in more than one group,
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and that sometimes properties as different as ‘hydrophobic’ and ‘hydrophilic’ can be

applied to the same amino acids. These properties are summarized interactively at

http://www.russell.embl-heidelberg.de/aas/.

13.4.1 Hydrophobic amino acids

Probably the most common broad division of amino acids is into those that prefer to

be in an aqueous environment (hydrophilic) and those that do not (hydrophobic).

The latter can be divided according to whether they have aliphatic or aromatic side

chains.

Aliphatic side chains

Strictly speaking, aliphatic means that the side chain contains only hydrogen and

carbon atoms. By this strict definition, the aliphatic side chains are alanine, isoleucine,

leucine, proline and valine. The extreme shortness of alainine’s side chain means that

it is not particularly hydrophobic, and proline has an unusual geometry that gives it

special roles in proteins, as we shall discuss below. Although it also contains a sulphur

atom, we often conveniently consider methionine in the same category as isoleucine,

leucine and valine. The unifying theme is that they contain largely non-reactive and

flexible side chains that are ideally suited for packing in the protein interior.

Aliphatic side chains are very non-reactive, and are thus rarely involved directly in

protein function, though they can play a role in substrate recognition. In particular,

hydrophobic amino acids can be involved in binding/recognition of hydrophobic

ligands such as lipids.

Several other amino acids also contain aliphatic regions. For example, arginine,

lysine, glutamate and glutamine are amphipathic, meaning that they contain hy-

drophobic and polar parts. All contain two or more aliphatic carbons that connect

the protein backbone to the non-aliphatic portion of the side chain. In some in-

stances, it is possible for such amino acids to play a dual role, with part of the side

chain being buried in the protein, and another being exposed to water.

Aromatic side chains

A side chain is aromatic when it contains an aromatic ring system. The strict definition

has to do with the number of electrons contained within the ring. Generally, aro-

matic ring systems are planar, and electrons are shared over the whole ring structure.

Phenylalanine and tryptophan are very hydrophobic aromatic side chains; tyrosine

and histidine are less so. The latter two can often be found in positions some-

where between buried and exposed. The hydrophobic aromatic amino acids can
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Trp

Phe

Figure 13.4 Example of aromatic stacking

sometimes substitute for aliphatic residues of a similar size; for example, phenylala-

nine to leucine, but not tryptophan to valine.

Aromatic residues have also been proposed to participate in ‘stacking’ interactions

(Hunter et al., 1991) (Figure 13.4). Here, numerous aromatic rings are thought to

stack on top of each other such that their pI electron clouds are aligned. They can also

play a role in binding to specific amino acids, such as proline. SH3 and WW domains,

for example, use these residues to bind to their polyproline-containing interaction

partners (Macias et al., 2002). Owing to its unique chemical nature, histidine is

frequently found in protein-active sites, as we shall see below.

13.4.2 Polar amino acids

Polar amino acids prefer to be surrounded by water. Those that are buried within the

protein usually participate with other side chains, or the protein main chain, in hy-

drogen bonds that essentially replace the water. Some of these carry a charge at typical

biological pH: aspartate and glutamate are negatively charged; lysine and arginine

are positively charged. Other polar amino acids, histidine, asparagine, glutamine,

serine, threonine and tyrosine, are neutral.

13.4.3 Small amino acids

The amino acids alanine, cysteine, glycine, proline, serine and threonine are of-

ten grouped together for the simple reason that they are all small in size. In some
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protein structural contexts, substitution of a small side chain for a large one can be

disastrous.

13.5 Amino-acid quick reference

In the sections that follow, we discuss each amino acid in turn. For each, we will briefly

discuss general preferences for substitutions, and important specific details of pos-

sible structure and functional roles. More information is found on the website that

accompanies this chapter (http://www.russell.embl-heidelberg.de/aas). This website

also features amino-acid substitution matrices for transmembrane, extracellular and

intracellular proteins; these can be used to score numerically an amino-acid substitu-

tion, where unpreferred mutations are given negative scores, preferred substitutions

are given positive scores, and neutral substitutions are given zero scores.

13.5.1 Alanine (Ala, A)

Substitutions

Alanine substitutes with other small amino acids.

Structure

Alanine is probably the dullest amino acid. It is not particularly hydrophobic and is

non-polar. However, it contains a normal Cβ carbon, meaning that it is generally as

hindered as other amino acids with respect to the conformations that the backbone

can adopt. For this reason, it is not surprising to see alanine present in just about all

non-critical protein contexts.

Function

The alanine side chain is very non-reactive, and is thus rarely directly involved in pro-

tein function, but it can play a role in substrate recognition or specificity, particularly

in interactions with other non-reactive atoms such as carbon.

13.5.2 Isoleucine (Ile, I)

Substitutions

Isoleucine substitutes with other hydrophobic, particularly aliphatic amino acids.
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Structure

Being hydrophobic, isoleucine prefers to be buried in protein hydrophobic cores.

However, isoleucine has an additional property that is frequently overlooked.

Like valine and threonine, it is Cβ branched. Whereas most amino acids con-

tain only one non-hydrogen substituent attached to their Cβ carbon, these three

amino acids contain two. This means that there is a lot more bulkiness near

the protein backbone, and therefore that these amino acids are more restricted

in the conformations the main chain can adopt. Perhaps the most pronounced

effect of this is that it is more difficult for these amino acids to adopt an α-

helical conformation, though it is easy and even preferred for them to lie within

β-sheets.

Function

The isoleucine side chain is very non-reactive, and is thus rarely directly involved in

protein functions such as catalysis, though it can play a role in substrate recognition.

In particular, hydrophobic amino acids can be involved in binding/recognition of

hydrophobic ligands such as lipids.

13.5.3 Leucine (Leu, L)

Substitutions (see isoleucine)

Structure

Being hydrophobic, leucine prefers to be buried in protein hydrophobic cores.

It also shows a preference for being within alpha helices to being within beta

strands.

Function (see isoleucine)

13.5.4 Valine (Val, V)

Substitutions (see isoleucine)

Structure

Being hydrophobic, valine prefers to be buried in protein hydrophobic cores. How-

ever, valine is also Cβ branched (see isoleucine)
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Function (see isoleucine)

13.5.5 Methionine (Met, M)

Substitutions (see isoleucine)

Structure (see isoleucine)

Function

The methionine side chain is fairly non-reactive, and is thus rarely directly involved

in protein function. Like other hydrophobic amino acids, it can play a role in binding/

recognition of hydrophobic ligands such as lipids. However, unlike the proper

aliphatic amino acids, methionine contains a sulphur atom, which can be involved

in binding to atoms such as metals. However, whereas the sulphur atom in cysteine

is connected to a hydrogen atom, making it quite reactive, methionine’s sulphur is

connected to a methyl group. This means that the role that methionine can play in

protein function is much more limited.

13.5.6 Phenylalanine (Phe, F)

Substitutions

Phenylalanine substitutes with other aromatic or hydrophobic amino acids. It par-

ticularly prefers to exchange with tyrosine, which differs only in that it contains a

hydroxyl group in place of the o-hydrogen on the benzene ring.

Structure

Phenylalanine prefers to be buried in protein hydrophobic cores. The aromatic side

chain can also mean that phenylalanine is involved in stacking (Figure 13.4) interac-

tions with other aromatic side chains.

Function

The phenylalanine side chain is fairly non-reactive, and is thus rarely directly involved

in protein function, though it can play a role in substrate recognition (see isoleucine).

Aromatic residues can also be involved in interactions with non-protein ligands that

themselves contain aromatic groups via stacking interactions (see above). They are

also common in polyproline-binding sites, such as SH3 and WW domains (Macias

et al., 2002).
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13.5.7 Tryptophan (Trp, W)

Substitutions

Tryptophan can be replaced by other aromatic residues, but it is unique in chemistry

and size, meaning that often replacement by anything could be disastrous.

Structure (see phenylalanine)

Function

As it contains a non-carbon atom (nitrogen) in the aromatic ring system, tryptophan

is more reactive than phenylalanine but less reactive than tyrosine. Tryptophan can

play a role in binding to non-protein atoms, but such instances are rare. See also

phenylalanine.

13.5.8 Tyrosine (Tyr, Y)

Substitutions (see phenylalanine)

Tyrosine substitutes with other aromatic amino acids.

Structure

Being partially hydrophobic, tyrosine prefers to be buried in protein hydrophobic

cores. The aromatic side chain can also mean that tyrosine is involved in stacking

interactions with other aromatic side chains.

Function

Unlike the very similar phenylalanine, tyrosine contains a reactive hydroxyl group,

thus making it much more likely to be involved in interactions with non-carbon

atoms. See also phenylalanine. A common role for tyrosines (and serines and

threonines) within intracellular proteins is phosphorylation. Protein kinases fre-

quently attach phosphates to these three residues as part of the signal transduction

process. Note that, in this context, tyrosine rarely substitutes for serine or threonine

since the enzymes that catalyse the reactions (the protein kinases) are highly specific

(tyrosine kinases generally do not work on serines/threonines and vice versa (Hanks

et al., 1988)).
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13.5.9 Histidine (His, H)

Substitutions

Histidine is a generally considered to be a polar amino acid; however, it is unique

with regard to its chemical properties; therefore, it does not particularly substitute

well with any other amino acid.

Structure

Histidine has a pKa near to that of physiological pH, meaning that it is relatively

easy to move protons on and off the side chain (i.e., changing the side chain from

neutral to positive charge). This flexibility has two effects. The first is ambiguity about

whether it prefers to be buried in the protein core, or exposed to solvent. The second

is that it is an ideal residue for protein functional centres (discussed below). It is false

to presume that histidine is always protonated at typical pHs. The side chain has a

pKa of approximately 6.5, which means that only about 10 per cent of molecules will

be protonated. The precise pKa depends on local environment.

Function

Histidine is the most common amino acid in protein-active or -binding sites. It is

very common in metal-binding sites (e.g., zinc), often acting together with cysteine

or other amino acids (Figure 13.5) (Wolfe et al., 2001). In this context, it is common

to see histidine replaced by cysteine.

The ease with which protons can be transferred on and off histidine makes it

ideal for charge relay systems such as those within catalytic triads, as found in many

cysteine and serine proteases (Figure 13.1). In this context, it is rare to see histidine

exchange for any amino acid at all.

CysCys

His

His

Figure 13.5 Example of a metal binding site coordinated by cysteine and histidine residues

(code 1g2f (Wolfe et al., 2001)). Figure generated by the authors using data from Wolfe et al.,

2001. Permission not required
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13.5.10 Arginine (Arg, R)

Substitutions

Arginine is a positively charged, polar amino acid. Thus, it most prefers to substitute

for the other positively charged amino acid, lysine, though in some circumstances

it will also tolerate a change to other polar amino acids. Note that a change from

arginine to lysine is not always neutral. In certain structural or functional contexts,

such a mutation can be devastating to function (see below).

Structure

Arginine generally prefers to be on the surface of the protein, but its amphipathic

nature can mean that part of the side chain is buried. Arginine is also frequently

involved in salt bridges, where it pairs with a negatively charged aspartate or gluta-

mate to create stabilizing hydrogen bonds that can be important for protein stability

(Figure 13.6.

Function

Arginine is quite common in protein-active or -binding sites. The positive charge

means that it can interact with negatively charged non-protein atoms (e.g., anions or

carboxylate groups). It contains a complex guanidinium group on its side chain that

has a geometry and charge distribution that is ideal for binding negatively charged

groups on phosphates (it can form multiple hydrogen bonds). A good example can be

found in the src homology 2 (SH2) domains (Figure 13.7) (Waksman et al., 1992).

The two arginines shown in Figure 13.7 make multiple hydrogen bonds with the

phosphate. In this context, arginine is not easily replaced by lysine. Although lysine

can interact with phosphates, it contains only a single amino group, meaning it is

Asp
Arg

Figure 13.6 Example of a salt bridge (code 1xel)
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pTyr

Arg

Phosphate

Arg

Figure 13.7 Interaction of arginine residues with phosphotyrosine in an SH2 domain (code

1sha (Waksman et al., 1992)). Figure generated by the authors using data from Waksman et al.,

1992. Permission not required

more limited in the number of hydrogen bonds it can form. A change from arginine

to lysine in some contexts can thus be disastrous (Copley and Barton, 1994).

13.5.11 Lysine (Lys, K)

Substitutions

Lysine substitutes with arginine or other polar amino acids.

Structure

Lysine frequently plays an important role in structure. First, it can be considered

to be somewhat amphipathic as the part of the side chain nearest to the backbone

is long, carbon containing and hydrophobic, whereas the end of the side chain is

positively charged. For this reason, we can find lysine where part of the side-chain is

buried, and only the charged portion is outside the protein. However, this is by no

means always the case, and generally lysine prefers to be outside proteins. Lysine is

also frequently involved in salt bridges (see arginine).
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Function

Lysine is quite common in protein-active or -binding sites. Lysine contains a posi-

tively charged amino on its side chain that is sometimes involved in forming hydro-

gen bonds with negatively charged non-protein atoms (e.g., anions or carboxylate

groups).

13.5.12 Aspartate (Asp, D)

Substitutions

Aspartate substitutes with glutamate or other polar amino acids, particularly as-

paragine, which differs only in that it contains an amino group in place of one of the

oxygens found in aspartate (and thus also lacks a negative charge).

Structure

Being charged and polar, aspartate prefers generally to be on the surface of proteins,

exposed to an aqueous environment. Aspartate (and glutamate) is frequently involved

in salt bridges (see arginine).

Function

Aspartate is quite frequently involved in protein-active or -binding sites. The neg-

ative charge means that it can interact with positively charged non-protein atoms,

such as cations like zinc. Aspartate has a shorter side chain than the very similar

glutamate, meaning that it is slightly more rigid within protein structures. This

gives it a slightly stronger preference to be involved in protein-active sites. Probably

the most famous example of aspartate being involved in an active site is within

serine proteases such as trypsin, within which it functions in the classical Asp-

His-Ser catalytic triad (Figure 13.1). In this context, it is quite rare to see aspar-

tate exchange for glutamate, though it is possible for glutamate to play a similar

role.

13.5.13 Glutamate (Glu, E)

Substitutions

Glutamate substitutes with aspartate or other polar amino acids, in particular glu-

tamine, which is to glutamate what asparagine is to aspartate (see above).
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Structure (see aspartate)

Function

Glutamate, like aspartate, is quite frequently involved in protein-active or -binding

sites. In certain cases, it can also perform a similar role to aspartate, in the catalytic

site of proteins such as proteases or lipases.

13.5.14 Asparagine (Asn, N)

Substitutions

Asparagine substitutes with other polar amino acids, especially aspartate (see above).

Structure

Being polar, asparagine prefers generally to be on the surface of proteins, exposed to

an aqueous environment.

Function

Asparagine is quite frequently involved in protein-active or -binding sites. The polar

side chain favours interactions with other polar or charged atoms. Asparagine can

play a similar role to aspartate in some proteins. Probably the best example is found

in certain cysteine proteases, where it forms part of the Asn/His/Cys catalytic triad.

In this context, it is quite rare to see asparagine exchange for glutamine. Asparagine,

when occurring in a particular motif (Asn-X-Ser/Thr), can be N-glycosylated (Gavel

and von Heijne, 1990). Thus, in this context, it is impossible to substitute it with any

amino acid at all.

13.5.15 Glutamine (Gln, Q)

Substitutions

Glutamine substitutes with other polar amino acids, especially glutamate (see above).

Structure (see asparagine)

Function

Glutamine is quite frequently involved in protein-active or -binding sites. The polar

side chain favours interactions with other polar or charged atoms.
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13.5.16 Serine (Ser, S)

Substitutions

Serine substitutes with other polar or small amino acids, in particular threonine,

which differs only in that it has a methyl group in place of the hydrogen group found

in serine.

Structure

Being a fairly indifferent amino acid, serine can reside both within the interior of a

protein and on its surface. Its small size means that it is relatively common within tight

turns on the protein surface, where it is possible for the serine side chain hydroxyl

oxygen to form a hydrogen bond with the protein backbone, effectively mimicking

proline.

Function

Serine is quite common in protein functional centres. The hydroxyl group is fairly

reactive, and can form hydrogen bonds with a variety of polar substrates. Perhaps

the best-known role of serine in protein-active sites is in the classical Asp/His/Ser

catalytic triad found in many hydrolases (e.g., proteases and lipases) (Figure 13.1).

Here, a serine, aided by a histidine and an aspartate, acts as a nucleophile to hydrolyse

(effectively cut) other molecules. This three-dimensional ‘motif ’ is found in many

non-homologous (i.e., unrelated) proteins, and is a classic example of molecular

convergent evolution (Russell, 1998). In this context, it is rare for serine to exchange

with threonine, but in some cases, the reactive serine can be replaced by cysteine,

which can perform a similar role. Intracellular serine can also be phosphorylated

(see tyrosine). Extracellular serine can also be O-glycosylated where a carbohydrate

is attached to the side-chain hydroxyl group (Gupta et al., 1999).

13.5.17 Threonine (Thr, T)

Substitutions

Threonine substitutes with other polar amino acids, particularly serine (see above).

Structure

As a fairly indifferent amino acid, threonine can reside both within the interior of a

protein and on its surface. Threonine is also Cβ branched (see isoleucine).
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Function

Threonine is quite common in protein functional centres. The hydroxyl group is fairly

reactive, and can form hydrogen bonds with a variety of polar substrates. Intracel-

lular threonine can also be phosphorylated (see tyrosine), and in the extracellular

environment it can be O-glycosylated (see serine).

13.5.18 Cysteine (Cys, C)

Substitutions

Cysteine has no general preference for substituting with any other amino acid, though

it can tolerate substitutions with other small amino acids. Its role is very dependent on

cellular location, making substitution matrices dangerous to interpret (e.g., Barnes

and Russell, 1999).

Structure

The role of cysteine in structure is very dependent on the cellular location of the

protein in which it is contained. Within extracellular proteins, cysteine is frequently

involved in disulphide bonds, where pairs of cysteines are oxidized to form a covalent

bond. These bonds serve mostly to stabilize the protein structure, and the structure of

many extracellular proteins is almost entirely determined by the topology of multiple

disulphide bonds (Figure 13.8).

The reducing environment inside cells makes the formation of disulphide bonds

very unlikely. Indeed, disulphide bonds in the intracellular environment are so rare

that they almost always attract special attention. Disulphides are also rare within

the membrane, though membrane proteins can contain disulphide bonds within

extracellular domains. Disulphide bonds are such that cysteines must be paired. If

one-half of a disulphide bond pair is lost, the protein may not fold properly.

In the intracellular environment, cysteine can still play a key structural role. Its

sulphydryl side chain is excellent for binding to metals, such as zinc, meaning that

cysteine (and other amino acids such as histidine) is very common in metal-binding

motifs such as zinc fingers (Figure 13.5). Outside this context within the intracellular

environment, and when it is not involved in molecular function, cysteine is a small,

neutral amino acid, and prefers to substitute with other amino acids of the same type.

Function

Cysteine is also very common in protein-active and -binding sites. Binding to metals

(see above) can also be important in enzymatic functions (e.g., metal proteases).
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Figure 13.8 Example of a small, disulphide-rich protein (code 1tfx)

Cysteine can also function as a nucleophile (i.e., the reactive centre of an enzyme).

Probably the best-known example of this occurs within the cysteine proteases, such

as caspases, or papains, where cysteine is the key catalytic residue, being helped by

histidine and asparagine.

13.5.19 Glycine (Gly, G)

Substitutions

Glycine substitutes with other small amino acids, but be warned that even apparently

neutral mutations (e.g., to alanine) can be forbidden in certain contexts (see below).

Structure

Glycine is unique as it contains a hydrogen as its side chain (rather than a car-

bon as is the case for all other amino acids). This means that there is much more
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Gly
Gly

Gly

ATP

Figure 13.9 Glycine-rich phosphate-binding loop in a protein kinase (code 1hck (Schulze-

Gahmen et al., 1996)). Figure generated by the authors using data from Schulze-Gahmen et al.,

1996. Permission not required

conformational flexibility in glycine. Therefore, glycine can reside in parts of protein

structures that are forbidden to all other amino acids (e.g., tight turns in structures).

Function

The uniqueness of glycine also means that it can play a distinct functional role, such

as using its backbone (without a side chain) to bind to phosphates (Schulze-Gahmen

et al., 1996). This means that if one sees a conserved glycine changing to any other

amino acid, the change could have a drastic impact on function. A good example is

found in protein kinases. Figure 13.9 shows a region around the ATP-binding site in

a protein kinase. The ATP is shown to the right of the figure, and part of the protein

to the left. The glycines in this loop are part of the classic ‘Gly-X-Gly-X-X-Gly’

motif present in the kinases (Hanks et al., 1988). These three glycines are hardly ever

mutated to other residues; only glycines can function to bind to the phosphates of

the ATP molecule with their main chains.

13.5.20 Proline (Pro, P)

Substitutions

Proline can sometimes substitute for other small amino acids, though its unique

properties means that it does not often substitute well.
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Pro

Figure 13.10 Example of proline in a tight protein turn (code 1ag6)

Structure

Proline is unique in that it is the only amino acid whose side chain is connected to the

protein backbone twice, forming a five-membered ring. Strictly speaking, this makes

proline an imino acid (since in its isolated form, it contains an NH+
2 rather than an

NH+
3 group, but this is mostly just pedantic detail). This difference is very important

as it means that proline is unable to occupy many of the main chain conformations

easily adopted by all other amino acids. In this sense, it can be considered the op-

posite of glycine, which can adopt many more main-chain conformations. For this

reason, proline is often found in very tight turns in protein structures (i.e., where

the polypeptide chain must change direction) (Figure 13.10). It can also function to

introduce kinks into α-thelices, since it is unable to adopt a normal helical confor-

mation. Although it is aliphatic, the preference for turn structure means that proline

is usually found on the protein surface.

Function

The proline side chain is very non-reactive. This, together with its difficulty in adopt-

ing many protein main-chain conformations, means that it is very rarely involved in

protein-active or -binding sites.

13.6 Studies of how mutations affect function

Protein structures are plastic – they can tolerate many different substitutions in many

different places – and some regions are more plastic than others. The most conserved

region is generally the core (Lim and Sauer, 1989, PMID 2524006), although the main

requirement is only that this should remain hydrophobic. Substitutions in specific
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solvent exposed residues can easily affect function but do not affect the ability of the

mutant sequence to fold in the same way as the wild-type sequence (Hecht et al.,

1983, PMID 6221342). More radical substitutions are tolerated if less than wild-type

activity is allowed. In other words, context is everything. This is not easily seen by

relying on simple substitution matrices, which treat every position in the sequence

in the same way as but independent from every other position. Several studies have

examined mutations in the context of structure, function, disease, evolution, and

other mutations. We review some of these below.

13.6.1 Site-specific substitution rates and correlated mutations

The two main assumptions behind most substitution tables are sites are indepen-

dent of each other and that they are all equal. Exceptions to these assumptions are

clearly demonstrated by the systematic mutagenesis of λ repressor by Hecht et al.

and Lim and Sauer discussed above, and by other such studies. To address the first

assumption one can allow for correlated mutations, where a substitution at one site

affects the acceptability of a substitution at another site, although the results of such

studies are unclear at best. To address the second assumption one can use site-specific

substitution matrices.

An increase in residue size at one position, for example, could be compensated

for by a decrease at site close in three dimensions. However, correlated mutations

such as this will be less significant in the plastic regions of the structure, and the

initial substitution would only be tolerated in more conserved regions if it’s effect on

stability or function was small. Several other factors may also make them difficult to

detect: long-range correlation, correlation with multiple positions with the particular

positions used differing in different lineages, and correlation by chance between

independent sites. Of the many methods developed (Pollock and Taylor, 1997), the

best ones use phylogeny to reduce the effect of chance correlations (Pollock et al.,

1999; Fukami-Kobayashi et al., 2002), and can detect correlations in simulated data.

Meaningful correlations, mainly between sites brought in to contact by the periodicity

of alpha helices, have also been detected (Pollock et al., 1999). Others studies have not

directly modelled correlations but have used trees and structures in methods that cut

away chance and uninteresting correlations, and used the rest to predict functional

sites (Lichtarge et al., 1996; Aloy et al., 2001).

Different rates of substitutions at different sites can be allowed for by pre-classifying

sites based on their position in the protein structure, and then using substitution

matrices specifically constructed for the classes identified (Overington et al., 1992).

These methods obviously require some knowledge other than the sequence, such as

a known or predicted structure. Other methods are able to divide sites in to different

classes at the same time as constructing the substitution matrices for these classes,

and have been used to predict functional sites (Soyer and Goldstein, 2004). An easier
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to use classification is simply to define your protein as intracellular, extracellular or

membrane, and then to use the appropropriate matrix from the appendix.

13.6.2 Single nucleotide polymorphisms (SNPs)

A SNP is a point mutation that is present at a measurable frequency in human

populations. It can occur either in coding or non-coding DNA. Non-coding SNPs

may have effects on important mechanisms such as transcription, translation, and

splicing. However, the effects of coding SNPs are easier to study, and are potentially

more damaging, and so they have received considerably more attention. They are

also more relevant to this chapter. Coding SNPs can be divided into two main cat-

egories, synonymous (where there is no change in the amino acid coded for), and

non-synonymous. Non-synonymous SNPs tend to occur at lower frequencies than

synonymous SNPs. Minor allele frequencies also tend to be lower in non-synonymous

SNPs. This is a strong indication that these replacement polymorphisms are delete-

rious (Cargill et al., 1999).

To examine the phenotypic effects of coding SNPs, Sunyaev et al. (2000) studied the

relationships between non-synonymous SNPs and protein structure and function.

Three sets of SNP data were compared: disease-causing substitutions, substitutions

between orthologues, and substitution represented by human alleles. Disease-causing

mutations were more common in structurally and functionally important sites than

were variations between orthologues, as might be expected. Allelic variations were

also more common in these regions than were those between orthologues. Minor

allele frequency and the level of occurrence in these regions were correlated, an-

other indication of evolutionary selection of phenotype. The most damaging allelic

variants affect protein stability, rather than binding, catalysis, allosteric response or

post-translational modification (Sunyaev et al., 2001). The expected increase in the

number of known protein structures will allow other analyses and refinement of the

details of the phenotypic effects of SNPs.

Wang and Moult (2001) developed a description of the possible effects of mis-

sense SNPs on protein structure, and used it to compare disease-causing missense

SNPs with a set from the general population. Five general classes of effect were con-

sidered: protein stability, ligand binding, catalysis, allosteric regulation, and post-

translational modification. The disease and population sets of SNPs contain those

that can be mapped on to known protein structures, either directly or through homo-

logues of known structure. Of the disease-causing SNPs, 90 per cent were explained

by the description, the majority (83 per cent) being attributed to effects on protein

stability, as seen by Sunyaev et al. (2001). The 10 per cent that are not explained by

the description may cause disease by effects not easily identified by structure alone.

Of the SNPs from the general population, 70 per cent were predicted to have no

effect. The remaining 30 per cent may represent disease-causing SNPs previously

unidentified as such, or molecular effects that have no significant phenotypic effect.
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13.6.3 Evaluating paired residues in protein structures

Studies of the structural impact of an amino-acid substitution should try to take

into account the preferences for structural pairing between different amino acids as

described earlier in this chapter. Fooks et al. (2006) examined statistical approaches

to study amino-acid pairing preferences within parallel beta-sheets. The main-chain,

hydrogen-bonding pattern in parallel beta-sheets means that, for each residue pair,

only one of the residues is involved in main-chain hydrogen bonding with the strand

containing the partner residue. For instance, they found that Asn-Thr and Arg-Thr

were favoured pairs, where the residues adopted favoured rotamer positions that

allowed side-chain interactions to occur. In contrast, Thr-Asn and Thr-Arg were not

significantly favoured, and could form side-chain interactions only if the residues

involved adopted less favourable conformations. Cysteine–cysteine pairs were also

significantly favoured, although these did not form intrasheet disulphide bridges.

This research provides rules that could technically be applied to protein structure

prediction, and comparative modelling of amino substitutions. The methods used

to analyse the pairing preferences are automated and detailed; results are available

from the following URL: http://www.rubic.rdg.ac.uk/betapairprefsparallel/.

13.6.4 Site-directed mutagenesis

Site-directed mutagenesis is a powerful tool for discovering the importance of an

amino acid to the function of the protein. Gross changes in amino-acid type can re-

veal sites that are important in maintaining the structure of the protein. Conversely,

in investigating functionally interesting sites, it is important to choose replacement

residues that are unlikely to affect structure dramatically; for example, by choosing

ones of a similar size to the original. Peracchi (2001) reviews the use of site-directed

mutagenesis to investigate mechanisms of enzyme catalysis, in particular those stud-

ies involving mutagenesis of general acids (proton donors), general bases (proton

acceptors) and catalytic nucleophiles in active sites. These types of amino acid could

be considered to be the most important to enzyme function, as they directly partic-

ipate in the formation or cleavage of covalent bonds. However, studies indicate that

they are often important but not essential – rates are still higher than the uncatalysed

reaction even when these residues are removed, because the protein is able to use an

alternative mechanism of catalysis. Moreover, direct involvement in the formation

and cleavage of bonds is only one of a combination of methods that an enzyme can use

to catalyse a reaction. Transition states can be stabilized by the complementary shape

and electrostatics of the binding site of the enzyme, and substrates can be precisely

positioned, lowering the entropy of activation. These factors can also be studied by

site-directed mutagenesis, consideration of the physical and chemical properties of

the amino acids again guiding the choice of replacements, along with knowledge of

the structure of the protein.
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13.6.5 Key mutations in evolution

Golding and Dean (1998) reviewed six studies that demonstrate the insight into

molecular adaptation that is provided by combining knowledge of phylogenies, site-

directed mutagenesis, and protein structure (Golding and Dean, 1998).

Many changes can occur over many generations, only a few being responsible for

changes in function. For example, the sequences of lactate dehydrogenase (LDH)

and malate dehydrogenase (MDH) from Bacillus stearothermophilus are only about

25 per cent identical, but their tertiary structures are highly similar. Only one mu-

tation, that of uncharged glutamine 102 to positive arginine in the active site, is

required to convert LDH in to a highly specific MDH. Arginine is thought to interact

with the carboxylate group that is the only difference between the substrate/products

of the two enzymes (Figure 13.11) (Wilks et al., 1988).

Thus, amino-acid changes that appear to be radical or conservative from their

scores in mutation matrices or amino-acid properties may be the opposite when

their effect on protein function is considered. Glutamine to arginine has a score of 0

in the PAM250 matrix, meaning that it is neutral. The importance of the mutation

at position 102 in LDH and MDH could not be predicted by this information alone.

Reconstruction of an ancestral ribonuclease showed that the mutation that causes

most of the fivefold loss in activity toward double-stranded RNA is of Gly38 to Asp,

more than 5 Å from the active site (Golding and Dean, 1998).

CH3 - C - C - O- 

OH

H O

Lactate

CH2 - C - C - O- 

OH

H O

-O - C -

O

Malate

Arg (MDH)Gln (LDH)

Figure 13.11 Lactate and malate dehydrogenase specificity (codes 9ltd and 2cmd (Wilks et

al., 1988)), Figure generated by the authors using data from Wilks et al., 1988. Permission not

required
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Two different mutations in different locations in the haemoglobin genes of bar-

headed goose and of Andean goose give both breeds a high affinity for oxygen.

Structural studies showed that both changes remove an important van der Waals

contact between subunits, shifting the equilibrium of the haemoglobin tetramer

toward the high-affinity state. These studies emphasise the importance of both pro-

tein structure and phylogeny when considering the effects of amino acid mutations

(Golding and Dean, 1998).

13.7 A summary of the thought process

We hope that this chapter has given you some guidelines for interpreting how a

particular mutation might affect the structure and function of a protein. We suggest

that you ask the following questions.

First about the protein

1. What is the cellular environment?

2. What does it do? Is anything known about the amino acids involved in its function?

3. Is there a structure known or one for a homologue?

4. What protein family does it belong to?

5. Are any post-translational modifications expected?

Then about a particular amino acid

1. Is the position conserved across orthologues? Across paralogues?

2. If a structure is known: is the amino acid on the surface? Buried in the core of the

protein?

3. Is it directly involved in function, or near (in sequence or space) other amino acids

that are?

4. Is it an amino acid that is likely to be critical for function? For structure?

Once you have answers to these questions, you should be more able to make a rational

guess or interpretation of the effects seen with an amino-acid substitution, and select

logical amino acids for mutagenesis experiments.
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Appendix: tools

Protein sequences� http://www.expasy.ch/� http://www.ncbi.nlm.nih.gov/

Amino-acid properties� http://russell.embl-heidelberg.de/aas/

Domain assignment/sequence search tools� http://www.ebi.ac.uk/interpro/� http://www.sanger.ac.uk/Software/Pfam/� http://smart.embl-heidelberg.de/� http://www.ncbi.nlm.nih.gov/BLAST/� http://www.ncbi.nlm.nih.gov/COG/� http://www.cbs.dtu.dk/TargetP/

Protein structure� databases of 3-D structures of proteins: http://www.rcsb.org/pdb/� structural classification of proteins: http://scop.mrc-lmb.cam.ac.uk/scop/

Protein function� http://www.geneontology.org/
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14.1 Introduction

The study of human disease genetics has largely focused on the protein-coding gene

as the primary functional unit in disease phenotypes. Despite the fundamental tenet

of genes coding for protein via mRNA, it is becoming increasingly apparent that a

significant proportion of the transcriptional output of metazoan genomes is actually

devoted to the production of functional RNA molecules that do not encode proteins

(Kampa et al., 2004). Many of these non-coding RNAs (ncRNAs) are tightly regulated

and appear to have a protein-coding gene regulatory function. Our understanding

of ncRNA (and its role in disease) is currently in a state of extreme flux. The concept

of antisense regulation of RNA has been around for several decades; however, small

regulatory endogenously produced RNAs were not described in detail until 1993,

when the 22nt micro-RNA (miRNA) lin-4 was found to regulate lin-14 mRNA in

C. elegans via an antisense interaction (Lee et al., 1993). Despite the interest that

this paper generated, it took at least 7 years before research into this area really took

off, mainly on the back of the analysis of the newly completed human and mouse

genomes. Now, an increasingly complex picture of ncRNAs is emerging from complex

bioinformatics analysis, suggesting that up to 98 per cent of the transcriptional output

of the human genome may be non-protein-coding RNA (Mattick, 2003). This appears

to be borne out by extensive gene duplication and divergence into distinct functional

families. To date, most focus has been on miRNAs; as many as 800 miRNAs have

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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been predicted to exist in man (Bentwich et al., 2005), although fewer than 400 have

been deposited in the databases (Griffiths-Jones et al., 2006). Interest in ncRNAs may

in part be due to the way that they help to explain the complexity of mammals (and

metazoans in general), which is not accounted for by the modest number of protein-

and large RNA-coding genes. A picture is emerging of miRNA and other ncRNAs

as an additional layer of complexity in the spatial and temporal regulation of gene

expression that explains the breath-taking complexity of metazoan life. Naturally,

genetics is likely to play a huge role in this complexity, as the driving forces of

evolution cause these systems to evolve and mutate at the DNA level, with disease

being the flip side of the evolutionary coin.

In this chapter we will review methods for analysis of mammalian ncRNAs, with

a focus on miRNAs; however, we will also describe wider ncRNA database resources.

The chapter will also review the nascent field of RNomics and the role of ncRNAs in

mammalian gene regulation, disease and development. ncRNAs are already causing

some considerable excitement, as reflected by the burgeoning literature in this area.

But, surprisingly, the role of ncRNA variation in human disease is still very much

unexplored (perhaps with the notable exception of oncology), so in this chapter we

will try to illustrate the ways in which this role could be investigated.

Bioinformatics and genetic methods can ultimately identify candidate ncRNA

for testing – there are a number of biochemical and genomic methods that can be

employed to characterize further the role of these ncRNAs in disease. We refer the

reader to Huttenhofer and Vogel (2006) for a more detailed review of these methods.

14.2 The non-coding (nc) RNA universe

14.2.1 ncRNA – what we know so far

Our current understanding of ncRNAs in eukaryotes is revealing a rapidly expanding

universe of key components in a wide range of cellular mechanisms. These range from

critical elements in core cellular systems, such as the ribosome and the spliceosome,

to key regulators of these systems that guide essential modifications of ribosomal

and spliceosomal RNAs, culminating in the discovery of a huge new class of mRNA-

regulating miRNAs with roles as diverse as the mRNA transcripts that they regulate

(Bartel, 2004; Carthew, 2006; Kim, 2006).

The rapid emergence of miRNAs and the hints of further complexity in ncRNA that

we have seen in the ENCODE regions (see below) have shown that our understanding

of ncRNA is still quite incomplete. Classification of ncRNA, can be a problem in itself.

Non-coding RNAs are united by what they do not do (i.e., code for protein) but by lit-

tle else. Nomenclature is somewhat confusing. ncRNA groups may be named by their

cellular localizations, such as small nucleolar RNAs (snoRNAs); by their function,

as in transfer RNAs (tRNA); or by their size, such as miRNA. In fact, ncRNAs come

in many flavours (Eddy, 2001; Costa, 2005). It would be somewhat futile to attempt
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Table 14.1 Tools for analysis of ncRNA in a genetic context

Tool URL

miRNA gene analysis

MirScan http://genes.mit.edu/mirscan/

miRBASE http://microrna.sanger.ac.uk/sequences/

BayesMiRNAfind http://wotan.wistar.upenn.edu/miRNA

miRNAMap http://mirnamap.mbc.nctu.edu.tw/

Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/interface/

miRNA target analysis

TargetScan http://genes.mit.edu/targetscan/index.html

PicTar http://pictar.bio.nyu.edu/

MiRanda: Targets http://microrna.sanger.ac.uk/targets/v2/

Software http://www.microrna.org/miranda new.html

RNAHybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/

Other ncRNA analysis

NONCODE http://noncode.bioinfo.org.cn/

Rfam http://www.sanger.ac.uk/Software/Rfam/

RNAdb http://research.imb.uq.edu.au/rnadb/

siRNAdb http://sirna.cgb.ki.se/help.html

UTRsite http://www2.ba.itb.cnr.it/UTRSite/

NcRNAdb http://biobases.ibch.poznan.pl/ncRNA/

MFOLD http://www.bioinfo.rpi.edu/applications/mfold/

RNAFold http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi

to catalogue all ncRNAs in this chapter; instead, we direct the reader to some of the

databases that attempt to catalogue and classify ncRNA superfamilies (Table 14.1),

the most comprehensive of which is probably Rfam (Griffiths-Jones et al., 2005).

Many databases attempt to classify ncRNAs, but most are hindered by the lack

of sequence similarity between RNA genes. The Rfam database takes a computa-

tionally intensive approach to this problem by examining the largely sequence inde-

pendent, conserved secondary structure that exists within ncRNA families. This

is entirely analogous to the conservation that is seen between the fold patterns

of proteins that share functional roles, but very little sequence similarity, as used

in the Structural Classification of Proteins database (SCOP) (see Chapter 13; An-

dreeva et al., 2004). Rfam captures the combined secondary structure and primary

sequence profile of a multiple sequence alignment of ncRNAs, using a statistical

model, known as profile stochastic context-free grammar (SCFG) – which is anal-

ogous to the hidden Markov models (HMMs) used for protein alignments. The

user interface to Rfam is fairly self-explanatory; the user can browse by ncRNA type

(Figure 14.1) or family. Following a link to a ncRNA family returns a family view

(Figure 14.2), which offers a full alignment of family members. This function is valu-

able for assessing the function of variants in miRNA, as the degree of conservation

throughout a ncRNA family is a good indicator of functional constraint (see Section

14.3.2 below).
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Figure 14.1 The Rfam database – ncRNA families can be browsed by type or family name. Rfam

Database, http://www.sanger.ac.uk/Software/Rfam/. Described in Griffiths-Jones, S., Bateman,

A., Marshall, M., Khanna, A. and Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res

(2003) 33(1), 439–441.

Functionally, ncRNAs have been implicated in a wide range of normal biological

processes such as X chromosome activation and inactivation (Rastan, 1994; Lee et

al., 1999), genomic imprinting (Wylie et al., 2000) and bone differentiation (Takeda

et al., 1998). More recently, it appears that miRNAs, a large growing family of ncRNAs,

are implicated in regulation of multiple genes (see Section 14.3.1 below). Excluding

miRNAs, ncRNAs have also been implicated in a range of disorders such as a variety

of cancers (Srikantan et al., 2000; Tam et al., 2002; Manoharan et al., 2003) but

also neurological diseases (Millar et al., 2000; Runte et al., 2004). Taken together,

the functional data on ncRNAs clearly indicate that they are major components of

biology across many species (Costa, 2005).
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Figure 14.2 The Rfam database – miR30 family view. Rfam Database, http://www.sanger.ac.uk/

Software/Rfam/. Described in Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. and Eddy,

S. R. Rfam: an RNA family database. Nucleic Acids Res (2003) 33(1), 439–441.

14.2.2 Getting a grip on unknown ncRNA – the Dark Continent
of the genome?

Databases like Rfam are already helping to curate and catalogue our knowledge of

ncRNA, but it is likely that this knowledge will remain at best partial for a long while

to come. Quite naturally, most of our understanding of the genome and disease

has tended to focus on what we know best. Genes code for proteins, and protein

malfunction causes disease. This is something we are comfortable with. So, quite

understandably, analysis of disease genetics has focused most heavily on the ∼30 000

protein-coding genes in the genome and to a lesser extent their regulatory regions.

The collective ignorance of miRNA, which has prevailed until just a few years past,

underscores the importance of considering the ‘unknown unknown’ elements of the

human genome in such analyses (Lai, 2003). We know that less than 1.5 per cent of
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the genome is protein coding, and the rest, frankly, is little more than a jungle of

unknown function. Recent advances in the understanding of miRNA should teach

us to respect all of the genome as a potentially functional element. Recent research in

the prediction of ncRNAs has suggested that the human genome may contain twice

as many ncRNAs as it does protein-coding mRNA, but our understanding of these

elements is still very limited (Bejerano et al., 2004). To emphasize the importance

of those elements we do not yet know in the genome, Sironi et al. (2005) com-

pleted an interesting analysis of multispecies conserved sequence (MCS) elements

that punctuate the non-coding portion of the human genome. MCS elements are

reliable surrogates for function in the genome (See Chapter 6), and it is important

to bear in mind that miRNAs would have been included within these anonymous

MCS sequences until very recently, as they tend to be conserved and are frequently

located in the introns of protein-coding genes. The study by Sironi et al. (2005)

demonstrated that MCSs are unevenly distributed in human introns, the majority

of relatively short introns (<9 kb long) displaying no or a few MCSs, and that MCS

density reached up to 10 per cent of total size in longer introns. After correction for

intron length, MCSs were found to be enriched within genes involved in development

and transcription, and depleted in immune-response loci. They also found that hu-

man disease and cancer genes showed significantly enriched MCSs. This enrichment

also seemed to correlate significantly with gene functional complexity in terms of

distinct protein domains. In conclusion, they suggested that evolution acts on human

genes as integrated units of coding and regulatory capacity and that such functional

complexity might represent a major source of negative selection on non-coding

sequences.

Although the observed conservation of MCS elements in certain classes of genes

suggests that ncRNAs may in some instances be expressed in a coordinate manner

with the genes that they regulate, their action is unlikely to be limited to these

genes. Again in the case of miRNA, several independent computational predictions

(MiRANDA, TargetScan, see below) have shown that a single miRNA may bind and

regulate as many as 200 target genes. These predictions of miRNA binding have

estimated that over a third of human protein-coding genes are regulated by miRNA.

Again, this just represents our current knowledge of this area; only time will tell

what role other as yet uncharacterized ncRNAs play in this grand schema. Thus, it

appears that ncRNAs (some of which are still unknown to us) are likely routinely

to modulate levels of protein expression in the cell by dampening the translation of

thousands of mRNAs. Evidence all points to ncRNA-mediated gene regulation as a

fundamental layer of the genetic program that operates at the post-transcriptional

level as a balancing mechanism to the complex mechanisms that operate at the

transcriptional level. Therefore, it is clear that ncRNAs have a huge potential for

involvement in the pathology of human diseases, and the probable magnitude of

this, considering the relatively short ncRNA research timeline, is just beginning to

emerge.
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14.3 Computational analysis of ncRNA

14.3.1 Principles of miRNA function

The mature miRNAs of 21-22 nucleotides (nt) in length are originally derived from

larger precursors of ∼60–70 nt, the pre-miRNAs (Bartel, 2004). These precursors

can fold into imperfect stem-loop structures, and in animals they are themselves the

cleavage products of a primary miRNA (pri-miRNA) transcript by a multicomplex

protein, the microprocessor (Denli et al., 2004; Gregory et al., 2004; Gregory and

Shiekhattar, 2005). For more details on microRNA biogenesis, the reader should

refer to the recent review by Kim (2006).

The first miRNA discovered in C. elegans, lin-4, was shown to mediate repres-

sion of its target gene, lin-14, through partial antisense complementarity with the

3′ untranslated region (3′ UTR) of the lin-14 mRNA. It was only several years

later with the discovery of let-7 in C. elegans, a 22-nt regulatory small RNA sim-

ilar to lin-4 and conserved in other species, that regulation of expression by ho-

mologous RNA–RNA interactions was identified as a more general mechanism of

post-transcriptional repression. However important distinctions have to be made. In

plants, miRNAs appear to bind their gene targets with near to perfect complemen-

tarity, resulting in target cleavage (Baulcombe, 2004). In animals, miRNAs typically

make imperfect base pairings with their targets, usually in the 3′ UTRs. Initially, it

was thought that miRNAs blocked protein synthesis through the elongation phase

(Olsen and Ambros, 1999). However, several discoveries now suggest that other

mechanisms of miRNA action could inhibit protein synthesis at the translational

phase (Pillai et al., 2005) or affect directly mRNA levels and stability (Bagga et al.,

2005; Jinq et al., 2005). It has also been recently observed that miRNAs could re-

duce gene expression by sequestering their target mRNAs into P-/GW-bodies, where

they are not accessible to the protein synthesis machinery (Liu et al. 2005; Sen and

Blau, 2005).

Assessing the number of miRNA target genes is a major goal to understand

the functional diversity of pathways possibly regulated by this class of ncRNAs.

Only a very limited number of animal miRNAs have been functionally charac-

terized. However, it appears that a wide range of functions could be affected

by miRNA regulation in animals: developmental timing (Wightman et al., 1993;

Grosshans et al., 2005), adipocyte differentiation (Esau et al., 2004), prolifera-

tion (Calin et al., 2004, O’Donnell et al., 2005), cell death and fat metabolism

(Xu et al., 2003), insulin secretion (Poy et al., 2004) or apoptosis (Leaman

et al., 2005).

Bioinformatics approaches have been very helpful in identifying both miRNA

genes and their targets (Brown and Sanseau, 2005). Recent estimates are that at least

20–30 per cent of human genes could be regulated by miRNAs (Krek et al., 2005;

Lewis et al., 2005).



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

350 CH 14 NON-CODING RNA BIOINFORMATICS

14.3.2 Computational identification of miRNA genes

Approaches to miRNA gene prediction are generally based on machine-learning

techniques (Lai et al., 2003; Nam et al., 2005). The algorithm is first run with known

miRNA gene sequences as a training set, in order to create a profile or a matrix. The

‘trained’ program is used in a genome-wide scan, and can identify putative novel

miRNA sequences. A large set of hairpin loops found randomly in the genome is first

used as a negative training set. These hairpins are assumed not to be miRNA precur-

sors. Known miRNA genes are then used as a positive training set. Although miRNA

genes share little primary sequence similarity, they do share numerous properties

that can be used to aid recognition in miRNA prediction algorithms. These include

hairpin length, hairpin-loop length, thermodynamic stability, base-pairing, bulge

size, bulge location, nucleotide content, sequence complexity and repeat elements. A

miRNA prediction algorithm will give a score to a scanned sequence depending on its

similarity to these distinctive properties. The algorithm is iteratively rerun, checked

and improved by training on subsets of known miRNAs, as well as control groups

of random hairpins, and checked on its scoring accuracy. This allows a fine-tuning

of the weight of each distinctive property. These scores may be assessed for their

sensitivity and specificity. Cross-species conservation filters may also be applied to

the output set to filter out false positives, although this has immediate limitations, as

it detects only conserved miRNAs and may exclude species-specific miRNA genes.

Several prominent miRNA gene detection algorithms have been developed.

MiRseeker (Lai et al., 2003) assesses the folding patterns of RNA sequences as pre-

dicted by MFold (Zuker 1989, 2003). MirScan (Lim, 2003) uses RNAFold (Hofacker

et al., 1994) to find hairpin structures in evolutionarily conserved sequences. Each

conserved hairpin is further analysed to locate the miRNA within it. Yousef et al.

(2006) developed BayesMiRNAfind, a method using a naive Bayes classifier, to gen-

erate a gene model from training data, based on the sequence and structure of known

microRNAs from a variety of species. This method appeared to demonstrate a higher

sensitivity and specificity than other methods. In analysis of known miRNAs in the

mouse genome, BayesMiRNAfind demonstrated 97 per cent sensitivity and 91 per

cent specificity. The method also predicted 244 putative miRNA genes in the mouse

genome.

Although machine-learning approaches have dominated approaches to miRNA

prediction, as discussed earlier, species conservation also has a part to play in the

identification of new miRNA genes. Berezikov et al. (2005) employed a phylogenetic

shadowing approach to detect possible novel miRNA genes. They first sequenced

122 miRNAs in 10 different species of primate. This revealed some valuable infor-

mation about the conservation characteristics of miRNA genes. Strong conservation

was observed in the stems of miRNA hairpins and increased variation was seen in

the loop sequences. A striking drop in sequence conservation was observed in the

regions immediately flanking the miRNA hairpins. This characteristic profile of con-

servation was used to predict novel miRNAs using cross-species comparisons. In this
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analysis they identified 976 vertebrate conserved candidate miRNAs (made avail-

able in supplementary materials with their publication) by scanning whole-genome

human/mouse and human/rat alignments.

De novo prediction of miRNA genes is probably a tall order for the non-specialist,

so it is probably worth focusing on what is already known. The miRBASE database at

the Sanger Institute (Griffiths-Jones et al., 2006) does a very good job of curating all

known miRNAs, and also hosts the miRNA registry and miRNA target predictions.

Each record has been manually curated and links to papers that support evidence for

those miRNAs are available. miRNA genes sourced from miRBASE can also be viewed

in the UCSC genome browser with the ‘sno/miRNA’ track. All validated miRNAs as

well as orthologues of validated miRNAs in other species are available to view with

this interface.

14.3.3 Computational identification of novel small ncRNAs

The UCSC human genome browser is a valuable resource for ncRNA analysis, as

it contains genome-wide annotations of known and predicted ncRNA determined

by a number of methods, each of which is well described in the track settings.

These include catalogues of known ncRNA, such as ‘miRNA genes’ representing all

the miRNAs from miRBase and ‘RNA genes’, a comprehensive mapping of known

ncRNA genes, including tRNA, rRNA, scRNA, snRNA, snoRNA, miRNA and other

known ncRNA (e.g., Xist). A number of novel prediction methods are also applied

genome wide, including ‘EvoFold’, an RNA secondary structure prediction method

that exploits the evolutionary signal of genomic multiple-sequence alignments for

identifying conserved functional RNA structures, and ‘RNAfold’, a similar RNA sec-

ondary structure prediction method but without a requirement for conservation.

Finally, the ‘Rfam seed folds’ track shows the secondary structure annotation of

ncRNAs from the Rfam database.

The ENCyclopedia Of DNA Elements (ENCODE) Project has given a valuable

insight into the potential abundance of ncRNA transcripts in the human genome

(ENCODE Project Consortium, 2004). The pilot phase of this project has focused

on 44 discrete regions covering 30 Mb (1 per cent) of the human genome, chosen

to represent a range of genomic features. The ENCODE project is applying state-of-

the-art bioinformatics and laboratory techniques to detect all sequence elements that

confer biological function. The results of the pilot phase of ENCODE analysis are

available to view at the UCSC human genome browser. The results make interesting

viewing (Figure 14.3); alongside the mapping of known ncRNA and computational

predictions, there are also tracks presenting results from the Affymetrix genome tiling

arrays. These arrays capture transcription of polyadenylated and nonpolyadenylated

RNAs for 10 human chromosomes, mapped at 5-bp resolution in eight cell lines.

The ‘Yale TAR’ track shows the locations of transcriptionally active regions (TARs)

for several samples.
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14.3.4 Computational identification of miRNA targets

Prediction of miRNA targets for translational regulation is challenging on many

levels. Methods are evolving rapidly, reflecting the miRNA field as whole. Here

are the problems. Firstly, the interaction with a target mRNA usually occurs via

a non-strict base pairing. As a consequence, common alignment tools, such as

Blast, are not appropriate for searching for miRNA targets. As the target site con-

sists of non-strictly matching 8-23-bp sequences, there is also a very high potential

for false-positive prediction. Moreover, a large set of laboratory-validated miRNA-

binding sites that could be used as a training set for learning algorithms is not yet

available.

Several miRNA target-prediction tools have been developed with the characteris-

tics of binding of the miRNA to its target: The 5′ end of a miRNA called the ‘seed’,

which is 6–8 nt long, has been shown to be critical and sometimes sufficient to repress

target translation (Lewis et al., 2003, 2005). There is also evidence that the 3′ end of

miRNAs may compensate for imperfect 5′ binding. Moreover, repression may be in-

creased by multiplicity (several binding sites in a transcript for a single miRNA) and

cooperativity (several miRNAs bind to a single transcript). Further comparisons of

repression by miRNAs bound to two, four and six different binding sites on a reporter

construct indicate that translation decreases with each additional site (Doench et al.,

2003; Zeng et al., 2003).

There are a number of published miRNA target-prediction tools, and all have their

caveats. TargetScan (Lewis et al., 2003) heavily weights its predictions toward the 5′

seed end. As a result, no prediction could be made if the complementarity in the 5′

end is imperfect. PicTar (Krek et al., 2005) looks for a perfect seed (called the nucleus)

and combines the output with cross-species conservation and multiplicity of binding

sites within a single UTR. The predominant focus of these two algorithms on the

5′ seed for target prediction is a source of some concern. In evolutionary terms, if

the 3′ end of a miRNA target was unimportant, miRNAs might have been expected

to evolve into shorter molecules. Moreover, using conservation as an exclusion filter

is not ideal, as Giraldez et al. (2006) showed, in a laboratory study of zebrafish

miR-430, that a large fraction of laboratory-verified miR-430 targets showed little or

no conservation. From this observation, it seems that conservation should only be

used to add confidence to a target, but it should not be used to exclude targets. This

is particularly relevant in man, where the complexities of gene regulation in some

systems, such as the brain, are unlikely to be strongly conserved across species.

RNAHybrid (Rehmsmeier et al., 2004) is another miRNA target-prediction tool,

with an improved folding algorithm that searches for the best minimum free energy

(MFE) of binding and combines advanced statistics (P values). The tool is freely

available on the Web (see Table 14.1). Miranda (John et al., 2004) is similar in

principle to the Pictar algorithm; however, it also provides P values. It searches for

the best MFEs regardless of the seed and is freely available as a package for one’s own

analyses (an option is available for strict base-paring binding in 5′ of the miRNA).
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MiRBase itself is available as a MySQL database and is currently the only database

with a pipeline behind it that will allow updates with current gene builds. It also

has a very close link with the miRNA registry that deals with the official naming of

miRNA genes.

Comparing available prediction methods on a given dataset shows worryingly

little overlap. For instance, given a set of two genes, 1-500 targets can be found

for each gene, depending on the prediction method used (David Bartel, personal

communication). This just serves to highlight the point that miRNA prediction still

has a very long way to go. It is difficult to see how these methods can be improved

further until a substantially characterized set of laboratory verified target sites is

identified. In the meantime, the best approach to finding miRNA targets that are

likely to be ‘real’ is probably to use Miranda or RNAHybrid, with close attention to

predicted P values.

As in the case of miRNA genes, a substantial number of predictions from some

of the miRNA target prediction tools are available online. Predicted miRNA targets

from TargetScan and Pictar can be viewed in the UCSC browser, in the ‘T-ScanS

miRNA’ and ‘PicTar miRNA’ tracks, respectively. Targets generated by MiRANDA

can be viewed in Ensembl.

At the time of writing (June 2006), the conventional view is that miRNA generally

bind to the 3′ UTR of mRNA transcripts; however, some literature is beginning to

suggest miRNA binding within the coding sequence (CDS) (Chamary et al., 2006).

A study by Hurst (2006) suggests that miRNA binding to the CDS might explain

the selection pressure that is observed to act on synonymous mutations. This is

an issue that can be resolved only by further research. If miRNAs do target the

coding sequences of genes, this increases the potential sites for miRNA binding

by two- to threefold. This, in turn, would substantially increase the potential for

miRNA regulation. However, it will make miRNA target prediction more difficult,

as vertebrate conservation is widespread throughout coding sequences. Therefore,

target prediction will need to focus on motif recognition alone, probably leading to

a much high rate of false-positive identification.

14.3.5 Getting a handle on miRNA expression

The small size of mature miRNAs has presented considerable technical challenges in

the detection of their expression patterns. Most miRNA-profiling studies include an

initial size fractionation of total mRNA in order to enrich for small RNA species. Early

methods used to determine the expression profile of miRNAs included northern

blotting, quantitative PCR, dot blotting, and RNase protection assay. Large-scale

cDNA analysis has also been used, but it is very laborious and highly dependent

upon selectivity for small RNAs.

Recent miRNA expression studies have used microarray chips specifically designed

to detect miRNAs. The laboratory of Carlo Croce published the first use of an miRNA
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microarray to study gene expression in mammalian embryonic and adult tissues

(Liu et al., 2004). However, the general drawbacks of early miRNA arrays are the

use of 70-mer oligos to detect pre-miRNA products rather than the smaller mature

miRNAs and biases possibly introduced from the methods used to make cDNA from

the RNA pool (Esquela-Kerscher and Slack, 2004). Construction of microarrays

with 22-mer antisense oligonucleotides corresponding to miRNAs, along with direct

labelling of RNA, seems better to detect mature miRNAs (Miska et al., 2004; Thomson

et al., 2004). A variant on this method is RNA-primed, array-based Klenow assay

(RAKE), which selectively amplifies only mature miRNAs bound to an array with

exact matching antisense oligonucleotides (Nelson et al., 2004).

Cross-hybridization across oligonucleotide probes is also an issue, particularly

for closely related miRNAs that differ by only one or a few nucleotides. In ad-

dition, miRNAs have wide-ranging GC content, making it difficult to optimize

globally all hybridization conditions. Recently, locked nucleic acid or LNA probes

have been developed that allow for the construction of overlapping short probes,

spanning half of the mature miRNA sequence. Neely et al. (2006) successfully used

spectrally distinguishable fluorescent LNA-DNA probe sets to determine the ex-

pression of 45 different miRNAs in the femtomolar range in 16 different tissues.

Moreover, by having two different fluorescent-labelled probes to every miRNA,

they were able to quantify closely related mature miRNAs, like let-7a and let-7c,

which differ by only a single base pair. LNA-mediated probes have also been used

for in situ detection of miRNAs in mouse and zebrafish embryos (Kloosterman

et al., 2006).

Of course, microarray or probe-based miRNA expression detection methods can

only profile miRNA genes with known sequences. Other approaches have used ex-

pression profiling to characterize known miRNA genes as well as to discover novel

miRNAs in purified RNA fractions. There are several recent examples. Cummins

et al. (2006) characterized miRNAs present in the human colon by a modified SAGE

(serial analysis of gene expression) technique, which they called miRAGE. Sequence

analysis was performed on 273 966 small RNA tags from four human colorectal

cancers and two matching samples of normal colonic muscosae. About 200 known

miRNAs were identified as well as 133 novel miRNA candidates. Mineno et al. (2006)

initially isolated all small RNAs in the 21–27-nt range from mouse embryo. Then, us-

ing massively parallel sequencing technology, they globally determined all nucleotide

sequences in this pool. They found 390 expressed miRNAs, of which nearly half were

novel mouse miRNAs.

Statistical analysis of miRNA profiles is similar to that of mRNA Taqman and

microarray data, with some caveats. Until newer methods are validated, cross-

hybridization of probes for similar miRNAs will be an issue. Thus, fine-scale detection

of individual miRNAs from highly related families is somewhat provisional unless

verified by more sensitive assays. Procedures for the normalization of miRNA expres-

sion data (to allow comparisons between experiments) are also unique. Housekeep-

ing genes, such as GAPDH, are often used to normalize mRNA expression profiles
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among various samples. Small RNAs, such as 5S RNA and U6 RNA, are sometimes in-

cluded in miRNA expression-profiling panels as putative small housekeeping RNAs.

However, the expression profiles of these small RNAs are not fully understood and

often show tissue-specific biases, limiting their reliability as housekeeping standards.

Presently, most studies normalize miRNA gene expression data to median values,

either per chip or across multiple panels.

Kits for miRNA detection are becoming commercially available from a number of

molecular biology reagent vendors. Initially, these assays covered a limited number

of known miRNAs. However, these products have been rapidly improved to cover the

wider repertoire of newly discovered and validated miRNA genes. For example, the

company Ambion has recently released both probe sets and preprinted miRNA arrays

covering 384 miRNAs for man, mouse and rat (see http://www.ambion.com/). In

addition, there have been advances in the isolation of miRNA expression profiles from

clinically relevant sources, such as blood and formalin-fixed paraffin-wax-embedded

(FFPE) samples. Although the technology is still nascent, miRNA expression profiling

will no doubt become as common a molecular technique as mRNA microarray

analysis.

14.4 ncRNA variation in disease

14.4.1 miRNA and ncRNA in cancer

Given the anticipated global cellular effect of ncRNAs on gene expression, it is not

surprising they have been implicated in the pathogenesis of cancer – which is es-

sentially a disease of dysregulated gene expression. Studies of cancer have helped

to launch the entire field of analysis of ncRNAs, many of which have been rather

fortuitously identified during the study of tumours, such as the imprinted transcript

H19 (see Szymanski et al., 2005, for a detailed review of this area). Small regula-

tory RNAs, including miRNAs, have also been shown to play an important role in

cancer (Figure 14.4). Qualitative as well as quantitative differences in expression of

miRNA have been observed in both cancer cell lines and tumours. Advances in un-

derstanding how miRNAs play a role in cancer, or act as so-called oncomirs, have

been recently reviewed by Esquela-Kersher and Slack (2006). In the case of colorectal

cancers, miR-24-2 showed a 50-fold difference between samples (Schmittgen et al.,

2004). The mechanisms underlying these observed differences are likely to be varied.

To date, there is very little evidence of somatic point mutations in miRNA genes.

Diederich and Haber (2006) analysed a panel of 91 cancer-derived cell lines for se-

quence variations in 15 miRNAs implicated in tumorigenesis. No mutations were

detected within any of the short, mature miRNA sequences. One sequence vari-

ant was identified in a precursor miRNA, and 15 variants were isolated in primary

miRNA (pri-miRNA) transcripts. Despite the possibility of an impact on the pre-

dicted secondary folding structure flanking putative cleavage sites in the pri-miRNA,
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Figure 14.4 The putative role of miRNA in cancer. From Calin et al. Human microRNA genes are

frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci

U S A 101(9): 3003. Copyright 2004 National Academy of Sciences, U.S.A.

processing and miRNA maturation were not affected in vivo. Thus, they concluded

that genetic variants in miRNA precursors in cancer cells might not have a common

physiological significance.

One of the commonest variants is probably alteration by chromosomal aberration,

that is, deletion, amplification or translocation of chromosomal regions containing

miRNA. Several miRNA genes are located in genomic regions that undergo frequent

translocations or deletions in leukaemia. The miR-15a–miR-16-1 cluster is located

on chromosome 13q14, a region that is frequently deleted in cases of chronic lym-

phocytic leukaemia (CLL), mantle-cell lymphoma, multiple myeloma and prostate

cancer (Gregory and Shiekhattar, 2005). The miR-142 gene is another example, lo-

cated at the break point of a t(8;17) translocation, which is believed to contribute to

the progression of B-cell leukaemia (Calin et al., 2004). There is compelling evidence

to suggest a very widespread involvement of this mechanism in miRNA-mediated

cancers in both a tumour-suppressive or oncogenic mode. In a detailed analysis of

the chromosomal distribution of miRNAs, Calin et al. (2004) demonstrated that 98

out of 186 (52.5 per cent) miRNA genes were located within minimal tumour dele-

tion, amplification or break-point regions. (These aberrant regions are catalogued

in the Mitelman Database of chromosomal aberrations in cancer (see Chapter 17 for

details).)



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

358 CH 14 NON-CODING RNA BIOINFORMATICS

More subtle mechanisms of miRNA action in cancer also appear to exist. Most

cancer cell types studied show reduced overall expression of miRNAs, and this gen-

erally appears to support the view that higher levels of miRNAs are associated with

the differentiated cellular state, the observed lower levels reflecting the undifferenti-

ated state of the tumour (Lu et al., 2005). This suggests that miRNAs predominantly

play a tumour-suppressive role, probably by regulating the expression of oncogenes.

Johnson et al. (2005) identified a good example of this, showing that the RAS onco-

gene is regulated by the let-7 miRNA. Decreased expression of let-7 miRNA in hu-

man lung tumours caused increased expression of the RAS oncogene, contributing

to tumorigenesis. Additional evidence of similar regulatory relationships is accumu-

lating to support the general view of miRNAs as tumour suppressors (Morris and

McManus, 2005). However, there is also strong direct evidence that miRNAs may

act as oncogenes, in this case due to increased or inappropriate expression reg-

ulating tumour suppressors. For example, mir-155 shows increased expression in

some B-cell lymphomas, such as large B-cell lymphoma and Burkitt lymphoma

(Hammond, 2006). Feedback loops between miRNAs and known tumour suppres-

sors or oncogenes might be extensive. For example, a recent study suggests that the

transcription factor p53, a well-known tumour suppressor, regulates the expression

of a large number of miRNA genes (Xi et al., 2006).

Knowledge of miRNA expression in tumours is also having some unexpected

benefits. Expression profiles of different miRNAs appear to discriminate between tu-

mours that originate from different tissues as well as between normal and malignant

cells (Lu et al., 2005). These expression profiles can be highly effective in classify-

ing human cancers and predicting the developmental origins of cancers, and this

could be clinically important in tracing the origin of a metastatic tumour. Lu et al.

(2005) demonstrated that miRNA microarrays are more effective in tumour classifi-

cation than mRNA microarrays containing more than 16 000 protein-coding genes.

Similarly, clinically derived solid tumours samples also have distinctive miRNA sig-

natures (Volinia et al., 2006).

While the in vivo and in vitro evidence supporting the role of miRNA in can-

cer mounts, the in silico evidence is even stronger. If bioinformatics predictions of

target binding are taken into account, a quick review of a selection of oncogenes

and tumour suppressors in miRBase Targets (http://microrna.sanger.ac.uk/targets/)

reports that miRNA target-binding sites are widespread in both oncogenes and

tumour-suppressor genes. If these predictions are accurate, the role of miRNA (and

other ncRNAs) in cancer is likely to be ubiquitous. Clearly, these miRNA target-

binding sites are likely to be strong candidates for mutation in tumours; however,

it is very difficult to get an idea of how prevalent this is likely to be. Somewhat

ironically, in perhaps the final twist of the dogma supporting coding sequence in

disease, there are very few somatic mutation data available from the UTR sequences

of genes. All major tumour mutation discovery projects (e.g., the Sanger Insti-

tute’s Cancer Genome Project (see Chapter 17)) have focused on the coding regions

of genes.
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14.4.2 ncRNA in complex disease

Beyond the gross amplifications and deletions seen in miRNA in cancer, there are

very few reports of variations in small ncRNAs in complex diseases. Broadening the

view to all ncRNAs is a slightly different matter, as a number of larger ncRNAs have

been implicated in a range of neurobehavioural and developmental syndromes and

diseases (see Szymanski et al., 2005, for a review). However, keeping our focus on

small ncRNA, the clinical evidence is still largely absent, although the rationale is

not lacking. This is probably due to the recent nature of our understanding of small

RNA, so variations in these pathways have probably gone undetected. The potential

for polymorphism and mutation in ncRNA genes, such as miRNA, may be limited

due the strong selective constraint that exists at many of these loci, particularly in

the conserved mature miRNA sequences. However, when potential polymorphisms

in the mRNA target sequences are taken into account, the odds begin to look more

favourable.

Genetic variants in miRNA genes as potential disease alleles

A deleterious mutation in a single miRNA gene might affect all the genes regu-

lated by the given miRNA, possibly hundreds of genes. However, evolution has led

to a fail-safe mechanism in many miRNA that may ameliorate such events by in-

troducing functional redundancy into miRNA gene families. This redundancy can

be absolute; 42/313 mature human miRNAs are identically encoded by more than

one pre-miRNA gene. This redundancy can be up to fourfold (although usually

it is two- to threefold); for example, the 22-nt, mature miR-30c miRNA is iden-

tically encoded by two pre-miRNA genes, on chromosomes 1 and 6 respectively.

This redundancy is conveyed by the naming convention; distinct pre-miRNA loci

that give rise to identical mature miRNAs have numbered suffixes, such as hsa-miR-

30c-1 and hsa-miR-30c-2 (Figure 14.5A). To further complicate matters, opinion

on the degree of conservation of mature sequence required for functional redun-

dancy varies (Griffiths-Jones et al., 2006). Some recent studies suggest that only

the 5′ seed region (nucleotides 2–7) of the sequence forms a tight duplex with

the target mRNA (Lewis et al., 2005). If so, one might expect compensation for

mutations by paralogous miRNA sequences whose mature miRNAs differ at only

one or two positions. These paralogues are given lettered suffixes – for example,

hsa-miR-30a or hsa-miR-30b, c, d and e (Figure 14.5B). If we take this into ac-

count, 163/313 mature miRNAs appear to be redundantly coded; this figure may

increase as more pre-miRNA genes are identified. It is not clear how much redun-

dancy of coding would compensate for loss of function at individual miRNA loci.

It is possible that the redundant pre-miRNA genes are regulated differently and ex-

pressed in different tissues, in which case compensation for null alleles might not be

possible.
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Homo sapiens miR-30c-1 stem-loop (MI0000736)

a     cu    ugu u       u   aca         ---g  a
 ccaug  guag   g guaaaca ccu   cucucagcu    ug g
 |||||  ||||   | ||||||| |||   |||||||||    ||
 gguac  cguc   c cauuugu ggg   gagggucgg    ac c
a     --    uuc u       u   --a         ugga  u

Homo sapiens miR-30c-2 stem-loop (MI0000254)

             uacu       u   aca         guggaa
          aga    guaaaca ccu   cucucagcu      a
          |||    ||||||| |||   |||||||||
          ucu    cauuugu gga   gagggucga      g
             uucu       c   --a         aagaau

Homo sapiens miR-30a stem-loop (MI0000088)

   a            uc           -----   a
gcg cuguaaacaucc  gacuggaagcu     gug a
||| ||||||||||||  |||||||||||     |||
cgu gacguuuguagg  cugacuuucgg     cac g
   c            --           guaga   c

Homo sapiens miR-30b stem-loop (MI0000441)

a     uu      cau          u  -a        uaaua
 ccaag  ucaguu   guaaacaucc ac  cucagcug     c
 |||||  ||||||   |||||||||| ||  ||||||||
 gguuc  agucga   cauuuguagg ug  gggucggu     a
a     --      cuu          -  ga        uaggu

Homo sapiens miR-30d stem-loop (MI0000255)

guu  u         ccc           gua  ac
   gu guaaacauc   gacuggaagcu   ag  a
   || |||||||||   |||||||||||   ||
   cg cguuuguag   cugacuuucga   uc  c
cau  u         --a           --a  ga

Homo sapiens miR-30e stem-loop (MI0000749)

g        uu  ua            uu           g aag u
 ggcagucu  gc  cuguaaacaucc  gacuggaagcu u   g g
 ||||||||  ||  ||||||||||||  ||||||||||| |   |
 ccgucgga  cg  gacauuuguagg  cugacuuucga g   c u
a        --  gc            --           g aga u

A – Redundant genes encode miR-30c B – Multiple paralogues of miR-30

C – Alignment of miR-30 paralogues 

>hsa-miR-30a UGUAAACAUCCUCGACUGGAAG 
>hsa-miR-30b UGUAAACAUCCUACACUCAGCU
>hsa-miR-30d UGUAAACAUCCCCGACUGGAAG
>hsa-miR-30e UGUAAACAUCCUUGACUGGAAG
>hsa-miR-30c UGUAAACAUCCUACACUCUCAGC
                      _
                      A* 

*C>A SNP from Iwai & Naraba, (2005)

Figure 14.5 Redundancy, paralogy and the impact of variation in pre-miRNA genes. (A) Redun-

dant pre-miRNA genes encode the miR-30c mature miRNA. Mature miRNA sequences are under-

lined. (B) Paralogous pre-miRNA genes encode four additional paralogues of miR-30c which may

show functional redundancy. (C) Alignment of miR-30 paralogues identifies invariant nucleotide

1-11. C > A polymorphism is located at nucleotide 9. Note: Related hairpin precursor sequences

may give rise to mature sequences with only marginal similarity (and vice versa). Therefore,

miRNA gene names should not be relied upon to convey complex relationships between genes;

instead, they should be used as a guide, backed up by detailed review of the sequences with

miRBase (Table 14.1).

Despite the considerable redundancy seen between mature miRNA, genetic vari-

ants in miRNA genes still may affect many target genes with serious consequences.

This would suggest that pre-miRNA genes are likely be under strong balancing selec-

tion. As if to confirm this, Iwai and Naraba (2005) sequenced 173 human pre-miRNA

genome regions in 96 subjects and found only 10 polymorphisms; nine were located

in the pre-miRNA hairpin regions and were predicted to have a limited effect on

miRNA processing. However, one C to A polymorphism was identified in the miR-

30c-2 mature miRNA sequence (Figure 14.5C). After further genotyping, they found

the C > A miR-30c-2 SNP at a 0.0006 frequency in 3631 Japanese subjects. Con-

sidering the potential for redundant coding of the mature miR-30c transcript, they

carried out Northern blot analysis, which indicated that miR-30c-2 was expressed in

human tissues, but miR-30c-1 did not appear to be expressed in the tissues examined.

Therefore, they predicted that it might not be possible for miR-30c-1 to compensate

for loss of function at miR-30c-2, in which case the polymorphism might exert a

significant biological effect.
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The analysis by Iwai and Naraba is interesting, and it clearly illustrates some of the

steps that need to be taken to assess the impact of variation on pre-miRNA genes.

It may well be that the miR-30c-2 cannot be compensated for by miR-30c-1; in all

tissues the two genes are not co-expressed, and, in view of its lack of expression,

miR-30c-1 may be a pseudogene. However, the situation may be yet more complex.

If conservation is only required at the 5′ seed region, as some have suggested, it

may be possible for any of the five miR-30 paralogues to compensate for loss of

function at the miR-30c locus, as all are completely conserved across the miRNA seed

region (Figure 14.2). Another point to consider is that some miRNAs may be more

vulnerable to mutation than others, especially when there are no other paralogues to

compensate for expression. In this case, SNPs were also identified in the pre-miRNA

hairpin regions of miR-149 and miR-217, neither of which has known paralogues.

In such cases, even a subtle impact on function might have important consequences

if no paralogues are available to compensate (we review the impact of these SNPs in

Section 14.5.

Genetic variation in miRNA targets as potential disease alleles

By contrast to the scarcity of variation seen in miRNA genes, the potential for variation

in miRNA target sites in the 3′ UTR of mRNA transcripts is very great indeed. Genetic

association between complex diseases and miRNA target alleles may well be found in

the near future, for a number of reasons. Firstly, the potential number of sites at which

this might occur is very high; secondly, the impact of variation at these sites might

be very subtle, fitting well the subtle dysregulation of genes that is sometimes seen in

complex diseases. However, this has not been reflected in the literature so far. This

is not due to a lack of association with UTR variants, of which there are many; the

problem lies in proof of cause and effect. Explanations of functional impact in UTR

have generally focused on RNA secondary structure and mRNA transcript stability,

but this is difficult to demonstrate in vivo. In effect, genetic associations in the UTR of

genes are usually the subject of a collective literary shrug; function remains undefined

or a hidden causative variant in linkage disequilibrium with polymorphisms in the

UTR will be suspected.

Now that some understanding of miRNA to mRNA targeting mechanisms exists,

it may just be a matter of time before many good examples of miRNA target variation

emerge in complex diseases. At the time of writing, however, there is only one known

association between a variant in a miRNA target and a complex disease (other than

cancer). Abelson et al. (2005) carried out this landmark study in patients suffering

from Tourette’s syndrome (TS). A G > A variant was identified in two unrelated

patients in the 3′ UTR of the SLITRK1 gene in a highly conserved predicted binding

site for the miRNA hsa-miR-189; this variant was absent from 3600 control chro-

mosomes. The fact that this variant was in a conserved predicted binding site was
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not in itself enough to confirm the function of this mutation. However, Abelson

et al. carried out a series of seminal experiments that convincingly argued that a

variant in a miRNA target site may play a role in susceptibility to TS. Their exper-

iments should form the basis of other follow-up studies. Firstly, they showed that

SLITRK1 mRNA and hsa-miR-189 have an overlapping expression pattern in brain

regions previously implicated in TS. Next they examined the impact of the G > A

variant on binding of miR-189 to the UTR of SLITRK1, finding that the G > A

variant replaced a G:U wobble base pair with an A:U Watson–Crick pairing at po-

sition 9 in the miRNA-binding domain. This G:U pairing was highly conserved in

both SLITRK1 3′ UTR and miR-189. Other studies have also shown that G:U wob-

ble base pairs inhibit miRNA-mediated protein repression to a greater degree than

would be expected on the basis of their thermodynamic properties alone (Doench

and Sharp, 2004). All of these factors strongly support the assumption that the G > A

variant affects SLITRK1 expression. To confirm this hypothesis, Abelson et al. in-

serted the full-length SLITRK1 3′ UTR downstream of a luciferase reporter gene and

transfected the construct into Neuro2a (N2a) cells. In the presence of miR-189, the

expression of luciferase was significantly reduced, confirming the functional poten-

tial of the mRNA-miRNA duplex at this binding site. To evaluate the impact of the

variant base, they constructed an identical construct differing only at the mutant

base, and they recorded a modest but statistically significant and dose-dependent

further repression of luciferase expression compared with that of the wild type. This

confirms the subtle impact of miRNA target variants and their role in TS and serves

as a template for future functional analysis of miRNA target binding.

14.5 Assessing the impact of variation in ncRNA

As the study by Iwai and Naraba (2005) demonstrated, in most cases, variation in

ncRNAs is more likely to be localized in the less functionally constrained regions

outside the mature RNA molecules. Getting an understanding of the impact of this

variation is not easy; this is in part because we do not really have a good idea how

small ncRNA genes are structured or regulated. Even for the well-studied miRNAs,

we still have a somewhat limited understanding of their regulation; most do not

have recognizable canonical promoters, although Cai et al. (2004) did demonstrate

expression of some miRNAs from T1 promoter elements. We can assume that the re-

gions outside the mature miRNA sequence, however, are still functionally significant

by the simple fact that they are generally well conserved between species.

Zeng and Cullen (2003) gave some insight into the functional constraint of pre-

miRNA genes. They demonstrated that the miRNAs, miR-30 and miR-21, could

translationally inhibit an mRNA-bearing artificial target sites. They also demon-

strated that mature miRNA production in both miRNA genes was highly dependent

on the integrity of the precursor RNA stem, although the underlying sequence of

the stem was not important as long as the integrity of the stem was retained. This
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suggests that variation within the stem loop would affect miRNA function only if the

overall stem-loop structure was altered. The impact of such variants can be evaluated

by RNA secondary structure prediction tools, such as RNAfold (Table 14.1), to fold

the wild-type and mutant alleles of the miRNA stem-loop variants. Other parts of

the miRNA stem loop may be less sensitive to mutation. Zeng and Cullen (2003)

found that the changes in the sequence of the terminal loop affected miRNA pro-

duction only moderately, suggesting that variants in this region are less likely to have

a functional impact, unless major fold changes occur in the RNA. Again, RNAfold

prediction may help in assessment of the impact of variants in the terminal loop.

14.6 Data resources to support small ncRNA analysis

A number of informatics resources are now available as databases for miRNAs

and their targets and also as computational tools to identify miRNAs targets. The

best-known miRNA resource is probably miRBase (http://microrna.sanger.ac.uk/)

(Griffiths-Jones et al., 2006), which is maintained at the Sanger Institute in the UK.

miRBase provides a single comprehensive resource for miRNAs in the miRBase Se-

quences section and their predicted targets in the miRBase Targets section. At the

time of writing, miRBase contains 3963 entries (Release 8.1 May 2006). miRBase

provides also a service to register new miRNAs. Argonaute is another database for

miRNAs (http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/interface/) (Shahi

et al., 2006). Argonaute focuses on human, mouse and rat miRNAs and con-

tains additional information on the origin of the miRNAs, such as their ori-

gin, tissue distribution and potential function. Other resources include miR-

NAMap (http://mirnamap.mbc.nctu.edu.tw/) (Hsu et al., 2006), a comprehensive

resource of experimentally verified miRNAs from four mammalian genomes (hu-

man, mouse, rat and dog). miRNAMap provides information on expression pro-

files of known miRNAs as well as links to other biological databases. In addition,

various small companies, such as Actigenics (http://www.actigenics.com), Ambion

(http://www.ambion.com) or RosettaGenomics (http://www.rosettagenomics.com),

have private databases of miRNAs and their targets.

14.7 Conclusions

The landscape of genome regulation has been radically altered with the recent dis-

covery of small ncRNAs which modulate transcription and translation. To date, new

knowledge about ncRNAs has largely focused on miRNAs. Many studies suggest that

miRNA expression profiles correspond to important stages in cellular development,

growth, differentiation and apoptosis as well as wider embryogenesis and intercel-

lular interactions. Moreover, there is growing evidence that certain miRNAs play at

least some role in key diseases, particularly cancer.
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However, there is much more to be learned about miRNA biology, especially

from a genetics perspective. The mechanisms by which miRNAs exert their regula-

tory control, either on mRNA transcription or protein synthesis, are still unclear.

This knowledge gap hinders the assessment of the functional effects of SNPs, mu-

tations occurring in miRNA genes themselves, or the putative miRNA-binding sites

in targeted coding genes. While many miRNA genes are evolutionarily conserved,

extensive specialization of miRNA within species lineages is also evident. The entire

complement of miRNA genes (miRome) in any genome has yet to be determined.

In fact, several studies suggest that in man there might be more than double the

current repertoire of validated miRNA genes. Finally, there is the issue of transcrip-

tional regulation of miRNA genes. There needs to be more study of the transcription

factors and the regulatory pathways which coordinate the expression and suppres-

sion of miRNA genes. Many miRNAs are encoded by redundant, duplicate copies on

different chromosomes, suggesting more subtle levels of control.

Advances in technology to detect miRNA gene expression will lead to the wider

use of miRNAs in genetic and genomic studies. The analysis and interpretation of

ncRNAs on phenotype will be major challenge for geneticists in the years to come.

References

Abelson, J. F., Kwan, K. Y., O’Roak, B. J. et al. (2005). Sequence variants in SLITRK1 are

associated with Tourette’s syndrome. Science 310(5746), 317–320.

Andreeva, A., Howorth, D., Brenner, S. E. et al. (2004). SCOP database in 2004: refinements

integrate structure and sequence family data. Nucleic Acids Res 32, D226–D229.

Bagga, S., Bracht, J., Hunter, S. et al. (2005). Regulation by let-7 and lin-4 miRNAs results in

target mRNA degradation. Cell 122, 553–563.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,

281–97.

Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356–363.

Bejerano, G., Haussler, D. and Blanchette, M. (2004). Into the heart of darkness: large-scale

clustering of human non-coding DNA. Bioinformatics 20 Suppl 1, I40–I48.

Bentwich, I., Avniel, A., Karov, Y. et al. (2005). Identification of hundreds of conserved and

nonconserved human microRNAs. Nat Genet 37(7), 766–770.

Berezikov, E., Guryev, V., van de Belt, J. et al. (2005). Phylogenetic shadowing and computa-

tional identification of human microRNA genes. Cell 120(1), 21–24.

Brown, J. R. and Sanseau, P. (2005). A computational view of microRNAs and their targets.

Drug Discov Today 10(8), 595–601.

Cai, X., Hagedorn, C. H. and Cullen, B. R. (2004). Human microRNAs are processed from

capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12), 1957–

1966.

Calin, G. A., Dumitru, C. D., Shimizu, M. et al. (2002). Frequent deletions and down-

regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic

leukemia. Proc Natl Acad Sci USA 99, 15524–15529.



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

REFERENCES 365

Calin, G. A., Sevignani, C., Dumitru, C. D. et al. (2004). Human microRNA genes are fre-

quently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci

U S A 101(9), 2999–3004.

Carthew, R. W. (2006). Gene regulation by microRNAs. Curr Opin Genet Dev 16, 203–208.

Chalk, A. M., Warfinge, R. E., Georgii-Hemming, P. et al. (2005). siRNAdb: a database of

siRNA sequences. Nucleic Acids Res 33, D131–134.

Chamary, J.-V., Parmley, J. L. and Hurst, L. D. (2006). Hearing silence: non-neutral evolution

at synonymous sites in mammals. Nat Rev Genet 7, 98–108.

Costa, F. F. (2005). Non-coding RNAs: new players in eukaryotic biology. Gene 357, 83–94.

Cummins, J. M., He, Y., Leary, R. J. et al. (2006). The colorectal microRNAome. Proc Natl

Acad Sci U S A 103, 3687–3692.

Denli, A. M., Tops, B. B., Plasterk, R. H. et al. (2004). Processing of primary microRNAs by

the microprocessor complex. Nature 432, 231–235.

Diederichs, S. and Haber, D. A. (2006). Sequence variations of microRNAs in human cancer:

alterations in predicted secondary structure do not affect processing. Cancer Res 66(12),

6097–6104.

Doench, J. G., Petersen, C. P. and Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes

Dev 17, 438–442.

Doench, J. G. and Sharp, P. A. (2004). Specificity of microRNA target selection in translational

repression. Genes Dev 18(5), 504–511.

Eddy, S. R. (2001). Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2,

919–929.

ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements)

Project. Science 306(5696), 636–640.

Esau, C., Kang, X., Peralta, E. et al. (2004). MicroRNA-143 regulates adipocyte differentiation.

J Biol Chem 279, 52361–52365.

Esquela-Kerscher, A. and Slack, F. J. (2004). The age of high-throughput microRNA profiling.

Nat Methods 1, 106–107.

Esquela-Kerscher, A. and Slack, F. J. (2006). Oncomirs – microRNAs with a role in cancer.

Nat Rev Cancer 6, 259–269.

Gregory, R. I., Yan, K. P., Amuthan, G. et al. (2004). The microprocessor complex mediates

the genesis of microRNAs. Nature 432, 235–240.

Gregory, R. I. and Shiekhattar, R. (2005). MicroRNA biogenesis and cancer. Cancer Res 65(9),

3509–3512.

Griffiths-Jones, S., Grocock, R. J., van Dongen, S. et al. (2006). miRBase: microRNA sequences,

targets and gene nomenclature. Nucleic Acids Res 34, D140–144.

Griffiths-Jones, S., Moxon, S., Marshall, M. et al. (2005). Rfam: annotating non-coding RNAs

in complete genomes. Nucleic Acids Res 33, D121–124.

Grosshans, H., Johnson, T., Reinsert, K. L. et al. (2005). The temporal patterning microRNA

let-7 regulates several transcription factors at the larval to adult transition in C. elegans.

Dev Cell 8, 321–330.

Hammond, S. M. (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16(1), 4–9.

Hayashita, Y., Osada, H., Tatematsu, Y. et al. (2005). A polycistronic microRNA cluster, miR-

17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res

65(21), 9628–9632.

Hofacker, I. L., Fontana, W., Stadler, P. F. et al. (1994). Fast folding and comparison of RNA

secondary structures. Monatsh Chem 125, 167–188.



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

366 CH 14 NON-CODING RNA BIOINFORMATICS

Hsu, P. W. C., Huang, H.-D., Hsu, S.-D. et al. (2006). miRNAMap: genomic maps of microRNA

genes and theit target genes in mammalian genomes. Nucleic Acids Res 34, D135–D139.

Hurst, L. D. (2006). Preliminary assessment of the impact of microRNA-mediated regulation

on coding sequence evolution in mammals. J Mol Evol 63(2), 174–182.

Huttenhofer, A. and Vogel, J. (2006). Experimental approaches to identify non-coding RNAs.

Nucleic Acids Res 34(2), 635–646.

Iwai, N. and Naraba, H. (2005). Polymorphisms in human pre-miRNAs. Biochem Biophys Res

Commun 331(4), 1439–1444.

Jing, Q., Huang, S., Guth, S. et al. (2005). Involvement of microRNA in AU-rich element-

mediated mRNA instability. Cell 120, 623–634.

John, B., Enright, A. J., Aravin, A. et al. (2004). Human MicroRNA targets. PLoS Biol 2(11),

e363.

Johnson, S. M., Grosshans, H., Shingara, J. et al. (2005). RAS is regulated by the let-7 microRNA

family. Cell 120(5), 635–647.

Kampa, D., Cheng, J., Kapranov, P. et al. (2004). Novel RNAs identified from an in-depth

analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14(3), 331–

342.

Kern, W., Kohlmann, A., Wuchter, C. et al. (2003). Correlation of protein expression and gene

expression in acute leukemia. Cytometry 55B, 29–36.

Kim, V. N. (2006). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell

Biol 6, 376–385.

Kloosterman, W. P., Wienholds, E., de Bruijn, E. et al. (2006). In situ detection of miRNAs in

animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3, 27–29.

Krek, A., Grun, D., Poy, M. N. et al. (2005). Combinatorial microRNA target predictions. Nat

Genet 37, 495–500.

Lai, E. C., Tomancak, P., Williams, R. W. et al. (2003). Computational identification of

Drosophila microRNA genes. Genome Biol 4, R42.

Lai, E. C. (2003). MicroRNAs: runts of the genome assert themselves. Curr Biol 13(23), R925–

936.

Leaman, D., Chen, P. Y., Fak, J. et al. (2005). Antisense-mediated depletion reveals essential

and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108.

Lee, J. T., Davidow, L. S. and Warshawsky, D. (1999). Tsix, a gene antisense to Xist at the

X-incativation centre. Nat Genet 21, 400–404.

Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). The C. elegans heterochronic gene lin-4

encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854.

Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005). Conserved seed pairing, often flanked

by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,

15–20.

Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W. et al. (2003). Prediction of mammalian mi-

croRNA targets. Cell 115(7), 787–798.

Lim, L. P., Lau, N. C., Weinstein, E. G. et al. (2003). The microRNAs of Caenorhabditis elegans.

Genes Dev 17(8), 991–1008.

Liu, C., Bai, B., Skogerbo, G. et al. (2005). NONCODE: an integrated knowledge database of

non-coding RNAs. Nucleic Acids Res 33, D112–115.

Liu, C.-G., Calin, G. A., Meloon, B. et al. (2004). An oligonucleotide microchip for genome-

wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101,

9740–9744.



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

REFERENCES 367

Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. et al. (2005). MicroRNA-dependent localization

of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7, 719–723.

Lu, J., Getz, G., Miska, E. A. et al. (2005). MicroRNA expression profiles classify human

cancers. Nature 435(7043), 834–838.

Manoharan, H., Babcock, K., Willi, J. et al. (2003). Biallelic expression of the H19 gene during

spontaneous hepatocarcinogenesis in the albumin SV40 T antigen transgenic rat. Mol

Carcinog 38, 40–47.

Mattick, J. S. (2003). Challenging the dogma: the hidden layer of non-protein-coding RNAs

in complex organisms. Bioessays 25(10), 930–939.

Mignone, F., Grillo, G., Licciulli, F. et al. (2005). UTRdb and UTRsite: a collection of sequences

and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res

33, D14114–14116.

Millar, J. K., Wilson-Annan, J. C., Anderson, S. et al. (2000). Disruption of two novel genes

by a translocation co-segregating with schizophrenia. Hum Mol Genet 9, 1415–1423.

Miller, V. M., Xia, H., Marrs, G. L. et al. (2005). Allele-specific silencing of dominant disease

genes. Proc Natl Acad Sci U S A 100(12), 7195–7200.

Mineno, J., Okamoto, S., Ando, T. et al. (2006). The expression profile of microRNAs in mouse

embryos. Nucleic Acids Res 34, 1765–1771.

Miska, E. A., Alvarez-Saavedra, E., Townsend, M. et al. (2004). Microarray analysis of mi-

croRNA expression in the developing mammalian brain. Genome Biol 5, R68.

Morris, J. P. 4th and McManus, M. T. (2005). Slowing down the Ras lane: miRNAs as tumor

suppressors? Sci STKE 16 Aug (297), pe41.

Nam, J. W., Shin, K. R., Han, J. et al. (2005). Human microRNA prediction through a proba-

bilistic co-learning model of sequence and structure. Nucleic Acids Res 33(11), 121–125.

Neely, L. A., Patel, S., Garver, J. et al. (2006). A single-molecule method for the quantitation

of microRNA gene expression. Nat Methods 3, 41–46.

Nelson, P. T., Baldwin, D. A., Scearce, L. M. et al. (2004). Microarray-based, high throughput

gene expression profiling of microRNAs. Nat Methods 1, 155–161.

O’Donnell, K. A., Wentzel, E. A., Zeller, K. I. et al. (2005). c-Myc-regulated microRNAs

modulate E2F1 expression. Nature 435, 839–843.

Olsen, P. H. and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental tim-

ing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of

translation. Dev Biol 216, 671–680.

Pang, K. C., Stephen, S., Engstrom, P. G. et al. (2005). RNAdb – a comprehensive mammalian

noncoding RNA database. Nucleic Acids Res 33, D125–130.

Pillai, R. S., Bhattacharyya, S. N., Artus, C. G. et al. (2005). Inhibition of translational initiation

by Let-7 microRNA in human cells. Science 309, 1573–1576.

Poy, M. N., Eliasson, L., Krutzfeldt, J. et al. (2004). A pancreatic islet-specific microRNA

regulates insulin secretion. Nature 432, 226–230.

Rastan, S. (1994). X chromosome inactivation and the Xist gene. Curr Opin Genet Dev 4(2),

292–297.

Rehmsmeier, M., Steffen, P., Hochsmann, M. et al. (2004). Fast and effective prediction of

microRNA/target duplexes. RNA 10(10), 1507–1517.

Runte, M., Kroisel, P. M., Gillessen-Kaesbach, G. et al. (2004). SNURF-SNRPN and UBE3A

transcript levels in patients with Angelman syndrome. Hum Genet 114, 553–561.

Schmittgen, T. D., Jiang, J., Liu, Q. et al. (2004). A high-throughput method to monitor the

expression of microRNA precursors. Nucleic Acids Res 32(4), e43.



OTE/SPH OTE/SPH

JWBK136-14 February 16, 2007 15:26 Char Count= 0

368 CH 14 NON-CODING RNA BIOINFORMATICS

Sen, G. L. and Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA

decay known as cytoplasmic bodies. Nat Cell Biol 7, 633–636.

Shahi, P., Loukianiouk, S., Bohne-Lang, A. et al. (2006). Argonaute – a database for gene

regulation by mammalian micro RNAs. Nucleic Acids Res 34, D155–118.

Sironi, M., Menozzi, G., Comi, G. P. et al. (2005). Analysis of intronic conserved elements

indicates that functional complexity might represent a major source of negative selection

on non-coding sequences. Hum Mol Genet 14(17), 2533–2546.

Srikantan, V., Zou, Z., Petrovics, G. et al. (2000). PCGEM1, a prostate-specific gene, is over-

expressed in prostate cancer. Proc Natl Acad Sci U S A 97(22), 12216–12221.

Szymanski, M., Barciszewska, M. Z., Erdmann, V. A. et al. (2005). A new frontier for molecular

medicine: noncoding RNAs. Biochim Biophys Acta 1756(1), 65–75.

Takeda, K., Ichijo, H., Fujii, M. et al. (1998). Identification of a novel bone morphogenetic

protein-responsive gene that may function as a noncoding RNA. J Biol Chem 273, 17079–

17085.

Tam, W., Hughes, S. H., Hayward, W. S. et al. (2002). Avian bic, a gene isolated from a common

retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA,

cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76(9),

4275–4286.

Thomson, J. M., Parker, J., Perou, C. M. et al. (2004). A custom microarray platform for

analysis of microRNA gene expression. Nat Methods 1, 47–53.

Volinia, S., Calin, G. A., Liu, C.-G. et al. (2006). A microRNA expression signature of human

solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257–2261.

Wightman, B., Ha, I. and Ruvkun, G. (1993). Postranscriptional regulation of the hete-

rochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75,

855–862.

Wylie, A. A., Murphy, S. K., Orton, T. C. et al. (2000). Novel imprinted DLK1/GTL2 domain

on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19

regulation. Genome Res 10, 1711–1718.

Xi, Y., Shalgi, R., Fodstad, O. et al. (2006). Differentially regulated micro-RNAs and actively

translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin

Cancer Res 12, 2014–2024.

Xu, P., Vernooy, S. Y., Guo, M. et al. (2003). The Drosophila microRNA Mir-14 suppresses cell

death and is required for normal fat metabolism. Curr Biol 13, 790–795.

Yousef, M., Nebozhyn, M., Shatkay, H. et al. (2006). Combining multi-species genomic data for

microRNA identification using a Naive Bayes classifier machine learning for identification

of microRNA genes. Bioinformatics 22(11), 1325–1334.

Zeng, Y. and Cullen, B. R. (2003). Sequence requirements for micro-RNA processing and

function in human cells. RNA 9(1), 112–123.

Zeng, Y., Yi, R. and Cullen, B. R. (2003). miRNAs and small interfering RNAs can inhibit

mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100, 9779–9784.

Zuker, M. (1989). On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction.

Nucleic Acids Res 31, 3406–3415.



OTE/SPH OTE/SPH

JWBK136-15 February 16, 2007 15:27 Char Count= 0

Section V
Analysis at the Genetic and
Genomic Data Interface

369



OTE/SPH OTE/SPH

JWBK136-15 February 16, 2007 15:27 Char Count= 0

370



OTE/SPH OTE/SPH

JWBK136-15 February 16, 2007 15:27 Char Count= 0

15
What Are Microarrays?
An Introduction to Microarray Methods
for Measuring the Transcriptome
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15.1 Introduction

The field of genetics has traditionally aimed to detect genes whose mutations are re-

sponsible for particular allelic phenotypes or traits. The use of microarrays, however,

provides geneticists with the ability to detect the entire complement of genes whose

expression pattern is perturbed in an organism with a given phenotype or trait.

Within a set of genes whose patterns of RNA abundance is changed when a mutant

is compared to a wild type, we are likely to observe many more candidates than the

mutant gene itself (in fact, the mutant gene many not have altered expression pat-

terns at all). This technique provides us with a rapid, unbiased method of surveying

how altered expression of many genes might contribute to an observed phenotype.

Although measuring transcript abundance is less direct than assaying protein ac-

tivity in a biological sample, the predictable chemistry of nucleic acid populations

provides the technical advantage of being convenient, simple to execute and relatively

inexpensive. Not inconsequentially, the ability to amplify nucleic acids by the nucleic

acid amplification allows mRNA abundance studies to be performed on very small

samples. Some 30 years ago, biologists started measuring transcript abundance for

a single sequence by Northern blot, an extension of the DNA-based Southern blot

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
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developed by Southern (1975). Using filter-based blots, one could use the hybridiza-

tion of nucleic acids to quantify a single species of nucleic acid from a large population.

DNA microarrays, which have garnered a great deal of attention in the last few years,

provide miniature, high-throughput platforms to perform hybridization-based as-

says of populations of nucleic acids. Instead of assaying a population of nucleic acids

for those that hybridize to a single sequence, microarrays allow biologists to assay

thousands of sequences simultaneously. An additional advantage is that the small

surface areas associated with microarrays allow small hybridization volumes and

therefore require much less nucleic acid than is commonly required for a Northern

blot.

15.1.1 Microarray technologies

In the early 1990s, two groups pioneered microarray technology. Steve Fodor and

co-workers at Affymetrix developed commercial microarrays, using photolithog-

raphy and solid-phase chemical synthesis to build short oligonucleotides in high

density on a solid surface (Fodor et al., 1993; Pease et al., 1994). Affymetrix still

has the lion’s share of the commercial microarray business, and, at the time of writ-

ing, was reported to have 70 per cent of the market. At the same time that Fodor

and co-workers were developing their microarray, Patrick Brown and colleagues

at Stanford University School of Medicine were developing a microarray that was

manufactured by mechanically printing small spots of DNA solutions onto a glass

microscope slide. Most of the early versions of these ‘spotted’ microarrays relied on

PCR-amplified cDNAs or genomic DNA samples. Because Brown and co-workers

openly disseminated directions for assembling microarray-printing machines (the

MGuide, http://cmgm.stanford.edu/pbrown/mguide/), software for scanning the hy-

bridized arrays (ScanAlyze, http://rana.lbl.gov/EisenSoftware.htm), and software for

clustering and viewing microarray data (Cluster and TreeView; Eisen et al., 1998),

the spotted microarray technology was widely adopted. This was especially true in

academic settings, where its relatively low cost and flexibility were important.

Now many companies market microarrays or other high-throughput methods

to assay populations of nucleic acids by hybridization to thousands of reporter

molecules. Some companies are even providing customized microarrays that al-

low researchers to determine the reporters used. Despite differences in technology or

price, most of these products or ‘home-made’ arrays can be used for exactly the same

experimental applications. Each platform has its advantages and disadvantages, but

their recitation is beyond the scope of this chapter. Users should consider whether a

research question can be adequately addressed by considering the following:

1) the types of molecules used for reporters (PCR products, short oligonucleotides

or long oligonucleotides)
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2) the number of channels measured (some platforms permit only one sample

of labelled nucleic acid, while others require at least two differentially labelled

samples)

3) the available resources for labelling, hybridization, scanning and data analysis.

15.2 Principles of the application
of microarray technology

One of the major applications of microarray technology is to measure the abun-

dance of mRNAs in an extract made from a sample of cells or tissue as a proxy

assay of gene product activity. Other approaches, such as Serial Analysis of Gene

Expression (SAGE) (Velculescu et al., 1995), quantitative PCR or filter blots, also

measure the abundance of RNA in an extract. Although it is an imperfect measure

of gene expression or activity of gene products, RNA abundance is a useful proxy

for both. The activity of a gene product is highly correlated to its cellular concen-

tration – the more gene product there is, the higher the likelihood of observing its

activity. Similarly, an increased level of translation of a gene product is generally

correlated with an increased intracellular concentration. Finally, an increased con-

centration of transcript increases the translation rate. Of course, differential trans-

lational efficiency, post-translational modifications that affect activity, and protein

degradation all confound this relationship, but that does not preclude the conclu-

sion that, for most genes, an increase (or decrease) in mRNA abundance is going

to result in an increase (or decrease) in gene product activity. Initial applications of

microarray technology successfully examined relative transcript abundance in exper-

iments designed to investigate many aspects of fundamental cellular processes (e.g.,

DeRisi et al., 1997; Heller et al., 1997; Spellman et al., 1998; Iyer et al., 1999; Ross

et al., 2000). At the time of writing, a PubMed search for the text term ‘microarray

gene expression’ identified more than 9000 citations, showing how enthusiastically

biomedical researchers have embraced this technology as a method to assay gene

expression.

Because microarrays can simultaneously assay thousands of nucleic acids, this

technology has also been applied to genomic-scale research questions beyond as-

saying RNA abundance (many of these alternative uses are reviewed in the next

three chapters). Microarray-based comparative genome hybridization (array-CGH

or aCGH) has been used to detect copy number changes in genomic DNA; for in-

stance, to identify regions of recurrent deletion or amplification in various cancers

(e.g., Pandita et al., 1999; Pollack et al., 1999, 2002; Forozan et al., 2000; Linn et al.,

2003; see Chapter 17). Other groups have used microarrays to identify DNA-binding

sites by assaying sequences that can be immunoprecipitated while cross-linked to
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DNA-binding proteins. Such chromatin immunoprecipitation (chip-ChIP) experi-

ments have been used to detect targets of transcription factors or other DNA-binding

proteins on a genome-wide basis (e.g., Lee et al., 2002; Harbison et al., 2004). For

the geneticist, microarray technology is now starting to have an enormous impact,

as it has been adapted to sequence, genotype and identify SNPs. This area is covered

in detail in Chapter 18. Other applications are sure to arise, as talented and mo-

tivated scientists attempt to answer research questions by novel, high-throughput

methods.

15.2.1 The experimental process of microarray analysis

A typical microarray experiment follows several predictable steps. First, RNA is iso-

lated from a biological sample of interest. Most often, the mRNA is separated from

ribosomal RNA by a poly-A purification step. At this point, cDNA is usually synthe-

sized, because DNA is more stable and easier to work with than RNA. Sometimes

samples are amplified by linear amplification (Eberwine, 1992) or polymerase chain

reaction (PCR) (Saiki et al., 1985). Samples are then labelled with a fluorescent dye.

In the case of two-channel platforms, a reference sample is also labelled with a dif-

ferent dye. The labelled DNA is then hybridized to the microarray surface, giving

the reporters on the microarray opportunity to hybridize with their complements

in the hybridization solution. After hybridization, the microarrays are washed to

remove non-specific signal and then scanned with a confocal fluorescent micro-

scope to obtain an image(s) at the wavelength of the label(s) used. In the case of

two-channel platforms, scans are performed at two wavelengths and two images

are obtained. These images show the level of fluorescent label hybridizing to each

spot on a microarray. The images are then processed with one of a variety of data

acquisition software packages that calculate important measurements for each spot

on the array, such as total intensity, local background, or pixel-by-pixel intensity.

These measurements are what are usually referred to as ‘raw results’ for microarray

data. Raw results are used to calculate an indicator of mRNA levels in the original

biological sample – as a function of either spot intensity (in the case of one-channel

platforms) or of the ratio of intensity of the original biological sample to the intensity

of a reference sample (as is common in the case of two-channel platforms). The other

measurements (and there are typically several dozen) are useful for determining data

quality or for performing data transformations (such as background subtractions).

Biomedical researchers using microarray technologies have specific needs to help

them deal with the data they generate. Data need to be stored securely, viewed, trans-

formed, edited, annotated, analysed, shared with collaborators and made available

upon publication. Although this might seem a daunting task, there are many soft-

ware packages (both commercial and freely available) that can handle these tasks

admirably. A few of the most widely used, freely available software options are dis-

cussed at the end of this chapter.



OTE/SPH OTE/SPH

JWBK136-15 February 16, 2007 15:27 Char Count= 0

15.2 APPLICATION OF MICROARRAY TECHNOLOGY 375

15.2.2 Secure storage of microarray data

Most researchers want to store data in a way that prevents others from seeing them

until they are published. Microarray data are not unique in this aspect, but the size

and nature of the data necessitate storage on a computer, rather than on a page in

a laboratory notebook. Since the scanned images and the resulting raw data are the

end result of using rather expensive microarray technology, it is important that data

be securely stored. Not only should the data be safe from corruption (for example,

one ought to avoid storing data on a computer that receives email and is therefore

prone to viruses), but also the data should be routinely saved to back-up media. In

addition to ensuring that data are stable and can be recovered, most researchers need

a method to control access to data. Chapter 2 of this book provides insight into how

one might solve some of the problems encountered when handling large data sets.

15.2.3 Transforming microarray data

Raw microarray data formats are not universally useful. In order to compare data from

one array to another in a meaningful way, researchers may need to implement one or

more data transformation steps. Examples include background correction (there are

several methods of varying sophistication and philosophy) and data normalization

(to adjust the distribution of signal intensities so data from different arrays can be

compared). It is often convenient for researchers to be able to access a suite of tools

that perform data transformation steps.

15.2.4 Annotation of microarray data

Providing up-to-date and relevant biological annotations describing the reporter se-

quences on microarrays is crucial. Most microarray studies (indeed, most biomedical

studies in general) occur over the course of months or even years. During such times,

the accumulated knowledge about the genes of any organism is likely to change dras-

tically. Without biological information, no one could obtain meaningful conclusions

from any microarray-based experiment. Without timely and updated biological in-

formation, conclusions could be based on incomplete, stale or incorrect knowledge.

However, obtaining and maintaining biological annotations for tens of thousands of

genes is not trivial and should therefore be an important function for any software

package used to analyse microarray data. Any number of websites provide biological

annotation that can be downloaded (the list is too long to address comprehensively

here). However, a software package that provides automated access to updated data

will be far more convenient to researchers than one that requires them to retrieve

and format annotation data repeatedly (a number of these tools are reviewed in

Chapter 18 (Section 18.4.6)).
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15.2.5 Filtering and selecting microarray data

Not all data obtained from a microarray are of high quality or relevant to a specific

research problem. Therefore, software packages handling microarray data should

allow researchers to choose which data to include based on various metrics, data

measurements, or gene identity.

15.2.6 Analysis and visualization of microarray data

The number of algorithms and software packages for the analysis of microarray data

increases nearly every day. Therefore, researchers should ensure that the software

package they use to manage and analyse their microarray data permits needed analysis

functions or at least exports data in a format that can be used. Similarly, researchers

should select microarray data software packages that permit the visualization of

analysed data as well as ways to examine the primary image of microarrays and

microarray spots.

15.2.7 Sharing and publication of microarray data

Few researchers in the field of microarray analysis operate in a vacuum. Typically, mi-

croarray experiments are performed with a reasonably high number of collaborators

and co-authors. In addition, most journals and funding agencies share the expec-

tation that published microarray data be made freely available in one of the public

microarray data repositories (ArrayExpress, GEO or CIBEX; Ikeo et al., 2003; Barrett

et al., 2005; Parkinson et al., 2005). Simply providing access to raw or processed data

does not provide readers or future users of those data with the information required

to replicate or reject a study. Indeed, most journals require that authors adhere to

the Minimal Information About a Microarray Experiment (MIAME) (Brazma et al.,

2001), a simple list of the types of information that should be disclosed to explain

fully the meaning and biological context of a study using microarray technology.

In addition to the MIAME standard for annotation, there is a community-accepted

format for expressing the experimental details about microarray studies (Microar-

ray Gene Expression Markup Language (MAGE-ML) (Spellman et al., 2002). All

three public data repositories accept data submissions in MAGE-ML. Keeping in

mind the need to share and publish microarray data, most users would take full

advantage of microarray data software packages that help researchers share raw

and/or processed data, the results of analyses, with collaborators. Most researchers

would likewise benefit from a facile method of submitting MIAME-compliant

and properly formatted MAGE-ML to one or more of the data repositories upon

publication.
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15.3 Complementary approaches to microarray analysis

In general, the relationship between the microarray signal for a nucleic acid species

and its absolute abundance in a biological sample is not easily quantified. In addition,

nucleic acids hybridized to microarrays are isolated from a potentially heterogeneous

population of cells, providing little information about which subsets of cells are

actually expressing any particular transcript. Accordingly, researchers are increasingly

validating microarray data by different techniques, such as quantitative PCR (Arya

et al., 2005) to assay transcript abundance independently, or tissue microarrays

(Braunschweig et al., 2005) to examine the physical distribution of a message or

antigen in normal or diseased tissue.

15.4 Differences between data repository and
research database

As with DNA sequence or protein structure data, there are crucial differences between

microarray research databases intended to help reach conclusions about current re-

search and data repositories intended to be clearing houses for data that have already

been published. Most software packages for the prepublication analysis of microar-

ray data have some form of a database to help store such large and complex data sets.

In addition, research databases should provide up-to-date biological annotations for

features on microarrays, tools for prepublication exploration, analysis and visualiza-

tion of microarray data, and methods to control access to sensitive prepublication

data.

There are currently three public microarray data repositories accepting data.

ArrayExpress at the European Bioinformatics Institute and the Gene Expression

Omnibus (GEO) at the National Center for Biotechnology Information actively ac-

cept and disseminate published microarray data. The Center for Information Biology

Gene Expression (CIBEX) is affiliated with the DNA Databank of Japan. The stated

goal of each is to archive published (or soon-to-be-published) microarray data and

provide public access to that data. A long-term (but as-yet pending) goal is to replicate

the highly successful model of data exchange and interaction between the public DNA

sequence data repositories of GenBank, EMBL and DDBJ, such that data submitted

to one repository are soon mirrored at all three.

15.5 Descriptions of freely available research
database packages

There are many possible options for installable research databases. Description of

current commercial packages is beyond the scope of this discussion, but a (somewhat
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outdated) review by Gardiner-Garden and Littlejohn (2001) presents several options.

In this section of the chapter, we present several freely available research database

options. None offer all the desired features, and several require a considerable amount

of expertise to install and operate, so it is important to keep in mind the scope of

the microarray project when selecting one of these packages. For example, a single

laboratory using microarrays to study one organism is more likely to need a database

that can be installed on a desktop computer without extensive knowledge of database

administration or programming. On the other hand, a research database that serves

an entire institution will require the means to provide extensive biological annotation

for several organisms, complex data access methods, a suite of analysis tools and the

computational power to serve multiple users efficiently. In Table 15.1, we offer a

direct head-to-head comparison of these tools.

Table 15.1 Key features of freely available microarray database packages

BASE Gecko RAD SMD TM4

RDBMS MySQL Oracle Oracle/ Oracle MySQL

PostgreSQL

OS Linux, Unix,

MacOSX

Linux for

server,

Windows

for client

Unix, Linux,

MacOSX

Unix,

MacOSX,

Linux

Windows,

Linux

Open source Yes Yes Yes Yes Yes

Microarray

platforms

Two-colour Affymetrix All All Two-colour

MIAME Compliance Yes No Yes Yes Yes

MAGE-ML Export Yes No Yes Yes Yes

MAGE-ML Import No No No Yes No

Data-analysis tools Yes Many Yes Yes Many

Biological

annotation

Limited Limited Yes Yes Limited

LIMS Yes No No Yes No

Public access Yes Yes Yes No

Total arrays stored

(to date)

6000 30 000 2275 60 000 Unknown

Active development Yes Yes Yes Yes Yes

QA tools Yes Yes Plots Yes Yes

Microarray images Unknown Limited No Yes Yes

aCGH Unknown Unknown Yes Yes Unknown

Chip-chIP Unknown Unknown Yes Yes Unknown

Other expression

data (i.e., SAGE,

RT–PCR)

Unknown Unknown Yes No Unknown
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15.5.1 BASE

BASE (Saal et al., 2002) is a MIAME-supportive system that provides an integrated

framework for storing and analysing microarray data and related information.

Requirements and installation

BASE is written in PHP, with some additional C++ code for CPU-intensive tasks,

and it uses the open-source MySQL for data storage. Typically, it is deployed on

Linux, though there have also been successful reports of deployment on Sun’s Solaris

operating system, and MacOS X, and it can be modified for deployment on Windows

with Cygwin. The BASE software itself is released under the GNU general public

licence, and depends only on open-source software, such as Linux.

Features

BASE is capable of storing data from all aspects of the microarray process, from

LIMS data (including tracking clones in microtitre plates, and recording details

about microarray printing) to the loading and analysis of results data. Internally,

the BASE data model closely resembles the MAGE Object Model (Spellman et al.,

2002) and allows users to specify relationships between various aspects of a mi-

croarray experiment. Although BASE does not support Affymetrix arrays, it sup-

ports homemade two-colour spotted arrays as well as commercial two-colour

arrays.

BASE has a flexible configuration system that assists in the import of data from a

variety of image-extraction packages, such as GenePix and QuantArray. BASE also

has plug-in software architecture, so external developers can contribute additional

software packages, and extracted data are typically produced in a BASEfile format

that can be used by the plug-ins. Several plug-ins are already available, including

ones that implement Lowess normalization, and multidimensional scaling. BASE

also provides tools so users can allow others to view their data, so it can facilitate

collaborative research.

Advantages

Since BASE does not require any purchased software, deployment is free of software

licensing fees. BASE is MIAME-supportive and can export MAGE-ML files. BASE

has a flexible data import tool and the ability to share data easily. BASE has been

shown to store at least 6000 hybridizations, each with 50 000 features. BASE pro-

vides a flexible analysis and filtering pipeline that stores parameters for reuse. The
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plug-in architecture of BASE allows new analysis software to be easily added to BASE

installations.

Disadvantages

The lack of support for Affymetrix data is a drawback. There is no easy way to transfer

data between one BASE instance and another, and no MAGE-ML import abilities.

The unproven scalability of MySQL might lead to performance issues for installations

with a large volume of data.

15.5.2 Gecko

Gecko (http://sourceforge.net/projects/geckoe) (Theilhaber et al., 2004) uses a client-

server architecture, with a centralized repository that can store data from Affymetrix

scans, and comes with an admirable suite of analysis tools.

Requirements and installation

Gecko requires a server running Linux or Solaris, and uses Oracle as its RDBMS. The

Gecko client currently runs only on Windows, although work is underway to write

a Java client, which theoretically could run on any platform.

Features

Gecko’s most significant feature is the implementation of an admirable number

of analysis tools. These include many two-class comparison tests (Student’s t-test,

SAM, comparison of variance and Mann–Whitney), as well as multiple-class and

multiple-factor tests (one- and two-way ANOVA) and the ability to perform contrast

calculations. Gecko provides a data representation called the ‘Analysis Tree’, which

enables users to perform and save complex data-analysis work flows, which are stored

as directed acyclic graphs (DAGs). While Gecko has largely been used on Affymetrix

data, it would theoretically be able to store and process two-colour microarray data

as well. While not fully MIAME compliant, Gecko implements some of the MIAME

required annotation fields.

Advantages

Gecko has been demonstrated to be scalable to tens of thousands of arrays, has a

comprehensive suite of analysis tools, and offers the Analysis Tree, which allows
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users to track past analyses and communicate results or work in progress across a

large community. The Gecko server can be installed on a generic Linux platform.

Disadvantages

Gecko’s software installation requires several steps (is not ‘out of the box’), and the

client software runs on Windows only. It is not fully MIAME compliant, and does

not produce or read MAGE-ML files.

15.5.3 RNA Abundance Database (RAD)

RAD (Manduchi et al., 2004) provides a MIAME-supportive infrastructure for gene-

expression data management and makes extensive use of ontologies. RAD is part of

the more general Genomics Unified Schema (GUS) (http://www.gusdb.org).

Requirements and installation

Because RAD relies on GUS, it is actually necessary to install GUS. GUS is supported

by either Oracle 8i/9i/10g or PostgreSQL. Perl, PHP and Apache are required for

installation, and there are some additional optional Java modules. GUS developers

have recently produced a ready-to-use package that can be installed with relative ease.

Features

The RAD Study Annotator collects and records information about protocols, bi-

ological samples and study designs via Web-based annotation forms. The RAD

Querier provides basic hierarchical clustering tools, plots for quality assessment of

single arrays, and an in-house algorithm for detecting differentially regulated genes

(PaGE), which is also available separately as a Perl program or a Java application

(http://www.cbil.upenn.edu/PaGE/). All microarray platforms and image-analysis

software are supported. In addition, RAD is being used for CGH, ChIP, and SAGE

data. RAD can produce MAGE-ML files for export of data to other databases or

software packages. RAD is part of a more general Genomics Unified Schema, which

provides a platform to integrate gene and transcript data from a variety of organisms.

Advantages

RAD is a scalable, Web-accessible database that can accommodate data from sev-

eral laboratories. The software is provided by an open-source method. The security
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features allow fine-tuned access for keeping unpublished data private, sharing data

with collaborators, and making published data freely available. The methods to store

and visualize information about protocols, biological samples and the design of

experiments are excellent. RAD can produce MAGE-ML, easing submission of mi-

croarray data to public repositories. Since RAD and GUS are being actively developed

(indeed, RAD was selected for the microarray data module of the Generic Model Or-

ganism Database project (GMOD) (http://www.gmod.org/), bugs are likely to be

fixed, and new releases with additional features can be expected.

Disadvantages

Installation and maintenance of RAD can be rather work-intensive, but hardware,

software and personnel requirements depend on the scale and scope of the project.

RAD (as part of GUS) can be installed on a laptop and maintained by a single

computer-savvy student, or it can be used to support cores and large bioinformatics

resources. RAD has limited LIMS features and limited analysis tools available as part

of the package.

15.5.4 Stanford Microarray Database (SMD)

The Stanford Microarray Database (SMD) (Ball et al., 2005) provides a system for

storing LIMS data, and storing and annotating microarray data from most platforms,

and it provides a robust suite of tools for managing, sharing, selecting, process-

ing, analysing and publishing microarray data. It can be accessed at http://genome-

www.stanford.edu/microarray.

Requirements and installation

SMD installation requires Oracle Enterprise Edition server software, a Web server,

Perl, and several Perl modules. Installation is currently not a simple task, though an

installer script distributed with the software does take care of many of the details of

getting the software running. Additional details, such as setting up the Oracle instance

of the database, and creating all the tables and the relationships between them, does

require a trained database administrator, though all the SQL scripts required to do

this are distributed with the SMD package.

Features

SMD incorporates a LIMS tracking system, to track the 96- and 384-well plates in

printing microarrays. It also allows loading of commercial array designs from Agilent,



OTE/SPH OTE/SPH

JWBK136-15 February 16, 2007 15:27 Char Count= 0

15.5 AVAILABLE RESEARCH DATABASE PACKAGES 383

Affymetrix, Combimatrix and Nimblegen (using MAGE-ML files). SMD allows en-

try of data derived from GenePix and ScanAlyze, as well as data extracted by Agilent’s

Feature Extraction software from Agilent arrays. In addition, SMD also provides na-

tive support for Affymetrix data, and users can upload CEL files and dChip files, and

use a suite of tools especially for Affymetrix data. Microarray data for any of these

packages can be uploaded in either single or batch mode. For each of the data-file

types that SMD supports, all data are stored (in many cases, several dozen metric

per spot). Data may be normalized by either global mean normalization or Lowess

normalization, either globally or per print tip. Data can be retrieved for one or many

experiments, with complex filtering, such that any spot metric, LIMS data or biolog-

ical annotation may be used as filtering criteria, which may be combined in Boolean

queries. In addition, SMD has many tools built on top of the database that may be

used to assess array quality and experiment reproducibility, and visualize a repre-

sentation of the original microarray, as well as tools for downstream analyses. These

tools include hierarchical clustering, self-organizing maps, singular value decompo-

sition (e.g., Alter et al., 2000), and imputation of missing data (e.g., Troyanskaya

et al., 2001). SMD is MIAME-supportive, and can export data in MAGE-ML for

import into the ArrayExpress (Parkinson et al., 2005) or GEO (Barrett et al., 2005)

data repositories upon publication. SMD has well-developed data access methods,

so that some data can be restricted to a few close collaborators, and other data can be

made publicly available. SMD has been successfully used for gene expression, chro-

matin immunoprecipitation (ChIP), comparative genome hybridization (CGH) and

protein microarrays, as well as other applications of microarray technology.

Advantages

SMD is a scalable solution for storing microarray data – the Stanford installation cur-

rently has data from over 60 000 microarrays, comprising data from ∼1 800 000 000

spots – while a flexible security model allows fine-grained access control of both

data and tools. Several tools are available with the database, and software for viewing

proxy images of the microarray scans to evaluate visually the quality of the data is

also available. Furthermore, SMD regularly updates the biological annotation of the

human, mouse and yeast genes that are represented on the microarrays. One of the

key advantages of SMD is that the software and database schemas are being actively

developed so that new features and improvements are regularly available. Finally,

SMD has support for both two-colour data and Affymetrix data.

Disadvantages

SMD is a ‘heavy-weight’ microarray database that is not easily implemented by a small

operation. SMD may require expensive hardware and software, as well as trained staff
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(at least a database administrator and a programmer/curator), to keep it running,

and it is not simple either to install or maintain. An offshoot of SMD, the Longhorn

Array Database (LAD) (Killion et al., 2003), was developed specifically because of

these drawbacks of SMD. LAD can be deployed entirely with open-source software,

its primary platform being PostGreSQL on Linux, and has been shown to be able to

store data from several thousand microarrays. As of the time of writing (June 2006),

LAD is based on a previous release of SMD, prior to the addition of Affymetrix,

Agilent and MAGE-ML support.

15.5.5 TM4

TM4 (Saeed et al., 2003)provides the basis for a suite of tools that can be used

separately or together as a package that includes a MySQL database and a suite of

data-analysis tools. TM4 and its associated tools are available from the Dana-Farber

Cancer Institute through http://www.tm4.org.

Requirements and installation

The software associated with TM4 (TM4, MADAM, MeB, and MIDAS) runs on the

Windows 2000/NT/XP systems, as well as Linux (theoretically, it should also run

on MacOSX and Unix), and requires Java v1.4.1 or higher. It uses MySQL for its

database.

Features

MADAM provides a Java-based user interface for entering microarray data and an-

notating it in a MIAME-supportive manner. While MADAM itself does not have

any analysis tools, the TM4 package includes SpotFinder and MIDAS and MeV.

SpotFinder is a microarray image-analysis package for examining two-colour arrays.

MIDAS (Microarray Data Analysis System) and MeV (Multi-experiment Viewer) to-

gether provide the ability to execute many different types of normalization, quality-

control steps, data transformation and data analysis. Because the tools are so tightly

integrated via TM4, data from one component can easily be transferred into another

component. TM4 provides a comprehensive set of open-source tools with responsive,

attractive and easy-to-use interfaces.

Advantages

The user experience is one of the most attractive aspects of this suite of tools. The

Java-based software runs on the user’s desktop and provides quick responses. TM4
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supports many different analysis methods and is completely open source. MADAM

provides MIAME supportive annotation methods as well MAGE-ML export. TM4

and its partner software packages are undergoing active development in response

to biomedical research, so valuable improvements can be expected on a regular

basis.

Disadvantages

Because the TM4 suite is intended to run on users’ desktops, it is not an ideal

means for sharing data among collaborators. MADAM currently has support only

for two-colour microarray experiments and can upload only the ‘.mev’ file for-

mat. A utility called ExpressConverter can convert a wide range of formats, in-

cluding GenePix, ImaGene, ScanArray, ArrayVersion, and Agilent, to ‘.mev’ format

for loading, but some information in these formats may be lost. Work is under

way to allow more flexibility in uploading various data formats, and a second-

generation release will also support single-colour arrays such as the Affymetrix

GeneChip.
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16
Combining Quantitative Trait
and Gene-Expression Data

Elissa J. Chesler

Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA

16.1 Introduction: the genetic regulation
of endophenotypes

The forward genetic, phenotype-driven analysis of gene function has led to the discov-

ery of the heritable basis for many complex traits (Korstanje and Paigen, 2002), and

the list of success stories is expanding rapidly thanks to the exciting new synergistic

methods (DiPetrillo et al., 2005; Flint et al., 2005) covered elsewhere in this volume.

The ability to discover new pathways for regulation of traits expressed by intact whole

organisms with no prior molecular hypothesis has been exciting, challenging and

increasingly rewarding. The advent of high-throughput molecular phenotypes, best

exemplified by microarray measures of transcript abundance, present a new avenue

for exploration of the basis of complex traits and the role of genetic polymorphisms in

functional variability. Exploring the genetic regulation of these molecular traits gives

us insight into the entire network of molecular-phenotypic variation that emanates

from individual differences in DNA. These networks may be exploited to identify

relationships among complex phenotypes, polymorphic and non-polymorphic ther-

apeutic targets, and sources of genetic variability in drug response or disease. Under-

standing these networks will also allow us to understand how different individuals

can use highly polymorphic networks to achieve very similar phenotypic states in

many cases, and highly variable phenotypic states in others. Such analyses will nec-

essarily require special adaptations of QTL analysis for gene expression, though, in

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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principle, gene expression is quite similar to other complex traits. For example, it

is modulated by a variety of genetic and environmental factors with diverse modes

of action (mis-sense, enhancer/promoter, distal modifier, nucleic acid structural,

micro-RNA target and splice variant) and mode of inheritance (dominant/recessive

or additive). The integration of genetic analysis of transcript abundance with other

complex trait analysis provides another tool for nominating and electing candidate

genes for the regulation of trait variability.

Perhaps the earliest genetic analysis of high-throughput molecular phenotypes

was performed by Damerval et al. (1994). They applied the then emerging methods

to detect quantitative trait loci to proteins separated by 2-D gel electrophoresis in

a maize F2 population. This study was admirable for its sophisticated analysis of

co-expression networks, epistasis and dominance effects, and gave us the first of

many idiosyncratic terms for the QTLs regulating molecular phenotypes, the protein

quantity locus (PQL). Some of the QTLs had effects that altered protein migration;

these position shift loci (PSLs) presumably act through mis-sense polymorphism or

variation in post-translational modification. Studies on the effects of polymorphisms

on mRNA message reveal similarly diverse mechanisms of action.

Years after Damerval et al.’s groundbreaking study, Jansen and Nap (2001) gave

this nascent field its name, ‘genetical genomics’. This and other reviews at the time

sparked tremendous excitement in the potential of genetic analysis of gene expres-

sion in diverse species. The experiments themselves rapidly followed, each of them

involving microarray-based profiling of cell populations in F2 crosses, back-crosses,

ascertained pedigrees and recombinant inbred lines, spanning eukaryotic species

from yeast to man, starting with the first published study, performed in yeast (Brem

et al., 2002). Schadt et al. (2003) followed with a mammalian study of obesity and

liver gene expression in F2 mice, CEPH pedigrees, and maize, giving us the term

‘eQTLs’ for expression QTLs. During the time of these early studies, several groups

performed their genetic analysis of gene expression in recombinant inbred strains

(Bystrykh et al., 2005; Chesler et al., 2005; Hubner et al., 2005). Because these read-

ily available lines are isogenic and phenotypic, genotypic and expression data can

be integrated indefinitely. These data were made public in an Internet resource,

WebQTL (Chesler et al., 2004), now the mapping component of the more integra-

tive http://www.GeneNetwork.org. The integrative network genetic analysis made

possible by reference populations with well-characterized genomes, transcriptomes

and phenomes has been coined ‘systems genetics’. This is an exciting new field with

the potential to integrate diverse biological data by evaluating the network of effects

of genetic polymorphisms and their complex actions on genomes, transcriptomes,

proteomes, and the higher-order structure and function of cells, tissues and organs.

16.2 Transcript abundance as a complex phenotype

The earliest use of gene expression microarrays was to identify the signature genes

of tissues, cell populations and disease versus non-disease related samples. Genes
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were simply called ‘present’ or ‘absent’ to define the gene-expression signatures of a

particular sample or tissue. This eventually gave rise to differential expression stud-

ies in which the quantitative expression differences between two classes of samples

was compared. Several of these early studies took genetic variation into account,

by carrying out expression profiling across mouse strains (Sandberg et al., 2000;

Pavlidis and Noble, 2001) and Drosophila genotypes (Jin et al., 2001). Not sur-

prisingly, these studies found strong genetic variation in the abundance of many

transcripts on the array. This genetic variation is exploited by transcriptome QTL

analysis to identify regulators of gene expression, and to construct genetic co-

variance networks from gene expression to complex phenotypes. Environmental

variation, tissue variation, pharmacological treatment and many other sources of

naturally occurring or experimental variance also influence gene expression. The

steady reduction in the cost of microarrays over the past several years creates phe-

nomenal potential to evaluate these multifactorial sources of variation in transcript

abundance.

16.2.1 Sources of variation

Variation in gene expression is a highly complex phenotype caused by variation

in specific regulatory pathways, and local environmental milieu, including tissue,

organ and hormonal status; chromosomal sex; and epigenetic factors. Variation

in mRNA is one of the functional manifestations of genomic activation; that is,

it is one of the lowest levels through which environmental and physiological in-

puts result in moderate to long-term cellular change by activation of transcriptional

and transcript regulatory processes. Thus, variation affecting any point of virtu-

ally any biological process coupled to gene expression, can alter transcript abun-

dance. It is tempting to assume that performing QTL analysis of gene expression

would identify many transcription factors as QTL candidate genes. However, in

yeast, Kruglyak and colleagues have shown that most major expression-regulatory

QTLs do not reside near the genomic location of transcription factors (Yvert et al.,

2003).

16.2.2 Heritability of gene expression

The proportion of trait variance that is accounted for by genetic factors, or heritability,

is an important characteristic in determining which traits are amenable to genetic

dissection. Heritability of expression variation is high for many genes, though median

heritabilities in array experiments may be as low as 10 per cent. The high heritabilities

of many transcript abundance phenotypes are due to a number of factors. Expression

variation, though a complex trait, is a somewhat directly quantifiable phenotype.

The relative number of copies of mRNA message is well estimated by microarray

and quantitative PCR. For mRNA abundance under major genetic regulation by a
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large-effect locus, the expression distribution is practically bimodal. Another reason

for the high heritability of expression variation is that this trait may be less constrained

than other higher-order phenotypes. By allowing major variation at a molecular

level, organismic structure and function can be constrained within a narrower range

of variation by achieving a restricted range of phenotype, using radically different

states of the underlying biological networks. What emerges from the genetic analysis

of molecular endophenotypes is a picture of high biological complexity and the

potential to understand the complex interplay of factors underlying phenotypic

stability and phenotypic heterogeneity.

Estimating heritability in microarray analysis

The estimate of gene expression across a population has technical (between-array

and between-sample), environmental (between individual) and heritable (between

genotype) variation. Heritability is the proportion of this variation that is accounted

for by genetic factors. Estimation of heritability in a microarray experiment is of-

ten not directly possible due to sample pooling. This methodological approach is

quite useful in improving signal-to-noise ratios in an economical fashion by re-

ducing environmental variance with multiple samples on a single array. It is often

employed in the analysis of reference populations, such as the recombinant inbred

strains, for which multiple individuals with identical genomes can be sampled. By

pooling samples, environmental variability can be collapsed across the individuals,

giving a more precise estimation of the genome-specific population mean. Because

a single faulty sample within the pool will alter the trait values for that strain, an

additional level of biological replication, the use of multiple pools, each on a sep-

arate array, allows the estimation of within-group variance in the mean. If we as-

sume that environmental variation and technical variation in sample preparation

are collapsed to near-zero by pooling, then the within-group variance actually re-

flects array processing-related technical variation. However, the pools are often so

small that between-sample biological variation is not fully cancelled, resulting in a

combined technical/residual environmental variance between arrays within a geno-

type class. The relative proportion of expression variation accounted for by genetic

factors relative to the combined technical and residual environmental variation can

be estimated. While the resulting value is not a true ‘heritability’, the genetic vari-

ation gives an idea of whether or not a trait is amenable to genetic dissection, and

how reliable the results of such an analysis may be (Carlborg et al., 2004). Under

typical control of the genome-wise error rate at P < 0.05 per transcript, at least

1/20 mapping results are likely to be chance rejections of a null hypothesis of no

linkage. Control of the false discovery rate (FDR) is a widely used method to deal

with the multiplicity of tests across the microarray (Storey and Tibshirani, 2003a).

However, it is impossible to determine biologically which of these results are true
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and which are false. One way to increase the proportion of true-positive results

among the set of QTLs obtained in a microarray study is to exclude those pheno-

types for which there is insufficient power to map a trait with the estimated genetic

variance.

Data transformations and mapping quality

Microarray data may be transformed and normalized across two dimensions. Data

compression and feature extraction can be achieved by a variety of algorithms, such

as Affymetrix’s MAS, RMA (Irizarry et al., 2003), PDNN (Zhang et al., 2003), dCHIP

(Li and Hung Wong, 2001), and ANOVA (Kerr et al., 2000, 2001). These approaches

work to compose gene-expression means from sets of probes or spots on the microar-

ray, and align the mean expression levels across all arrays. Some analysis methods

perform both normalizations (or perhaps, more appropriately, standardizations)

simultaneously. The methods work with varying degrees of success, and the best

method may depend on the sample size of the study. For example, PDNN does not

adjust across a set of arrays, but effectively reduces much array noise by incorpo-

rating hybridization kinetic information into the compression of microarray data.

This method appears to work better in large-array data sets that can take advantage

of additional arrays for obtaining precision in expression estimates. RMA reduces

much technical variation between arrays, but can also reduce signal and decrease

the apparent effect size. The increased precision obtained in this method results in a

much higher rate of QTLs called for heritable traits.

Statistical transformation to normality should also be attempted across samples for

each transcript abundance trait to be analysed. Most typical QTL mapping methods

assume normality of the trait distribution within each genotype class. Because of the

overwhelmingly large number of expression-related phenotypes on each microarray,

these distributional assumptions are rarely checked for each individual phenotype.

The impact of violation of this assumption is usually greatest on estimation of QTL

effect size, but positional precision can also be affected. It is important to emphasize

that this is a relative measure. In the case of microarrays, a fixed quantity of mRNA

is hybridized to the array; thus, expression measures reflect the fraction of that total

quantity that contains a particular mRNA species.

The aggressive transformation and normalization required by microarray mea-

sures, though necessary, can work against genetic analysis. Major QTLs have been

observed which appear to regulate large numbers of transcripts. These QTLs have the

capacity to alter the shape of the distribution of relative gene expression within each

individual. This means that many measures of central tendency used to normalize

array data sets may not correspond to one another. By aligning array means, the

genetic signal responsible for trait variation is squashed and rendered more difficult

to detect.
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16.3 Scaling up genetic analysis and mapping models
for microarrays

QTL mapping of microarray data has resulted in a need to scale up from single-

trait analysis to tens of thousands of traits in a single study. This has necessar-

ily resulted in the application of simple, fast mapping methods in many early

studies. As computational power and QTL-mapping software improve, the care-

ful attention paid to each single trait can be applied to the multitude of traits

on the microarray. Exciting new approaches have taken into account the full set

of information on the microarray, making use of many traits simultaneously in

the mapping model, rather than treating traits in a list-based manner. Another

unique challenge to QTL-microarray analysis is the need to control the statisti-

cal error rate in two dimensions, across the microarray, and across the genetic

map.

16.3.1 Single-locus models

The first QTL-microarray studies employed simple mapping models, assuming a

single regulatory locus (Brem et al., 2002; Schadt et al., 2003; Chesler et al., 2005;

Hubner et al., 2005). Each trait was mapped separately, and attempts were made

to quantify the number of QTLs on the genome by various methods to control the

family-wise error rate (Li and Burmeister, 2005). For control of the genomewide

error rate, some authors chose to use conventional significance thresholds based

on theoretical distributions and assumptions of genome size. For the mouse, this

significance threshold is LOD > 4.3 (Lander and Kruglyak, 1995). Other studies

used distribution-free permutation analysis to control the genome-wide error rate

(Churchill and Doerge, 1994). Neither of these approaches controls the number of

QTLs on the microarray, for which some studies are now using control of the FDR

(Storey and Tibshirani, 2003a, 2003b). All of these approaches assume the validity

of the single-locus model, which, for complex traits presumably under polygenic

control, is unlikely to hold.

Two types of regulatory loci were identified, cis-QTLs, which are due to polymor-

phisms at or near the transcript-coding region, and trans-QTLs, which are located

distal to the coding region. Cis-QTLs may be due to polymorphisms in enhancer or

promoter regions, thereby altering direct mechanisms of transcription control, such

as activity of transcription activation, but they may also be present as mis-sense poly-

morphisms altering function of the gene product. These polymorphisms can activate

indirect mechanisms of control, as, for example, by compensatory mechanisms that

result in increased production of weakly functioning gene products. Other polymor-

phisms have been identified that do not regulate gene expression or protein product

functionality, but they remind us that the trait being studied is actually not expres-
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sion, but transcript abundance. These polymorphisms affect mRNA stability, but not

the amino-acid sequence of the functional gene product. An example of such a poly-

morphism was found for the human dopamine receptor, DRD2, a finding that calls

into question our ability to truly categorize ‘silent’ mutations (Duan et al., 2003).

Decay of mRNA is a well-regulated process that influences the steady-state abun-

dance of many transcripts (Wang et al., 2002). There is another, more trivial cause of

cis-QTLs for transcript abundance that plagues most hybridization and antibody-

based assays for high-throughput molecular phenotyping – polymorphisms in the

probe targets themselves. Because the assays are typically developed to target se-

quences or structures derived from a single strain, the reaction often performs better

for that strain. Different array platforms may be more robust to the effects of poly-

morphisms; for example, the Affymetrix system uses short 25-nucleotide probes,

whereas many other systems rely on much longer probe sequences, and are therefore

less affected by small differences in sequence. However, even these longer array probes

are not a perfect solution. One particularly compelling case comes from the study by

Schadt et al. (2003), in which a cis-QTL was found to alter a splice junction that was

a polymorphic target of the probe sequence. In a later study, the impact of sequence

variation in probe regions was systematically evaluated by various tests, and was

found to be minimal in a bioinformatics analysis of mapping data, but an empirical

‘cis/trans test’ by RT–PCR revealed that as many as 36 per cent of cis QTLs could not

be confirmed (Doss et al., 2005). In this test, mRNA from the two cross-progenitors

and the F1 line are compared, to estimate the ratio of expression in an attempt to

reproduce independently the QTL effect. It should be noted that the cis/trans test

itself relies on a strong assumption of a single-locus model and of an additive mode

of inheritance. Two parental lines and an F1 are not a model of a segregated mapping

population.

Each of these early transcriptome-mapping studies reported the existence of ma-

jor trans-regulatory QTLs, genome locations that are linked to many hundreds of

gene expression levels. Trans-QTLs may be the site of transcription factors, but typ-

ically are not (Yvert et al., 2003). The trans-acting loci could reflect the activity of

single regulatory polymorphisms (gene pleiotropy) or may be due to the action of

a large number of linked polymorphisms. Improved precision of the QTL study

and techniques aimed at the reduction of QTL interval size will allow the dissection

of large groups of linked regulatory loci. Gene density and SNP density analyses

do not reveal significant associations with the number of QTLs mapping to each

region. The presence of such loci reveals high expression covariance. This observa-

tion has many consequences for genetic analysis of transcriptome QTL mapping.

First, efforts to control the FDR by analysing lists of significant QTL mapping results

by transcript are destined to be far too conservative because of the presence of so

many highly correlated statistical results. Second, substantial noise reduction and

improved statistical power could be obtained by first decomposing the gene expres-

sion covariance matrix and then mapping QTLs for the reduced set of expression

traits.
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Table 16.1 Tools and databases related to expression QTL analysis

Tool URL

Gene Network/Web QTL http://www.genenetwork.org/

CTC-Oxford-Wellcome Trust SNP database http://www.well.ox.ac.uk/mouse/INBREDS/

Celera Mouse SNP database http://www.celera.org

Mouse Phenome Database SNPs http://phenome.jax.org/pub-cgi/phenome/

mpdcgi?rtn=snps/door

16.3.2 Multiple QTL models

In recent years, there has been significant attention to the development of QTL

analysis tools (Table 16.1 that allow the capture of the true complexity of genetic

regulation of phenotypic variation. Composite interval mapping is a technique which

allows control of detected loci in the search for additional loci (Jiang and Zeng, 1995).

Tools such as R/QTL (Broman et al., 2003) and Pseudomarker (Sen and Churchill,

2001) use full genome-wise scans of all pairs of loci to identify pairs of loci that are

responsible for trait variation. The set of single, joint and interacting loci can be

incorporated into more complex, multiple-locus models that can better characterize

the complexity of trait regulation (Broman and Speed, 2002). While the analysis

required is slower and requires some supervision, it is clearly warranted. In a study

of nearly 6000 yeast transcripts, Brem and Kruglyak (2005) found that despite high

heritability, the vast majority of traits are under the regulation of two or more loci.

In our study of brain gene expression QTLs, we have found that numerous transcript

traits are regulated by a combination of two or more of the major trans-QTLs (Chesler

and Langston, 2005). When these additional genetic factors are not considered,

estimation of the effect size and location of QTLs can be flawed, and single markers

may act as surrogates for better fitting, multilocus models. With the growing number

of transcriptome-QTL analyses, tools for rapid discovery of multiple-locus models

are being developed.

16.3.3 Multi-trait mapping models and integrative approaches

Neither the single-locus nor multilocus models described above make use of infor-

mation from multiple traits. Several methods have been developed for the analysis

of related sets of traits, and the approach is beneficial in that it improves signal

for correlated expression phenotypes by making use of more information. Many of

these approaches utilize some type of data reduction, including principal component

analysis (Lan et al., 2003) or graph decomposition (Baldwin et al., 2005; Chesler and

Langston, 2005) prior to mapping traits. To obtain data about individual genes, we

must return to factor loadings or subgraph composition. The mixture-over-markers
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model (MOM) (Kendziorski et al., 2006) combines data from multiple transcripts

and markers, but currently its implementation is limited to simple single-locus mod-

els. Expansion of this approach is promising.

16.3.4 Reducing the size of expression QTLs with SNP integration
and haplotype analysis

Once expression regulatory loci are identified, the challenge is to refine the inter-

val and identify the QTL candidate gene or genes. Many new tools and approaches

can be applied to this task. For example, large-scale SNP-genotyping resources have

dramatically facilitated QTL refinement. This has been both by follow-up experimen-

tal strategies, including recombinant inbred segregation tests and Yin–Yang crosses

(Shifman and Darvasi, 2005), and by using SNP haplotypes in concert with standard

inbred strain phenotypes to identify haplotype intervals that are best associated with

the phenotypes (Pletcher et al., 2004). Many of these methods remain controversial

because they implicitly assume single-locus models and non-transgressive segre-

gation, and that the QTL effects are due to segregating ancestral polymorphisms.

Nonetheless, compelling successes have been reported, and while the methods may

fail for some phenotypes and QTLs, they remain useful. This is in part because the

proliferation of tools and appreciation of the complexity and diversity of QTL reg-

ulatory effects has allowed analysts systematically to seek and integrate converging

evidence for each of the genes and other polymorphic genome features in a QTL

confidence interval. In expression QTL analysis, QTL refinement and candidate gene

information can make facile use of known gene product interactions, pathway co-

memberships, and, most importantly, expression covariation analysis of traits being

measured, and the candidate genes for such phenotypes.

16.4 Genetic correlation analysis

Transcriptome QTL data are often collected in a population that has been character-

ized in other phenotypes; for example, Schadt et al. (2003) included obesity-related

measures that could be related back to the gene-expression regulatory QTLs in an F2

population. Genetic reference populations have been extensively characterized on a

wide range of phenotypes. When gene-expression data are collected in these popula-

tions, entire gene-phenotype networks can be constructed (Chesler et al., 2003). The

genetic correlation matrix of gene expression is also inherently useful to identify co-

expression networks (Baldwin et al., 2005). Many biological networks are scale free,

with a few highly connected vertices and many sparsely connected vertices (Jeong

et al., 2000). Indeed, a scale-free network of genetic co-expression is observed.
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16.4.1 Impact of study design on the interpretation
of expression correlations

The nature of the population and the study design determine the computation and

interpretation of genetic correlations. Theoretically, the correlation between traits

in a population can be partitioned into a genetic correlation and an environmental

correlation. This type of partitioning can be achieved when large sets of traits are each

measured in a sufficiently large group of related individuals, allowing an estimation

of correlation within (environmental) and between (genetic) related groups. Mi-

croarray measurements are an extreme form of this multivariate phenotyping, and

because the number of samples within each family is typically small, it is not possi-

ble to partition genetic correlations among gene-expression traits. However, when

traits are measured in independent groups of identical individuals (family means

correlations), the trait correlation of gene expression and phenotype is considered

purely genetic. In an F2 cross-population, the relationships among individuals are

each equivalent, and therefore the correlations among traits cannot be interpreted

as genetic or environmental in causality.

16.4.2 Genetic reference populations

A genetic reference population consists of a panel of isogenic lines typically bred

from a small number of founders. A variety of such populations exist, including

the standard inbred mouse strains, consomic lines, which contain a chromosome

from one genetic background introgressed on another genetic background, and

recombinant inbred strains, which derive from sib mating or selfing of the progeny

of a segregating cross. The value of a reference population is that it serves as a

tractable model of genetic diversity in a population. Mice from these populations

can be bred indefinitely and repeatedly phenotyped. Precision can be obtained by

performing replicate sampling within each line, giving enhanced efficiency for costly

QTL mapping studies (Belknap, 1998). However, the value of these populations

goes far beyond their utility for QTL mapping. Data from these populations can be

aggregated multiplicatively. Any attribute that is studied in these populations can

be related to all other attributes, making them a highly integrative and intrinsically

collaborative resource (Chesler et al., 2003) (Figure 16.1).

Currently, the largest widely used genetic reference population is the BXD recom-

binant inbred strains. These were originally bred by B. A. Taylor in the late 1970s,

and were later expanded in 1999 (Williams et al., 2001) and again in recent years

(Peirce et al., 2004), bringing the full set to a size of 80 lines. An equally large set, the

LXS panel, was recently derived from an eight-way heterogeneous stock population

selected for response to alcohol (Williams et al., 2004). A major drawback to the use

of these populations is their finite size, which ultimately limits mapping precision

and the ability to discriminate between pleiotropy and linkage as sources of genetic
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Figure 16.1 Simplification of data integration in a reference population. Genotypes, gene

expression and complex phenotypes are all attributes of individuals or lines in the reference

population. Linkage analysis, co-expression networks, genetic correlations and QTL analysis can

each be conceived of as specialized correlations over the population, each computed on specific

data submatrices

correlation. An exciting new effort by the Complex Trait Consortium involves the cre-

ation of 1000 recombinant inbred mouse lines from eight genetically diverse inbred

strains (Churchill et al., 2004). This set will have high power, precision for mapping,

and genetic correlation-based approaches. Other large recombinant inbred panels

of plant species also exist.

While the standard inbred mouse strains are a useful reference population, they

pose significant challenges as a genetic reference population. The finite population

size and idiosyncratic breeding history render them non-equidistant genetically. As

such, their use as a mapping population is controversial (Chesler et al., 2001; Darvasi

et al., 2001; Mhyre et al., 2005). Nevertheless, QTL success stories have been reported

in these populations, when coupled with additional mapping crosses (Pletcher et al.,

2004). The non-random mating history has led to large blocks of long-range linkage

disequilibrium (Petkov et al., 2005), resulting in many false-positive linkage results.

Relations of gene expression to complex phenotypes

Several recent studies have exploited a reference population strategy for the inte-

gration of transcript abundance and higher order phenotypes (Carter et al., 2001;
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Chesler et al., 2003; Kempermann et al., 2006). The strategy was successfully de-

ployed in the nomination of glyoxylase and glutathione reductase as candidate genes

for anxiety (Hovatta et al., 2005). This study made use of a limited number of in-

bred strains. By performing the analysis in a population derived from a segregating

cross, determination of the genetic source of trait covariance can be made. This is

especially relevant in the search for the causative basis of heritable disease. While

the precise polymorphisms underlying gene-expression correlation to complex phe-

notypes may not be conserved, mutation sites and mutated genes are likely to be

conserved. This may be related to the location of genes in biological networks and

pathways (Wagner, 2005). Thus, using genetic approaches to narrow the list of large

numbers of genes that are associated with a particular phenotype is likely to result

in the detection of candidate genes for translational research on the cause of disease.

It is debatable whether these genes are necessarily strong therapeutic targets, as one

may wish to develop drugs that will be effective in all members of a population. For

this, a network-based approach will prove quite fruitful.

16.5 Systems genetic analysis

Transcriptome QTL analysis in genetic reference populations render possible an

exciting new approach to biology referred to as ‘systems genetics’. This approach de-

rives from systems biology in which the network of interactions among genes, gene

products and systems-level phenotypes is discovered by systematic network pertur-

bation. In systems genetic analysis, the naturally occurring polymorphisms are the

network perturbations that are being explored. These network analyses take on two

forms, either to construct networks from polymorphism to higher-order phenotype

or to use gene expression in concert with genetic information to refine the set of

QTL candidate genes rapidly. The tools of systems genetic analysis are rapidly ex-

panding. Several approaches have been developed to integrate multiple data types

across the biological scale, particularly gene expression and genotype information.

Both Bayesian (Li et al., 2005, 2006) and combinatorial network-analysis methods

(Baldwin et al., 2005; Chesler et al., 2005; Chesler and Langston, 2005) are being

applied to genetical genomic data sets. The Bayesian approaches to microarray data

may allow a causal interpretation (Friedman et al., 2000; Pe’er et al., 2001). This

is particularly true when additional information, such as SNP distributions, is in-

corporated directly in the modeling (Li et al., 2005, 2006). By integrating genotype

and gene-expression data in a single model, Kulp and Jagular (2006) have drasti-

cally reduced QTL candidate genes, and perhaps inferred the structure of networks

from expression-regulatory polymorphisms to variation. Combinatorial algorithms

are applied to networks that are drawn by thresholding the gene-expression cor-

relation matrix by high-pass filtering criteria. Edges in the graph represent high

genetic correlation, and the vertices or nodes represent traits. Maximal cliques, the

largest possible sets of completely connected (perfectly intercorrelated) traits, and
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other dense subgraphs are extracted and annotated from these gene sets (Baldwin

et al., 2005). Although the conversion of a correlation matrix into a discrete graph

may seem like a major disadvantage to genetic analysis, extracting genetic corre-

lates by combinatorial algorithms is advantageous for several reasons. Analysis of

genome-scale data sets is computationally feasible by graphical methods; the asso-

ciations that are detected are highly pure, unlike those obtained from K-means or

K-nearest neighbours clustering; and there are no constraints on the size or number

of cliques required. The resulting dense subgraphs represent highly co-regulated gene

sets. These sets can be combined into larger structures, reflecting broader expression

co-regulation. QTL mapping can be performed on these reduced multitrait sets,

providing more precise and robust mapping, and identification of joint modifiers

of expression. Annotation of these gene sets by Gene Ontology tools, transcription

factor-binding site information, pathway analysis, and other approaches to under-

standing co-expression is a powerful method to identify regulators, and determine

which biological processes are connected to higher-order phenotypes.

16.5.1 Pulling it all together in GeneNetwork.org

GeneNetwork.org is a public Internet resource for the analysis of gene expression and

other complex phenotypes, with special emphasis on genetic reference populations.

This resource, a broader system of tools around the original genetical genomics site,

WebQTL, began service in 2001 (Wang et al., 2003; Chesler et al., 2004). This tool

allows users to search for gene expression or traits of interest, find QTLs, evaluate

QTL regions for candidate genes, and perform multivariate and network analyses. At

the time of writing, expression data are available for the BXD RI forebrain (Chesler

et al., 2005), hippocampus, cerebellum, striatum, liver, eye and haematopoietic stem

cells (Bystrykh et al., 2005); AKXD mammary tumours; and HXB/BXH liver and

intraperitoneal fat mRNA (Hubner et al., 2005). Legacy phenotypes, hand curated

from over 20 years of literature (Chesler et al., 2003), and newly collected phenotypes

for the BXD, AXB/BXA, LXS, CXB, and BXH recombinant inbred mice; HXB rats;

and several panels of Arabidopsis are also incorporated in the website.

Users can search for traits of interest, including a wealth of alcohol and immune

response data in the BXD RI lines, and diabetes- and obesity-related phenotypes

in the HXB/BXH panel. Full-text searching of the complete MEDLINE abstracts,

titles and authors associated with each trait is included for all published phenotypes.

Gene-expression records can also be searched by gene symbol, probe set ID and GO

term. Advanced search features also allow the retrieval of significant gene-expression

QTLs, or QTLs within a particular region. Each trait has its own detail page, with

an annotation, analysis, and data section. From this page, users can evaluate probe

information and hybridization data, determine basic statistics on trait distributions,

generate trait-to-trait correlations, perform QTL mapping with single locus and

multilocus models, transform trait data and remove outliers. From the search page
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and many analytic tools that generate trait sets, entire groups of traits can be selected

and added to a trait collections page. From this page, a host of multitrait tools can be

executed, including computation of the genetic correlation matrix, principal compo-

nent analysis, and simultaneous clustering and mapping of sets of phenotypes with

the QTL Cluster Map. Network Graphs can be drawn with an integrated Graph Viz

module, and connections of sets of traits in one data set. For example, brain gene

expression can be correlated with sets of traits in another data set, such as behavioural

phenotypes. Built in to this resource are tools such as QTL Analyst to identify candi-

date genes and polymorphisms; literature correlation analysis by the latent semantic

indexing tool, Semantic Gene Organizer (Homayouni et al., 2005); and integrated

analysis with many large SNP sets, Gene Ontology overrepresentation and pathway

matching (Zhang et al., 2004), and annotation resources. By coupling flexible ana-

lytic tools with both molecular endophenotypes and higher-order phenotypic data,

users can pursue a wealth of integrative systems genetics queries. Through the search

features and tools of a resource like GeneNetwork.org, powerful systems genetics

techniques are made readily available to public users, who can collaborate and share

data in a purely analytical fashion.

Figure 16.2 The GeneNetwork.org WebQTL query interface. Users can select a species, an appro-

priate data set and an analysis method; in this case, Kcnj9 was used as a query gene against the

B6D2F2 mouse brain mRNA data set. These data are from an F2 cross of C57BL/6J and DBA/2J.

Web QTL, www.genenetwork.org
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16.6 Using expression QTLs to identify candidate genes
for the regulation of complex phenotypes

Few readers will themselves perform transcriptome QTL-mapping studies. Though

these studies are rapidly expanding in number and are being performed in many

tissues in several mapping populations, they are still quite large in scale and scope.

Several hundred samples and at least 100 microarrays are required for even minimal

Figure 16.3 WebQTL trait data page for Kcnj9 expression as a quantitative trait. Each trait data

page contains informative links to annotation and probe data, analytical tools, and condensed

probe level data for each strain. Detailed results of the QTL analysis can be viewed by following

the ‘generate report button’. Web QTL, www.genenetwork.org
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Figure 16.4 Web QTL correlation results for Kcnj9. Genes showing highly correlated expression

with Kcnj9 are ranked and assigned a P value. Literature correlation between each gene and

Kcnj9 is also assessed. Note that the Zfa gene (autosomal zinc-finger protein; record 10) shows

significant expression correlation with Kcnj9 and is located at 52 Mb on chromosome 10. This is

located in the centre of a strong linkage peak on chromosome 10 (see Figures 16.4 and 16.5).

Web QTL, www.genenetwork.org
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Figure 16.5 Web QTL interval mapping of Kcnj9 expression analysed by linkage as a QTL.

(A) Linkage data are displayed across all chromosomes. (B) The strongest signal is a cis-QTL

seen on chromosome 1 centred on the KcnJ9 gene. (C) Another strong signal is a trans-QTL seen

on chromosome 10 centred at 52 Mb over the Zfa gene, suggesting possible trans-regulation

of Kcnj9 by the DNA-binding protein Zfa. This possible relationship may be worthy of further

investigation. Web QTL, www.genenetwork.org
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Figure 16.6 The value of a reference population for analysis of Kcnj9. Analysis of Kcnj9 expres-

sion in the BXD recombinant inbred lines. A dense aggregation of genotype and phenotype data is

feasible, affording high-precision QTL analysis and rapid identification of a wealth of phenotypes

that are genetically correlated to expression of Kcnj9. Web QTL, www.genenetwork.org
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designs. However, the results of many of these experiments are publicly available, and

through these data repositories and their associated analytic tools, one can readily

make use of GeneNetwork.org’s public genetical genomic data sets in a variety of

biological applications. Several researchers have begun to make use of integrated

analysis of gene-expression QTLs and conventional QTL analysis of complex pheno-

types to identify compelling candidate genes for higher-order complex phenotypes.

The premise is that a polymorphism with phenotypic consequence should also alter

the expression of trait-relevant genes. Therefore, cis-QTLs in the region of a pheno-

typic QTL are likely to be modifiers, particularly if they are also trans-regulators of

trait-relevant genes. By coupling multiple cross-mapping, haplotype analysis, and

expression QTL analysis, Kcnj9 was implicated as the chromosome 1 QTL for basal

locomotor activity in the mouse (Hitzemann et al., 2003) (Figures 16.2–16.5). By

gene-expression correlation analysis to ethanol preference, Stxbp1 was identified as

a likely candidate for ethanol preference (Fehr et al., 2005), another widely studied

complex trait. In another strategy, the results of a differential expression analysis in

brain response to ethanol were filtered by expression correlation to alcohol-related

phenotypes and then subjected to pathway matching analysis, leading to identifica-

tion of Sp1 as a putative regulator of the transcriptional response to ethanol (Rulten

et al., 2005). These analyses are made possible by the integration of deep genotyping,

phenotyping and expression analysis in a reference population (Figure 16.6).

16.7 Conclusions

Expression QTL analysis has matured over the past few years into a tool for systems

biological analysis of complex phenotypes spanning the range of biological structure

and function. With genetic polymorphisms as the basis for network analysis, systems

of traits can be related to one another and to the underlying biological networks that

subserve clusters of phenotypes (Figure 16.7). New analytical approaches and larger,

more powerful trait data collections are being developed in this rapidly expand-

ing field. Web-based data repositories with analytic tools allow rapid integration of

data, for hypotheses ranging from global analysis of genetical genomics, to specific

gene- or phenotype-centred hypotheses. The expansion of these tools and techniques

has resulted in larger explicit and computationally implicit community-based col-

laborative efforts to integrate biological data across all levels of scale for the under-

standing of susceptibility factors and mechanisms of complex disease.
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17.1 Introduction

Cancer is widely recognized as the most common genetic disease. One in three

people are afflicted with cancer during their lifetimes, and one in five will die of

this condition. As cancer is a disease of the genome, much of oncology is aimed at

discovering and describing the recurring molecular alterations and conditions that

contribute to tumour genesis, proliferation and metastasis. This broadly includes

identifying (i) which genes are altered in cancer, (ii) how many genes are altered

in each cancer and (iii) which mechanisms drive these alterations (Weber, 2002).

Effectively characterizing the cancer genome often requires multifaceted genetic data

sets and sophisticated analyses.

Although the increasing role of bioinformatics in cancer research mirrors that of all

genetics, the effects of the bioinformatics age on cancer research cannot be overstated.

Bioinformatics has had such a profound influence on the field of cancer genetics that

it has changed such fundamentals as cancer definition and diagnosis. Research in the

field of cancer genetics has always generated an intricate and expansive body of data

as a result of the dynamic and multifaceted genetic changes associated with cancer.

The advent of the post-genome era and the improved capacity for high-throughput

genomics assays has expanded this exponentially, necessitating the use of bioinfor-

matics approaches to research the cancer genome. Bioinformatics has allowed the

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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molecular classification of cancers and the modelling of cellular circuits involved

in tumour genesis and progression. It has been instrumental in guiding large-scale

wet laboratory research (see Cancer Genome Atlas below) and has progressed to

the juncture where novel bioinformatics-driven discovery research can be done with

only data from public repositories. The ultimate result is more integrated research

where primary data can be analysed from the perspective of previous knowledge.

Bioinformatics has truly commenced a new era in cancer research.

This chapter will survey and highlight the role of bioinformatics in cancer genetics.

It will focus on the diversity of Web databases that serve genetic assay data and genome

annotations, as well as the algorithms and data-mining tools necessary for cancer

analysis. Additionally, examples will be discussed that demonstrate the molecular

characterization of tumours from gene-expression data and identification of tumour

suppressor genes by genomic copy number alterations.

17.2 Cancer genomes

In considering the function of bioinformatics in cancer research, it is essential to un-

derstand the underlying principles of cancer genetics. A majority of research in the

field of cancer genetics investigates the underlying processes that transform normal

cells to malignant clones and enable their uncontrolled proliferation. The central

focus is on the two conventional classes of cancer genes that are thought to prescribe

these processes. Protective tumour suppressor genes typically restrict the growth of tu-

mours, while oncogenes contribute to the creation of a cancer. These genes contribute

to the biochemical changes, acquired abilities, and cellular traits shared by all cancers.

Tumorigenesis is an extremely complex, multistep process that is the product of

genomes being altered in multiple and complementary ways, resulting in selective

advantage for tumour cells. Although the ensuing ‘cancer genomes’ may retain many

of the germ-line characteristics from which they have evolved, each represents the

product of cells responding to selective pressures. The result is a relatively stable DNA

‘fingerprint’ that has a unique genetic make-up derived from the germ-line genome.

There are many types of genetic alterations that can provide a selective advantage for

tumour cells. Collectively, they contribute to the uniqueness of a cancer’s genome.

Examples include point mutations of tumour suppressor genes and chromosomal

amplifications of oncogenes. In an attempt to codify the underlying principles of

cancer, Hanahan and Weinberg (2000) put forth a popular model that breaks down

cancer development and proliferation into six essential cellular capabilities, each of

which requires genetic alterations. These acquired capabilities include:

1. evading apoptosis

2. self-sufficiency in growth signals
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3. insensitivity to anti-growth signals

4. sustained angiogenesis

5. limitless reproductive power

6. tissue invasion and metastasis.

This commonly held notion suggests that the 100+ cancer types share a series of

required phenotypes that are a result of multiple genetic alterations and conditions.

Futreal et al. (2004) compiled a list of ∼350 genes that are known to be implicated

in one or more of the six phenotypes reviewed in Hanahan and Weinberg (2000).

The genetic modifications that facilitate each of these capabilities may range from

a single mutation of one gene, to a complex network of changes that contribute

to a phenotype. Additionally, although a single genetic change can enable multiple

cancer-related faculties, no single alteration is universally responsible for any one

capacity. The result is a wide diversity of cancer genomes that require complex,

data-rich approaches for effective characterization.

17.3 Approaches to studying cancer genetics

Investigation of somatic genetics of cancer is unlike the study of germ-line genetics.

Cancer is a quickly evolving condition that is subject to unique selective pressures,

such as the ability to evade apoptosis, that result in a series of genetic changes that

distinguish it from a germ-line genome. Therefore, a core principle is that the tumour

genome is distinct from the germ-line genome and is treated differently in cancer

research. Studies of cancers often focus on the tumour genome’s gradual divergence

from the germ-line, where a study subject is normally a tumour rather than an

individual. ‘Somatic’ alterations seen in cancers include various types of mutations

and DNA copy number alterations. A clear distinction must be made between a

somatic mutation and a germ-line polymorphism. The former could be designated

a true ‘mutation’ in cancer, while the latter is an inherited polymorphism. Similarly,

inherited copy number polymorphisms (CNPs) , some of which may be disease

related, such as deletion in the SNAI2 locus in Waardenburg syndrome (Sanchez-

Martin et al., 2002), must be distinguished from somatic copy number alterations

unique to the diseased tissue (such as a complete loss of the CDKN2A gene described

in several cancers). The pursuit of therapeutic targets concentrates on identifying

these ‘somatic’ alterations, and drugs are designed in light of the phenotype resulting

from them. Conversely, studies exclusively investigating germ-line cancer genetics

often focus on predisposition and risk evaluation and can attempt to identify genuine

germ-line mutations or high-risk genotypes. An example of a clinically relevant
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mutation for which high-risk individuals are screened is that of the BRCA1 gene

(Weber et al., 1994).

17.3.1 Study design

Study design is an important aspect of any scientific investigation. The genetic anal-

ysis of cancers is not an exception. A thorough understanding of good study design

in the field of cancer genomics is essential in planning wet laboratory studies for

bioinformatics analysis, or doing in silico research with publicly available data re-

sources. Study panels, typically composed of tumours as units, are interrogated for

genetic alterations and variants. Proper studies will afford the best chance of making

desired inferences about somatic alterations, such as their distinction from germ

line, relative amounts of tumour diversity, and associations with a phenotype. Stud-

ies can range from truly exploratory, such as investigating gene-expression patterns

between two phenotypes, to hypothesis-driven, as with the investigation of muta-

tion frequencies of specific genes in a homogeneous population. In any case, the

extent to which genetic alterations can be investigated is often constrained by the

availability of tissues and the resources to process these tissues for analysis. Fresh

tissues are often the focus, although tumour-derived cell lines are used extensively

(see NCI-60 below). Confounding this general study design is the heterogeneous

nature of cancer, which has a wide range of diagnoses, resulting in diversity of clin-

ical phenotypes. Diversity is seen between sites on the body (such as brain versus

colon cancers) as well as within diagnoses. For example, pathological variation de-

scribed between two types of breast cancer (e.g., invasive versus lobular) may equal

those seen between breast and ovarian cancers. Challenges arise with determining

what constitutes reasonable groupings of cancers as test subjects. In other words,

how can a homogeneous panel of cancers that can be expected to exhibit similar

genetic mechanisms be identified? Moreover, a paradigm arises when the objective

of basic research is the molecular characterization of a heterogeneous population

of cancers and study panels. For example, in melanoma, ∼70 percent of tissues

carry mutations in the BRAF locus (Davies et al., 2002). These are thought to con-

stitute a genetically distinct group of cancers from BRAF wild types (Pavey et al.,

2004). Hereafter, if studying the somatic alterations contributing to the genesis and

progression of melanomas, would it be proper to group BRAF mutants and wild

types? This answer may seem obvious, but is typically less so where alterations

are less well described (this is more common). Further, several cancer types have

well described clinical subgroups. Breast cancers are typically grouped in terms of

ERBB2 expression, while neuroblastomas (a rare pediatric cancer) are grouped by

a DNA amplification of the N-myc gene (Fong et al., 1989). Specific research ob-

jectives may offer guidance in composing study panels; however, in some cases,

there are no clear answers. Bioinformatics has, in part, assumed the responsibility
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of contributing to breaking this paradigm by providing complex molecular charac-

terizations of cancers and designing computational methods for identifying unique

subtypes.

17.3.2 Cancer cell lines

Panels of primary tissues serve as the basis for studying genetic changes in can-

cers. Tissues can be frozen at –80◦C or embedded in paraffin wax for long-term

storage. They are typically dissected, and DNA/RNA is extracted. Although these

tissues are good for many studies of cancer genetics, they are less than ideal for

others. Tumour-derived cancer cell lines offer many advantages over using fresh

tumours. These are populations of cells drawn from a fresh tumour that are im-

mortalized through an often difficult procedure that results in frozen cells that can

be grown at will. Although the genetic make-up of these cell lines is thought to

reflect that of the original tumours, several cell-line-specific traits have been de-

scribed. Most notably, cell-line immortalization has been implicated as a source

of cytogenetic changes, such as DNA copy number alterations. For example, re-

curring copy number gains of chromosome 20 and losses of chromosome 13 have

been associated with the cell-line transformation process (Ratsch et al., 2001; Jin

et al., 2004). Moreover, multiple growth passages (to which commercially available

cell lines are routinely subjected) have been shown to be associated with random

genomic instability (Meisner et al., 1988). Finally, past studies have noted differences

in gene-expression patterns between cell lines and their fresh/frozen tissue coun-

terparts (Kees et al., 1992; Mackay et al., 1992; Lee and Maihle, 1998). For these

reasons, a degree of vigilance must be practised when employing cell lines as tumour

models.

Cell lines bear several advantages that make them attractive subjects for genomic

analysis. Fresh tissue is often scarce and obtaining ample DNA is frequently diffi-

cult, while cell lines offer a replenishable source of DNA and RNA. Tumour het-

erogeneity is of chief importance when analysing tissues. The infusion of normal

cells can dilute signal and reduce the possibility of detecting alterations (Garnis

et al., 2005). Alternatively, cell lines provide a more homogeneous cell population in

which cell-to-cell variation in copy number is reduced. Most importantly, tumours

cannot be analysed for genetic alterations in vivo. Using cell lines for genetic anal-

ysis makes possible time-course analysis (e.g. Singh et al., 2000) and pharmaco-

dynamic studies (e.g. Hattinger et al., 2003, O’Toole et al., 2005). Further, a cell

line and its derivatives have a parent–child relationship whereby drug resistance

can be engineered and studied (e.g. de Angelis et al., 2004). The NCI-60 is a panel

of publicly available tumour-derived cell lines. This is a well-described group that

has been worked on extensively and provides a wealth of publicly available genetic

data.
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17.3.3 Recent technologies used to study cancer genetics

Cancer research has embraced recent technological advances that have expanded the

number of data researchers have been able to collect. Specifically, the capacity of newer

assays to measure three major somatically acquired alterations, (i) gene sequence

mutations, (ii) DNA copy number aberrations, and (iii) gene-expression alteration,

is particularly attractive to those studying cancer genetics. Mutation screening by

high-throughput sequencing methods and the migration of DNA copy number and

gene expression measurements to high-density microarray platforms (in most cases,

oligonucleotide chip-based) have made this approach more data-rich, necessitat-

ing complex bioinformatics research. Much of this bioinformatics-related work has

been devoted to serving up these data for public use. These efforts range from general

repositories (e.g., Oncomine; Rhodes et al., 2004) to those focusing on persistent mu-

tations of a single gene (e.g., the IARC TP53 mutation database; Olivier et al., 2002)).

Analytic and algorithmic efforts have focused on the molecular characterization and

classification of tumours, cancer subtype discovery, modelling cancer progression,

and drug response using heterogeneous data.

17.4 General resources for cancer genetics

The research landscape of the post-genome era has facilitated data-rich industri-

alized research projects aimed at identifying therapeutic targets through detailed

cancer genome characterization by high-throughput technologies. Bioinformatics

necessarily plays a central role in these initiatives and often their associated public

Web resources, and published tools are an excellent starting point for collecting pri-

mary data and general cancer-related information. One such project is the Wellcome

Trust Sanger Institute’s Cancer Genome Project (CGP), a multidisciplinary effort to

identify somatically acquired sequence variants and aberrations in human cancers.

It has served as a model for coupling high-throughput screening of gene-mutation

data with bioinformatics tools designed for access and analysis. The CGP’s central-

ized Web resource (Table 17.1) offers a wealth of primary data, including COSMIC,

a catalogue of gene mutations (see below), genome copy number data, and gene se-

quences from both tumours and cancer cell lines. Another project of this magnitude

is the National Human Genome Research Institute (NHGRI) and National Cancer

Institute’s (NCI) Cancer Genome Atlas (TCGA). This program interactively couples

clinical outcome data with experimental data characterizing genomic alterations in

cancers and promises to be a rich source of data and tools.

The NCI Center for Bioinformatics (NCICB), which supports the broad, integra-

tive research programmes put forth by the NCI, has a Web resource that hosts several

cancer-related tools and data repositories. One of the highlights is the Web resource

for the Cancer Genome Anatomy Project (CGAP). The CGAP is the collective effort
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Table 17.1 Useful URLs for accessing cancer-related data, software tools and information

Resource URL

General Resources

National Cancer Institute Center for

Bioinformatics

http://ncicb.nci.nih.gov

Cancer Genome Project http://www.sanger.ac.uk/genetics/CGP

Cancer Genome Anatomy Project http://www.cgap.nci.nih.gov

Cancer Genes/Mutations

p53 Gene mutation database http://www-p53.iarc.fr/index.html

Catalog of Somatic Mutations in Cancer http://www.sanger.ac.uk/genetics/CGP/cosmic/

Cancer Gene Data Curation Project http://ncicb.nci.nih.gov/NCICB/projects/cgdcp

Atlas of Genetics and Cytogenetics in

Oncology

http://www.infobiogen.fr/services/chromcancer/

The Tumor Gene Database http://www.tumor-gene.org

Human Gene Mutation Database http://www.hgmd.cf.ac.uk/

Genetic Polymorphism

NCI SNP Resource http://gai.nci.nih.gov/html-snp/ts.html

SNP500Cancer http://snp500cancer.nci.nih.gov

Chromsomal alterations/Cytogenetics

Mitelman database http://cgap.nci.nih.gov/Chromosomes/Mitelman

SKY/M-FISH and CGH Database http://www..ncbi.nlm.nih.gov/projects/sky

Recurrent Chromosomal Aberrations in

Cancer

http://cgap.nci.nih.gov/Chromosomes/

RecurrentAberrations

Progenetix http://www.progenetix.net

Gene Expression

Oncomine http://www.oncomine.org

NCI- maDb http://nciarray.nci.nih.gov/

Theraputics

Drug Adverse Reaction Database http://www.fda.gov/cder/cancer/toxicityfram.htm

Chemotherapy http://www.cancersourcemd.com/drugdb3

Clinical Trials

PDQ http://www.cancer.gov/clinicaltrials

Oncolink http://www.oncolink.com

Centerwatch http://www.centerwatch.com

Toxicology

The Carcinogenic Potency Database http://potency.berkely.edu/cpdb.html

Chemical Carcinogenesis Research

Information

http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?

CCRIS

Text Mining

Bioie http://bioie.ldc.upenn.edu

of a network of investigators aiming at the molecular characterization of cancers

through transcriptional profiling. The Web resource contains both primary data

for bioinformatics analyses and tools for scientists to design and conduct genetic

studies of cancer. Researchers can use CGAP information to design assays such as

gene-expression microarrays, analysis of copy number alterations, and RNAi. Other



OTE/SPH OTE/SPH

JWBK136-17 February 16, 2007 15:28 Char Count= 0

420 CH 17 BIOINFORMATICS AND CANCER GENETICS

information served by CGAP includes annotations of cancer-related genes, and path-

ways and serial analysis of gene-expression (SAGE) data. A notable unique compo-

nent of CGAP is the Web resource for SNP500Cancer, a project devoted to querying

reference samples to find known or newly discovered single nucleotide polymor-

phisms (SNPs), which are of direct importance to molecular epidemiology studies

in cancer (Packer et al., 2004). Web resources such as the CGP and CGAP exemplify

the role of bioinformatics in cancer research and provide rich repositories of data for

in silico bioinformatics research.

17.5 Cancer genes and mutations

A diverse range of important somatic and germ-line sequence mutations has been

described in cancers, including all types of substitutions, INDELS and amplifications.

Ultimately, loss of function of one or more alleles of a gene with tumour suppressive

qualities, or gain of function in a gene with oncogenic behaviour, can prove to be

sufficient to promote a proliferative advantage in targettissues. Most studies of muta-

tions in cancer aim to determine where they occur, the frequency at which they occur,

and their phenotypic effects. It is important to be aware that somatic mutations can

fall into two groups. Most notably, ‘driver’ mutations confer selective advantage and

are implicated in the development of tumours. Alternatively, ‘passenger’ mutations

are essentially a by-product of uncontrolled proliferation and failure in mismatch

repair. These are not subject to selection and are not causally involved in oncogenesis

or tumour progression (Davies et al., 2005). Distinguishing the former from the later

is far from trivial, and though bioinformatics analysis of the functional impact of

wild-type and mutant alleles can help considerably in this task (this is covered in

detail in Chapter 10), ultimately, laboratory study is the only way to establish the

status of a tumour mutation as a driver in the process of cancer.

Mutations can not only enhance uncontrolled proliferation, but also influence

clinical characteristics (e.g., constitutive target activation (Goemans et al., 2005))

and drug response (Tokumo et al., 2005). An example of this in cancer is the nu-

clear tumour protein TP53, which plays a vital role in cell-cycle regulation and

transition from G0 to G1. Although this tumour suppressor gene is normally ex-

pressed at low levels in most cells, somatic and germ-line mutations (occurring at

rates of over 50 per cent in some cancers) can cause inactivation, resulting in un-

regulated cell proliferation. Hence, mutation screening in this gene has been quite

extensive.

Computational analyses of oncology data on a genome-wide basis (as in gene-

expression microarrays) are often problematic without some prior assumptions of

the potentially important pathways and genes to study. Identifying which genes are

mutated in cancer is an important step toward this goal, which the major tumour

sequencing programmes are beginning to address. Bioinformatics approaches can

help to identify genes thought to be most involved with cancer. These are usually
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associated with cellular growth and apoptosis Thomas et al. (2003) found much

higher intensities of purifying selection in oncogenes and tumour suppressor genes

than other genes. This highlights some of the differences between genes involved in

cancer and those implicated in other human diseases, there being a highly significant

overlap between cancer genes and ‘essential genes’ that show lethal phenotypes in

knockout experiments. Previously described causal relationships between genes and

known associations of gene mutations with cancers can expand the cancer gene list

further. Compiling a list of these genes is not a simple task, as it requires the extensive

use of literature-mining tools such as PennBioIE (Table 17.1), and knowledge of the

potential downstream effects of complex signalling cascades or loss of gene function.

One of the principal goals of the CGP is to identify which sets of genes are altered in

human cancer. This effort has used extensive literature review and mutation screening

to identify genes whose alteration has been shown to recur in one or more cancers,

and that might provide growth advantages to the afflicted cells or facilitate clonal

expansion to surrounding tissues. A growing list of cancer-related genes (at present,

this includes 347 genes; reviewed in Futreal et al., 2004), along with their described

alterations, has been compiled, and is served as part of the CGP. Other major efforts

to identify a comprehensive list of cancer genes include the NCI’s Cancer Gene Data

Curation Project and the Atlas of Genetics and Cytogenetics in Cancer (Dorkeld

et al., 1999). Although these lists largely overlap, they vary due to the unique criteria

used to define cancer involvement. They all make excellent references for laboratory

screening and computational analysis of gene alterations.

17.5.1 Cancer mutation databases

As high-throughput mutation screening has become one of the most important

exercises in cancer research, bioinformatics efforts have consolidated mutation data

into several key databases and have developed useful tools for the analysis of this

data. The Catalogue of Somatic Mutations in Cancer (COSMIC) is a bioinformatics

tool that provides a Web-based query interface to the growing database of published

somatic mutations of cancer genes (Bamford et al., 2004). The central purpose of

COSMIC is to provide somatic mutation frequencies of cancer genes. In doing so, this

tool elegantly converges the CGP’s mutation screening data with publicly available

mutation data and genome annotations. The interface offers two points of entry

where a user can either query a gene by name for its documented mutations in all

cancers, or search for mutations of all genes seen in a specific cancer tissue (such as

breast). A diverse set of cancerous tissue is represented in this database, including cell

lines, benign neoplasms, in situ and invasive tumours, recurrences, and metastases.

The results can be easily navigated as HTML or exported as text files for further

analysis. COSMIC also provides direct access to supporting data, including cDNA and

protein sequences, sequence alignments, links to OMIM databases and the Ensembl

genome browser, as well as access to publications representing the data’s origin. At
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Table 17.2 Tyrosine kinase genes are included as part of the Cancer Genome Project’s

target list. Associated information includes the cancer histologies where alterations have

been implicated and which types of alterations have been previously observed. AML =
acute myelogenous leukaemia, ALL = acute lymphocytic leukaemia, AS = angiosarcoma,

T-ALL = T-cell acute lymphoblastic leukaemia, JMML = juvenile myelomonocytic

leukaemia, MDS = myeloproliferative disorder, EMC = extraskeletal myxoid

chondrosarcoma, Mis = missense mutation, O = other, T = translocation,

L = leukaemia/lymphoma, M = mesenchymal, E = epithelial

Tumour Tissue Mutation Translocation

Symbol Name Chr band types type type partner

FLT3 fms-related

tyrosine kinase 3

13q12 AML, ALL L Mis, O

FLT4 fms-related

tyrosine kinase 4

5q35.3 AS M Mis

LCK lymphocyte-

specific protein

tyrosine kinase

1p35-p34.3 T-ALL L T TRB@

NTRK1 neurotrophic

tyrosine kinase,

receptor, type 1

1q21-q22 papillary

thyroid

E T TPM3, TPR,

TFG

NTRK3 neurotrophic

tyrosine kinase,

receptor, type 3

15q25 congenital

fibrosarcoma,

Secretory

breast

E, M T ETV6

PTPN11 protein tyrosine

phosphatase,

non-receptor

type 11

12q24.1 JMML, AML,

MDS

L Mis

SYK spleen tyrosine

kinase

9q22 MDS L T ETV6

TEC tec protein tyrosine

kinase

4p12 EMC M T EWSR1,

TAF15,

TCF12

TTL tubulin tyrosine

ligase

2q13 ALL L T ETV6

present, COSMIC catalogues over 20 000 mutations in 587 genes from approximately

125 000 unique tissues (May 2006, Release no. 18).

For example, tyrosine kinases form a prominent group of cancer-related onco-

gene transducer genes (reviewed by Stephens et al., 2005; Di Nicolantonio and

Bardelli, 2006) and compose a substantial portion of the CGP cancer-related gene

list (Table 17.2). Interrogating kinase genes for molecular alterations is of obvious

importance, as they control the continuous flow of chemical signals that instruct

cell growth and proliferation. Harmful alterations to tyrosine kinases can lead to

uncontrolled cell growth and ultimately to tumour formation. As expected, tyrosine
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Figure 17.1 (A) COSMIC query view of the tyrosine kinase FLT3 indicates that mutations are

relatively common in haematopoietic and lymphoid tissue (21 per cent). (B) However, they are

absent in most other tissues. These mutations primarily consist of insertions at AA 598–599

(triangles) and substitutions of AA 835 (vertical bars). Additionally, repeated deletions of AA

836 were also noted (upside-down triangles). (C) A single lung tumor having a mutation in the

FLT3 gene shows mutations in 21 other genes. The mutation data were obtained from the Sanger

Institute Catalogue of Somatic Mutations in Cancer website, http://www.sanger.ac.uk/cosmic.

Bamford et al. (2004), The COSMIC (Catalogue of Somatic Mutations in Cancer) database and

website. Br J Cancer, 91, 355–358

kinase genes are well represented in COSMIC. With COSMIC’s interface, it is simple

to identify tissues cataloguing mutations of specific tyrosine kinases. For example,

a query of the fms-related tyrosine kinase 3 (FLT3) demonstrates that sequence al-

terations of this gene are limited to haematopoietic and lymphoid tissue (1492/7246

tissues, 21 per cent; Figure 17.1). The lone exception is a single substitution of base

64 in a lung carcinoma noted by Davies et al. (2005). Viewing additional data about

the individual samples that compose the results of this query can be done with the

links provided by COSMIC. For example, it is simple to note that the lone lung tissue

with a mutation in the FLT3 gene also has mutations in 21 addition genes (COSMIC

sample ID PD1362a). This rich hierarchy of data makes it possible to build complex

models of the range of common pathway disruptions seen in different types of can-

cer, which might in turn be useful for interrogating other data, such as microarray

experiments carried out on similar tumour types.
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Given the pathological and phenotypic diversity seen in many cancers, histological

subtypes are often scrutinized for differences in mutation frequency. Isolating groups

of cancers for comparison can be done with COSMIC. In the case of all lung cancers,

it may be of particular interest that the most common recorded gene mutation is

tumour protein 53 (TP53), of which 48 per cent of all cases screened had mutations

of this gene. Lung cancer diagnoses are diverse, and subtypes of lung carcinomas can

be shown to exhibit many different gene-mutation patterns. For example, squamous

cell carcinoma of the lung exhibits much lower rates of TP53 mutations (6/19, 31

per cent) than small cell carcinoma of the lung (36/57, 63 per cent). Conversely,

the CDKN2A gene, a negative regulator of the proliferation of normal cells, appears

as one of the most commonly mutated genes in lung squamous cell carcinomas

(4/12, 33 per cent), while no mutations of this gene have been detected in small

cell carcinomas of the lung (0/57, 0 per cent). A more comprehensive profile of the

common mutations seen in these cancers may provide a reasonable tumour classifier

for these histologies.

While COSMIC is currently a standard for cataloguing and querying somatic mu-

tations in cancers, its limitations must be considered for effective interpretation of

its data. First, only a subset of genes were screened for mutations. Although TP53

exhibits the overall highest mutation frequencies in all of lung cancers, most genes

in the genome (e.g., those listed as RefSeq genes; http://www.ncbi.nih.gov/RefSeq/)

were not screened. Secondly, not all genes considered were screened equally for each

cancer type or histological group. For example, the Kirsten-ras oncogene homologue

from the mammalian ras gene family, KRAS, has a well-documented mutation fre-

quency in squamous cell carcinoma of the lung (67/1140, 5 per cent) due to extensive

screening, while the apparently often mutated CDKN2A is based upon far less in-

tensive screening in that histology (4/12, 33 per cent). Thirdly, mutation screening

by the CGP has generally been limited to coding sequence; hence, there is little or

no information on regulatory mutations in COSMIC, even though these are likely

to play a significant role in cancer. Finally, not all genes are screened with a simi-

lar resolution for mutations. Large genes (e.g., TP53) are often screened for those

regions that are most commonly mutated, referred to as ‘mutation hotspots’. Desig-

nating a gene in a particular tumour as wild type (non-mutant) can be achieved only

through a full gene sequence, and an adequate reference sequence. However, most

mutation data in COSMIC are derived from disparate sources where no standards

are enforced. Therefore, COSMIC is meant as a comprehensive consolidation of the

current literature rather than a definitive source of mutation frequencies.

Various other oncology-specific databases and tools are devoted to serving gene-

mutation data in cancers (Table 17.1). Like COSMIC, The Tumor-Gene Database

serves mutation data from published studies. The Human Gene Mutation Database

is a comprehensive database focusing on serving germ-line mutations, many of

which have been associated with cancer predisposition and development (Stenson

et al., 2003). Locus- or disease-specific resources may offer expanded information

about certain types of mutations or related clinical information when compared

to global sources such as COSMIC. The IARC TP53 Mutation Database is one



OTE/SPH OTE/SPH

JWBK136-17 February 16, 2007 15:28 Char Count= 0

17.6 COPY NUMBER ALTERATIONS IN CANCER 425

example of a much more focused mutation database (Olivier et al., 2002). This

database, consisting of TP53 mutations drawn from published literature, can be

downloaded in its entirety or queried with a Web interface. Extending the pre-

vious example, in which COSMIC catalogues 19 TP53 mutations in squamous

cell carcinomas of the lung, this database contains 737 sequence variants. This

resource can effectively query known mutations to specific codons and compare

rates of occurrence between tissues and diagnoses. Other examples of gene-

specific databases include CDKN2A (https://biodesktop.uvm.edu/perl/p16) and the

Androgen Receptor Gene Mutation Database (http://www.androgendb.mcgill.ca).

There are also resources serving disease-specific mutation data, including ones for

breast cancer (http://condor.bcm.tmc.edu/ermb/bcgd/bcgd.html) and oral cancer

(http://www.tumor-gene.org/Oral/index.html). These databases are all valuable for

querying a gene’s suspected involvement in one or more types of cancer.

17.6 Copy number alterations in cancer

DNA copy number in the genome is widely regarded as an important aspect of the

aetiology of a range of human diseases (Weber, 2002). Complete and partial non-

diploid genomes resulting from cytogenetic alterations have been implicated in the

diagnosis of congenital disorders (Milunsky and Huang, 2003) as well as predictors

of clinical outcomes of many cancer types (Look et al., 1991). Aneuploidy (the

occurrence of one or more extra or missing chromosomes) is common in tumour

genomes, where one or both copies of a gene can be lost, or genes can exhibit

DNA copy number gains exceeding 100 copies. Investigating somatic changes in

DNA copy number is particularly useful in the detection of tumour suppressor

loci. Known tumour suppressor genes such as CDKN2A (Kamb et al., 1994) and

PTEN (Li et al., 1997) have been mapped to recurring homozygous deletions in

several cancers. Hemizygous losses (loss of a single copy) may also harbour tumour

suppressor genes where the one remaining copy has lost function by a mutation.

Further, several types of oncogenes have been associated with gains in DNA copy

number. For example, the common amplification of the proto-oncogene N-myc

is a associated with poor prognosis in neuroblastomas (Mosse et al., 2005) while

DNA copy number amplifications of the CYP24A1 locus have helped define it as a

candidate oncogene (Albertson et al., 2000).

17.6.1 Array comparative genomic hybridization
(aCGH) technologies

Attaining accurate genome copy number measurements is very central to the molec-

ular characterization of many cancers. Many tumour types show a very low rate

of point mutation, but instead show extensive copy number changes; for example,

Bignell et al. (2006) screened 13 testicular tumours, in 351 members of the protein
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kinase gene family and found only one somatic point mutation, whereas all tumours

studied showed multiple copy number changes. Microarray-based comparative ge-

nomic hybridization (aCGH) has increased our ability to detect important copy

number alterations (gains and losses) in the tumour genome. Where traditional

metaphase CGH can detect alterations of approximately 10 Mb or greater, the print-

ing of mapped sequences on a microarray chip has increased this by up to 100-fold,

and this will increase further as oligonucleotide chip based methods advance. Copy

number detection in the microarray format allows precise readings from individual

mapped sequences. As a result, DNA copy number measurements in tumours are

more accurate and data rich. This has necessitated the use of bioinformatics for the

processing, storage, and analysis of DNA copy number data.

At present, there are three general types of microarray-based copy number assays.

Array-based comparative genomic hybridization (aCGH)

Genome-mapped sequences representing DNA extracted from artificially grown

clones (typically either bacterial artificial chromosomes or cDNA clones) are printed

on a glass slide. Many earlier developed platforms are composed of clones spaced at

1-Mb intervals across the entire human genome (e.g., Snijders et al., 2001; Greshock

et al., 2004), while, more recently, assays with full genome coverage have been

constructed (Ishkanian et al., 2004). All are two-channel assays in which a tumour

and normal diploid DNA are labelled with separate fluorescent dyes, typically

Fluorolink Cy3 and Cy5 (GE Healthcare, Little Chalfont, UK), and subjected to

a competitive hybridization in which the result is a tumour/normal hybridization

ratio for each mapped probe.

SNP chips

The SNP chip, produced by Affymetrix (Sunnyvale, CA, USA) and Illumina (San

Diego, CA, USA), is a microarray-based, high-throughput genotyping tool that can

simultaneously measure up to 500 000 known SNPs (the use of these arrays in germ-

line genetics is covered extensively in Chapter 19). Various computational methods

have extended the utility of this single-channel assay to measuring genome copy

number (Bignell et al., 2004). Currently, an assay containing 25-mer oligonucleotide

sequences (fabricated DNA sequence) representing ∼120 000 known SNPs provides

a copy number detection resolution of approximately 25 kb. While the mean probe

spacing is vastly improved over the BAC clone aCGH, typically groups of SNPs are

analysed together, thereby reducing resolution while improving specificity.

Oligonucleotide arrays

Oligonucleotide copy number detection assays are hybrids of the SNP chip and tradi-

tional aCGH assays. All are similar to traditional aCGH in that they employ compet-
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itive hybridization, while, as in the SNP chip, fabricated oligonucleotide sequences

(typically under 100 bp) are printed on the microarray. These assays are produced

both commercially (e.g., NimbleGen Systems, Madison, WI, USA; Agilent Technolo-

gies, Palo Alto, CA, USA) and privately (Lucito et al., 2003). Resolution varies greatly,

though the probe spacing tends to be intermediate to traditional aCGH and SNP

chips.

There are several notable limitations of copy number measurement assays. First,

they are unable to detect translocation and loci subject to loss of heterozygosity cou-

pled with segmental duplication. Secondly, absolute copy number measurements can

be problematic where complex, chromosomal duplications result in high variations

in genome-wide aneuploidy (Davidson et al., 2000).

Using bioinformatics approaches for copy number data analyses has successfully

contributed to the fine-scale molecular characterization of cancers. This has in-

cluded associating known cancer subtypes with specific copy number alterations

(e.g., Hermsen et al., 2005; Jones et al., 2005) as well as discovering copy num-

ber profiles associated with clinical outcome and survival (e.g., Weiss et al., 2004;

Rubio-Moscardo et al., 2005). More recently, pharmacogenomics approaches have

shown biomarkers associated with drug response (Kokubo et al., 2005; Xia et al.,

2005). All class differentiation approaches have employed computational techniques

accounting for both the data scale and the vast number of measurements.

17.6.2 Public genome copy number data resources

The body of literature using aCGH has grown tremendously in recent years, as has

the number of publicly available data. While presently no devoted resource exists to

serve all published aCGH data, repositories such as NCBI’s Gene Expression Omnibus

(GEO) (Barrett et al., 2005) and the Stanford Microarray Database (Gollub et al.,

2003) have a growing number of aCGH data sets. Several complementary Web re-

sources are devoted to collating information about the DNA copy number alterations

associated with cancer. The Mitelman Database (Table 17.1) is a resource manually

culled from published literature that provides data about DNA copy number al-

terations from individual cases and primary associations (Mitelman et al., 2005).

Specifically, the Mitelman Database can relate chromosomal aberrations to tumour

characteristics, structural changes in genomic sequence data, and clinical informa-

tion. Mitelman maps are visible with NCBI’s MapViewer. Another public resource

is NCBI’s SKY/M-FISH and CGH Database, which provides a public platform for

investigators to submit and compare molecular cytogenetics data. Unlike the Mitel-

man database, this resource is not as carefully curated, though primary data sources

are easily accessible. Both of these resources provide Web-based query tools capable

of finding recurring aberrations across data submitted from multiple independent

studies as well as associating these copy number alterations with a particular cancer

diagnosis. While not geared to large-scale, bioinformatics-style data mining, this
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resource is invaluable for comparing raw data to existing knowledge and validating

novel findings.

Another useful source of cancer genome copy number data is the Wellcome Trust

Sanger Institute’s Cancer Genome Project (CGP) (see above). The panel of cancer

cell lines and primary tumours being analysed for somatic mutations by the CGP is

also being interrogated for genome copy number alterations by the Affymetrix SNP

chip (Bignell et al., 2004). Raw data for over 350 tissues can be downloaded directly

or queried via a Web resource capable of basic visualization and analysis.

Although the existence of recurring inherited germ-line CNPs has been well de-

scribed (Sebat et al., 2004), there is little evidence that familial cancers can be asso-

ciated with inherited copy number alterations. For example, Kiemeney et al. (2006)

demonstrated a lack of correlation between familial bladder cancers and germ-line

CNPs. Alternatively, hereditary papillary renal carcinomas showed a tendency for

similar patterns of somatic DNA copy number gains among related individuals (Prat

et al., 2006). Further, constitutional copy number changes in diseased individuals

may occur at sites of more common somatic alterations that are thought to be of

functional significance. Examples include a duplication of the TOP3B and TAFA5

genes noted in glioblastoma patients (De Stahl et al., 2005), and a loss of 11q14-23

seen in an infant with neuroblastoma (Mosse et al., 2003). Each of these studies in-

dicates that copy number alterations that commonly characterize a ‘cancer genome’

are preceded by a germ-line polymorphism in a small subset of patients. More stud-

ies will be required to determine exactly how germ-line copy number alterations

influence cancer risk and phenotype.

17.6.3 Genome copy number data analysis tools

The expanded resolution of aCGH platforms and their widespread use has neces-

sitated the development of analytical methods and accompanying software for vi-

sualization. Most packages employ all or part of a generic, commonly used analysis

protocol. First, data are subject to some type of normalization step, followed by a

processing procedure that determines where copy number break points occur in that

tissue. Finally, these data can be visualized or queried as members of a panel of can-

cers. Free and commercial software packages have been developed to accomplish each

of the steps. Most commonly, normalization and copy number break-point analysis

are accomplished by one set of tools, while visualization and analysis of multiple

samples is done by separate tools. Examples of both are noted below.

Estimating the genomic locations of copy number break points in a particular

tumour is a very important step in aCGH analysis. Several methods exist to accom-

plish this. Most simply, this can be done by applying a simple ratio threshold for

every clone (e.g., > 1.5 is a copy number gain; < 0.5 is a copy number loss). Alter-

natively, a more sophisticated algorithm that considers each probe’s flanking clones

may provide more accurate results. Several published examples that apply existing
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computational methods to this problem include the use of hidden Markov models

(Willenbrock and Fridlyand, 2005), adaptive weights smoothing (Hupe et al., 2004),

and circular binary segmentation (Olshen et al., 2004). Implementations of each of

these are available through the R programming language’s bioconductor initiative

(Gentleman et al., 2004).

Several freely available software packages are designed specifically for end-

user analysis and visualization. These specialize in single-experiment visualization,

such as SeeCGH (Chi et al., 2004); data abstraction from a single platform, as

with Caryoscope (Awad et al., 2004); and multiple experiment analysis, including

CGHPRO (Chen et al., 2005) and CGHAnalyzer (Margolin et al., 2005). The use

of one over another depends entirely on the specific analytical objectives, as each

was designed for a slightly different purpose. Most are able to load data in a generic

spreadsheet-style format, where each row represents a single genome-mapped probe

and its associated copy number estimate. As a result, they are largely compatible with

most raw data posted in public repositories or output from the previously mentioned

break-point detection packages.

Taking advantage of aCGH data in public repositories is generally simple. Like

microarray-based, gene-expression data set postings in GEO, aCGH data sets are

identified by unique accession numbers (normally from a single publication). Both

sample data and platform information are also associated with accession IDs. In the

case of aCGH data, it is particularly important to consider which platform the data

were generated with, as this delineates the resolution of the data and dictates how

accurately copy number break points can be defined. For example, the GEO data

set from Curtin et al. (2005) (data accession GSE2631; platform accession GPL2024;

described by Snijders et al., 2001) represents aCGH data from 126 melanomas, each

of which has data from 2462 uniquely mapped BAC clones. Prior to submission,

these data were quality filtered by the degree of variation between replicate clones.

Presubmission quality filtration is not implemented for every GEO data set and may

be difficult to apply after submission. Each sample can be exported from GEO in a

basic tab-delimited text format where every row has a unique probe that is annotated

in the platform information.

These data are easily loaded into the CGHAnalyzer software, a freely available,

open-source software suite that is designed specifically for analysis of multiple ex-

periment copy number data (Margolin et al., 2005). Loading is completed by for-

matting each tumour into separate files and placing all probe annotations into a

single mapping file. CGHAnalyzer can execute the fundamental analyses normally

performed on a panel of cancers, including displaying detailed copy number profiles

for multiple experiments, querying large data sets for minimal common regions of

aberration, and integrating other genomic features with copy number data (e.g.,

known/predicted genes). CGHAnalyzer can implement ratio threshold-based copy

number break-point detection. In doing so, one must first select reasonable ra-

tio thresholds for determining which probes demonstrate copy number gains and

losses in each experiment. Common thresholds for two-channel (e.g., Cy3/Cy5) CGH
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arrays, where the probes are BAC clones, are 1.25 for copy number gains and 0.75

for copy number losses. This indicates that every probe with a tumour/normal hy-

bridization ratio over 1.25 represents a copy number increase, and those under 0.75

denote copy number losses (these translate to 0.32 and –0.41 in the commonly used

log2 scale, respectively). Probe genome sequence coverage on copy number assays is

normally limited. For example, the array platform described by Snijders et al. (2001)

(GEO accession GPL2024) has direct sequence coverage of approximately 15 per cent

of the genome. It is often desirable to estimate the copy number status of genes that

do not have direct sequence coverage on the array. As such, CGHAnalyzer estimates

regions between clones by extending the sequence represented by aberrant probes

to the borders of neighbouring probes of differing copy number. More sophisti-

cated approaches are employed by most copy number break-point algorithms (e.g.,

HMMs; see above). The result of either approach is an estimated genome-wide copy

number profile. Caution should be used in interpreting output from any method.

For example, subtle differences in estimated copy number can be seen between

the CGHAnalyzer method and the circular binary segmentation (CBS) algorithm

(Olshen et al., 2004) for chromosome 7 in a single melanoma (NCBI Sample Ac-

cession ID GSM50526) from Curtin et al. (2005) (Figure 17.2). Clearly, both detect

Figure 17.2 (A) A Scatterplot of data from a lung tumor highlights a q-arm deletion, using

ration thresholds (highlighted region). (B) The same sample demonstrates a slightly different

range for this amplification by the circular binary segmentation method. Transitions in the hor-

izontal lines define the estimated copy number break points. (C) A NCBI MapViewer plot of the

Mittleman database shows a known break point in this region
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a copy number gain of the BRAF locus on 7q34, though the precise location of the

copy number transition differs. The threshold method locates a gain extending from

121,395,000 bp-qter while the CBS estimates a smaller copy number gain, span-

ning 123,220,000-bp-qter (based on NCBI build 34). The contradictory results show

that an approximately 2-Mb additional region of gain is predicted by the threshold

method. The Mitelman Map describes a known break point that occurs closer to

that seen in the CBS result, suggesting that the CBS may be more accurate in this

case. Ultimately, the true status of this region in this melanoma can be most accu-

rately determined by quantitative PCR of one or more of the 11 known genes in that

region. Generally, the detection of small (< 5 Mb) changes is subject to the most

variability between copy number break-point methods. Each mandates some trade-

off between sensitivity to detect change and the specificity of those regions identified

as aberrant.

The high-resolution analysis of somatic copy number changes in cancer has proven

to be very fruitful and is now an essential component in the molecular profile of

cancers. Publicly available data and accompanying software provide an expanding

ability to incorporate copy number data into bioinformatics research.

17.7 Loss of heterozygosity in cancer

Loss of heterozygosity (LOH) is the most common molecular genetic alteration ob-

served in human cancers. Although tumour suppressor gene loci are subject to LOH

in many cancers, it is not clear exactly how early in tumorigenesis this takes place. The

classic mechanism of tumour suppressor gene inactivation is the two-hit hypothesis,

in which one allele is mutated and the other allele is lost, resulting in LOH at multiple

loci. For example, mutational inactivation of tumour suppressor genes by LOH is

a predominant mechanism in colorectal cancer (Fearon and Vogelstein, 1990). The

mechanisms of LOH can be chromosome specific; some chromosomes display com-

plete loss, and others show loss of only a part of the chromosome (Thiagalingam et al.,

2001). Regions shown to have heterozygous losses of DNA copy number necessarily

exhibit LOH; however, the converse is not always true. Regional copy number losses

can subsequently undergo segmental duplication, resulting in either diploidy or even

allele-specific copy number gains (Herrick et al., 2005). As a result, detection of LOH

is widely used to identify genomic regions that harbour tumour suppressor genes

and to characterize different tumour types, pathological stages and progression (Mei

et al., 2000; Hoque et al., 2003).

17.7.1 Tools for analysing loss of heterozygosity data

Analysis of the data generated by the HapMap consortium has identified regions of

extended linkage disequilibrium (LD) that manifest themselves as unusually long

stretches of homozygosity in individual samples. Gibson et al. (2006) observed 1393
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tracts of homozygosity exceeding 1 Mb in length among the 209 unrelated indi-

viduals used to construct the HapMap. The longest was an uninterrupted run of

3922 homozygous SNPs spanning 17.9 Mb in a Japanese individual. They found

that these homozygous tracts were significantly more common in regions with high

LD and low recombination, and the location of these tracts was similar across all

populations. These data can help to distinguish between LOH that is potentially

de novo and causal, and that which is simply commonly segregating in the popula-

tion. LOH analysis methods that take into account HapMap patterns are currently

under development (Mark Daly, personal communication).

As a growing number of LOH studies utilize microarray technologies such as

the Affymetrix SNP chip, a host of software packages have been designed for their

analysis. dChip can employ a reference file (e.g., matched non-cancerous tissue) or

user-defined heterozygosity retention rates to calculate somatic LOH calls with a

hidden Markov model (Lin et al., 2004). This package also provides an interface

for genome-wide LOH visualization. Alternatively, RLMM develops a robustly fitted

linear model using a training sample set where genotypes are known (Rabbee and

Speed, 2006). Others have developed protocols for identifying allele-specific ampli-

fication with SNP chip data. For example, LaFramboise et al. (2005) have developed

PLASQ, a software package capable of detecting allele-specific copy number changes

by first identifying regional LOH by an expectation-maximization approach and

subsequently using these calls as input for a segmentation procedure that quantifies

total copy number. Notably, both RLMM and PLASQ are freely available through

the R-project’s bioconductor initiative (Gentleman et al., 2004).

17.8 Gene-expression data in cancer

Detailed quantifications of the cancer transcriptome by DNA microarrays have

proven invaluable for the molecular characterization of cancers. This includes suc-

cessfully associating patterns of gene expression with novel tumour subtypes, predict-

ing drug response capacity, and characterizing numerous other tumour properties

(reviewed in Chung et al., 2002). Further, alterations in transcription can identify

potential therapeutic targets in cancer. A range of public data resources, analysis tools

and novel algorithms exemplifies the contribution that bioinformatics can make to

transcriptome analysis. Many of these resources are reviewed in detail in Chapter 14;

here we will review some of the specific issues that arise during cancer transcriptome

analysis.

17.8.1 Public databases for gene-expression data in cancer

As most journals now require submission of gene-expression microarray data to a

public repository, such as GEO (Edgar et al., 2002) or ArrayExpress (Brazma et al.,
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2003) prior to publication, the availability of cancer gene-expression data sets has

improved considerably. However these databases provide only raw data and few an-

alytical tools; therefore, several resources have been established for efficient collation

and analysis cancer transcriptome data sets. These allow us to ask directed biological

questions of gene-expression data sets. These can include complex problems, such

as determining which gene families are most highly expressed in a given tissue, or

which cancer types most commonly over-express a specific gene when compared to

non-cancerous tissue. For ease of navigation, most resources employ well-described

methods of normalization and standardized systems of ontology (Stoeckert et al.,

2002). Most provide data from microarray-based gene expression studies, though

some serve serial analysis of gene expression (SAGE) data. Though not specifically

designed for cancers, resources such as the Stanford Microarray Database and the

Princeton University Microarray Database (described in Ball et al., 2005) house a

growing number of published cancer data sets and provide basic tools capable of

recapitulating and extending their published analyses.

Several key features make Oncomine a leading public Web-based resource for

querying and analysing published microarray-based gene-expression studies of can-

cer (Rhodes et al., 2004). Powerful queries allow sample sets to be grouped by their

origin of publication or diagnosis. Gene sets can be identified by ontologies, their as-

sociation with published pathways, or relevance to cancer. Data queries can easily be

subjected to a range of sophisticated analyses. For example, differentially expressed

genes can be identified between tumour groups, or co-expressed gene groups can be

queried within tumour sets. In addition, groups of over/under/co/expressed genes

can be analysed for possible enrichment with published gene groups from such re-

sources as Gene Ontology (Harris et al., 2004) and KEGG (Kanehisa et al., 2004).

The volume of data in Oncomine is very high, presently containing data from 9900

microarray experiments representing 31 cancer types (Version 3.0, June 2006).

A sample query of Oncomine query yields 81 distinct studies of differential gene

expression in breast cancers. The groups shown to have significant differentially

expressed genes include those of known clinical parameters, such as oestrogen re-

ceptor (ER) status (Gruvberger et al., 2001) and BRCA1/BRCA2 gene mutation status

(Hedenfalk et al., 2001). For example, based on data from Gruvberger et al. (2001),

a list of 114 genes (out of a total of 3369) appear upregulated in ER-positive breast

tumours (n = 28) when compared to ER-negative tumours (n = 30). These analyses

recapitulate the published analysis. The set of genes determined to be upregulated

in ER-positive tumours by Oncomine is a near comprehensive superset of those pre-

sented as being upregulated in the analyses provided by Gruvberger et al. (2001).

Cross-referencing these ER-positive upregulated genes with Oncomine’s curated

literature-derived gene sets shows that nine are cancer related genes and nine are doc-

umented therapeutic targets. Notably, the two genes, CCND1, a gene involved with

cell-cycle progression, and RET, a gene that plays a crucial role in neural crest devel-

opment, occur on both the cancer-related-gene and therapeutic target list. Individual

genes can be queried across all data sets in Oncomine. A global Oncomine query of



OTE/SPH OTE/SPH

JWBK136-17 February 16, 2007 15:28 Char Count= 0

434 CH 17 BIOINFORMATICS AND CANCER GENETICS

Table 17.3 A reformatted sample output from an Oncomine query across all data sets for

CCND1 shows it to be upregulated in several cancers, including brain cancers, lymphomas

and myelomas, represented as dark shaded cells. When compared to normal lung tissue,

CCND1appears downregulated in lung cancers (represented by light shades). Cell numbers

represent the number of primary data sources supporting the relative expression of CCND1

Normal vs. Cancer vs. Cancer vs. Tumor Molecular

normal normal cancer stage alteration misc

Endothelial 1

Kidney 1

Lung 1 2 4

Prostate 1 2 2 2

Vulvar 1

Brain 2 1

Lymphoma 1 1 4

Myeloma 1

Salivary gland 1

Breast 1 2 1

Endocrine 1

Renal 2 1

Sarcoma 2 2 1 1

Leukemia 1 2 1 1

Normal

Others

the CCND1 gene demonstrates that this is upregulated in other cancers, including

brain cancers, lymphomas and myelomas (Table 17.3). These analyses demonstrate

Oncomine’s efficiency in regenerating published data analyses and extending these

findings by putting them in the context of other studies of gene expression.

17.8.2 Gene-expression data analysis software

Tools

There is a wealth of open-source and commercially available stand-alone software

tools for general microarray analyses. While each has certain strengths, several stand

out as particularly amenable to cancer research. dChip is a freely available software

package that can model higher-level gene expression and detect outliers (Li and

Hung Wong, 2001). It is extremely flexible and can load raw data from a variety

of formats, normalize expression levels, filter genes, and perform many applicable

higher-level analyses. It offers robust methods for differentiating groups of samples by

their gene-expression profiles. Its capability to map gene features to specific locations

along chromosomes is often desirable in cancer analyses, as it allows easy comparison
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of gene-expression data with chromosomal alterations at the DNA level (e.g., geno-

typing, aCGH data). More recently, dChip has been extended to support the analysis

of SNP chips (Affymetrix) (Lin et al., 2004). ChARM (Myers et al., 2005) is another

freely available package that can analyse genes with respect to their chromosomal

location. A noteworthy feature of ChARM is its implementation of an algorithm to

detect positional biases in gene-expression levels. This feature is of particular interest

in cancers, as relating recurring segmental aneuploidy or loss of heterozygosity to

transcript levels is a basic means of identifying potential gene targets. Also of note

is the Institute for Genomic Research’s Multiple Experiment Viewer (Saeed et al.,

2003). This software contains implementations of most common algorithms used

for microarray analysis, including clustering, class discrimination, and significance

analysis. These packages offer several unique features that help answer common

oncology-related questions of the transcriptome. However, there are many other

freely available, proficient tools to analyse gene-expression data, and the selection of

one over another depends entirely on the problems being investigated.

17.9 Multiplatform gene target identification

Computational approaches to cancer genomics are commonly directed at identifying

and prioritizing a list of genes that are altered in a cancer. They may focus on the

mechanisms of alteration and their resulting phenotype. While gene mutations, LOH,

copy number alterations and gene-expression changes often serve as the primary in-

formation used to identify genes that participate in cancer genesis and progression,

the effective identification of potential candidate genes requires the integration of two

or more of these platforms as well as the incorporation of clinical data, pubic genome

data, and annotations. One example of a bioinformatics-based, high-level, multiplat-

form investigation is determining which genes have somatic combinations of copy

number losses and sequence mutations. Another example could be the identification

of chromosomal locations (e.g., bands) that have an over-representation of highly

expressed genes. A more involved example is determining where DNA copy number

amplifications of genes for transcription factors influence the transcript abundance of

their targets. Answering questions like these can be complicated. Although no single

tool can solve these complex questions, a combination of published data and public

software provides a reasonable approach to most problems. Which computational

questions are addressed is dictated by the underlying biological hypotheses.

A panel of 126 primary melanomas presented by Curtin et al. (2005) provides a

basic exercise in platform integration of publicly available bioinformatics resources.

This set is composed of four distinct pathological subgroups, including sun-induced

and non-sun-induced skin melanomas, mucosal melanomas and acral melanomas.

Curtin et al. (2005) effectively demonstrate that the clinical heterogeneity seen be-

tween these groups is reflective of each having a distinct set of genetic alterations,

including frequent occurrence of DNA copy number increases of the CDK4 and



OTE/SPH OTE/SPH

JWBK136-17 February 16, 2007 15:28 Char Count= 0

436 CH 17 BIOINFORMATICS AND CANCER GENETICS

CCND1 loci in non-sun-induced melanomas. In other words, DNA copy number

increases of both of these loci serve as biomarkers indicating melanomas not caused

by solar damage. Both genes are downstream components of the RAS-BRAF pathway

that is known to play a significant role in melanoma (Brose et al., 2002). Notably,

the CDK4 gene, important for cell-cycle G1 phase progression, is a member of the

Ser/Thr protein kinase family that has been previously associated with tumorigenesis

(Stephens et al., 2005); it is on the CGP’s cancer gene list and is represented in the

COSMIC database.

By using aCGH data from Curtin et al. (2005) and the diagnostic tumour groupings

provided as part of the supplemental information, these analyses could be further

focused on identifying specific copy number alterations that may efficiently differ-

entiate mucosal melanomas (n = 20) from all sun-induced melanomas (n = 30). As

with other microarray data sets where multiple comparisons could lead to significant

false discovery rates, true locus differentiators can be most effectively identified by

a conservative step-down max-Tadjustment (Dudoit et al., 2003). This algorithm,

as implemented in the CGHAnalyzer software (Margolin et al., 2005, Saeed et al.,

2003), identified 10 genomic regions that were successful differentiators of mucosal

and sun-induced melanomas (P < 0.01 based upon 1000 permutations). The results

included regions encompassing 1q24.1–31.1, 8p12, and 10q24.32–25.1, all of which

appear to be concordant with the broad analyses noted by Curtin et al. (2005). These

regions harbour over 100 known or predicted genes. For the purposes of further

refinement and gene target prioritizing, the genes occurring in these regions can be

cross-referenced with those in the COSMIC database to determine whether any have

been previously implicated in cancer. Three genes emerge as having copy number

alterations that may be significant biomarkers capable of differentiating mucosal

and sun-induced melanomas. First, the FGFR1 gene, a member of the fibroblast

growth factor receptor family, has more frequent copy number gains in mucosal

melanomas than sun-induced melanomas. According to data in COSMIC, this gene

has no recorded relevance to melanomas and only two noted missense substitutions

(Bignell et al., 2006). Conversely, PIK3CA, the catalytic subunit of phosphatidyli-

nositol 3-kinase, has substantial mutation rates in several cancers and shows higher

deletion rates in mucosal melanomas than in sun-induced melanomas. Most no-

tably, this included somatic missense substitution rates of approximately 30 per cent

in sporadic breast cancers (Bachman et al., 2004; Lee et al., 2005; Saal et al., 2005)

and hepatocellular carcinomas (Lee et al., 2005). Other cancers, including ovarian

cancers (Campbell et al., 2004) and gastric cancers (Lee et al., 2005), had mutation

rates in this gene approaching 10 per cent. Despite this consistent deletion of the

PI3KCA locus in mucosal melanomas, the analogous implications of its alterations

seen in breast and hepatocellular carcinomas do not match. PI3KCA is a candidate

oncogene, and alterations of this locus that would be most likely to affect a pheno-

type would be mutations and DNA amplifications. In fact, other aCGH screens of

sporadic breast cancers demonstrated significant amplification rates at this locus,

not deletions as seen in these melanomas (Pollack et al., 2002; Naylor et al., 2005).
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Figure 17.3 A CGHAnalyzer plot of the estimated deletions on chromosome 10 for 50

melanomas. This demonstrates that sun-induced melanomas appear to have lower deletion rates

than mucosal melanomas. Deletion estimates for each sample appear as columns alongside the

ideogram of chromosome 10

Therefore, the data supporting the deletion of PI3KCA as a potential biomarker for

mucosal melanomas are not concordant with what is known about this locus.

The third cross-referenced gene, PTEN, is a known tumour suppressor and may

provide the best candidate from these data. Queries of COSMIC yield a plethora of

published PTEN sequence alterations in melanoma,including amino-acid deletions

(Poetsch et al., 2001) and missense substitutions (Guldberg et al., 1997). Although

many support the existence of alterations of PTEN in the melanoma genome, their

occurrence appears variable, ranging from complete absence (Boni et al., 1998) to

sequence mutation rates of 20 per cent (Celebi et al., 2000). The mucosal melanomas

presented in Curtin et al. (2005) had estimated PTEN deletion rates of 55 per cent,

including two possible homozygous deletions, while sun-induced melanomas had

deletion rates of just 7 per cent (Figure 17.3). In the case of mucosal melanomas, loss

of PTEN function through a homozygous deletion or hemizygous loss coupled with

sequence-level alterations can promote tumour cell proliferation by regulating the

AKT/PKB signalling pathway, which promotes cell survival. Curtin et al. (2005) sup-

port this assertion that PTEN alteration rates may vary between clinical subgroups

of melanoma (ANOVA test, P < 0.0001). By focusing on the aCGH data, known

mutation rates, and biological role, PTEN appears to be most plausible cancer-related

candidate in differentiating mucosal and sun-induced melanomas. While Oncomine

lacks data capable of distinguishing melanoma subtypes, it easily demonstrates PTEN

as a tumour suppressor locus. PTEN downregulation is observed in prostate cancer
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and lymphoma, as well as in several cancer–cancer comparisons. Furthermore, study-

ing patterns of co-expression of PTEN with other genes can help delineate those with

similar tumour suppressor properties. For example, the significant downregulation

of PTEN in prostate cancer and metastasis, when compared to normal prostate tis-

sue (Dhanasekaran et al., 2001), is mirrored by the expression patterns in 20 other

genes. By integrating publicly available data from multiple platforms, we can make a

convincing case that alterations of the tumour suppressor gene PTEN are important

events associated with mucosal melanomas, but not sun-induced melanomas.

17.10 The epigenetics of cancer

Alterations in cancer cells are by nature genetic; however, one of the contributing

causes of these alterations can also be epigenetic – heritable changes other than

those in the DNA sequence. Epigenetics encompasses two major DNA or chromatin

modifications: DNA methylation and post-translational modification of histones, in-

cluding methylation, acetylation, phosphorylation and sumoylation (Feinberg et al.,

2006). Efforts to characterize the epigenetic alterations that may underlie cancer are

progressing rapidly in the nascent field of epigenomics, which studies epigenetic al-

terations on a genome-wide scale (Rakyan et al., 2004). Epigenetic changes in cancer

can include global alterations, such as hypomethylation of DNA and hypoacetyla-

tion of chromatin, as well as gene-specific hypomethylation and hypermethylation.

Global DNA hypomethylation can lead to chromosomal instability and increased

tumour frequency, as in in vitro and in vivo mouse models (Eden et al., 2003; Holm

et al., 2005), as well as gene-specific oncogene activation, such as R-ras in gastric

cancer (Nishigaki et al., 2005). In addition, the silencing of tumour suppressor genes

is often associated with promoter DNA hypermethylation, as seen in the WRN gene

in Werner syndrome (Agrelo et al., 2006).

It is beyond the scope of this chapter to present a full review of the field of epige-

nomics; however, there are some tools that have direct relevance to the study of can-

cer genetics, most specifically the MVP viewer (http://www.epigenome.org), which

presents the results of the Human Epigenome Project (HEP) (Rakyan et al., 2004).

For further coverage of epigenetics analysis methods, see Chapter 9.

17.11 Tumour modelling

Modelling tumour development and progression has become an increasingly com-

mon bioinformatics exercise. The general purpose of tumour models, which pri-

marily work with known systems, is to determine whether applying experimental

data to an empirical mathematical model can explain observed genotypic or clinical

diversity. A true genetic model of cancer initiation and progression would be very

complex, requiring almost universal knowledge of causal events and their genotypic
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and phenotypic effects. Although this is incredibly daunting, reasonable work has

focused on modelling particular aspects of a tumour. This includes modelling the

occurrence of genetic changes such as mutations (Natarajan et al., 2003) and copy

number alterations (Frigyesi et al., 2003). Rudimentary tumour progression mod-

els have been developed by applying the principles of mutation rates and mutant

phenotypes. One such model applies known mechanisms of tumorigenesis, cellular

growth and apoptosis in colon cancer to their capacity to predict the emergence of

copy number instability (Michor et al., 2004). By principles of clonal evolution and

known neuroblastoma cytogenetics, Bilke et al. (2005) infer a tumour progression

model, using aCGH data to explain part of the heterogeneous clinical behaviour of

neuroblastomas. Colon cancer and neuroblastoma provide ideal opportunities to fit

tumour models, because genetically defined neoplasia, progression mechanisms and

clinical subgroups exist for these cancers. Modelling tumours can be considerably

more challenging for cancers where causal events and genetic subtypes are not well

known. The growing number of studies describing tumours on a molecular level will

facilitate more accurate models of cancer.

17.12 Conclusions

Bioinformatics now plays a central role in the study of cancer genetics. Databases,

software tools, and statistical algorithms are now common components of any study

of the cancer genome. Researchers can efficiently navigate large bodies of existing re-

search and easily incorporate them into primary data. Public data resources facilitate

the development of novel computational methods and make effective multiplatform

studies of cancer genomics more feasible. Bioinformatics has been instrumental in

effectively using both primary and secondary data in the accurate characterization

of tumour genomes at many levels. As a result, its contributions to the field of cancer

genetics have been outstanding, and its use has become convention. Bioinformatics

research will continue to elucidate the genetic underpinnings of cancer development

and progression. Ultimately, this will increase the accuracy of modelling the essential

genetic alterations seen in cancers, leading to more effective, targeted therapies for

this common genetic disease.
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Needle in a Haystack?
Dealing with 500 000 SNP
Genome Scans

Michael R. Barnes and Paul S. Derwent

Bioinformatics, GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK

18.1 Introduction

As the recent initiation of a number of publicly funded genome-wide associa-

tion projects testifies, the era of ultra-high-density genome scans for the genetic

determinants of complex diseases appears to have arrived. A number of ma-

jor studies are now under way and many more are in planning, involving the

use of maps containing hundreds of thousands of SNPs to perform association

scans using linkage disequilibrium (LD) to detect risk-associated variants in large,

population-based sample collections (Thomas et al., 2005; http://www.wtccc.org.uk/;

http://www.ncbi.nlm.nih.gov/WGA/). These studies are stepping into virgin terri-

tory, because, no comprehensive, well-powered genome-wide association studies

have yet been published. Considering the investments involved, the stakes are high –

at the time of writing, we really do not know how successful this approach will

be. Advocates of the genome-wide association approach argue that these studies will

identify many variants that contribute to common disease, but others disagree. How-

ever, the sheer volume of the data outputs from these scans raise significant issues

of analysis and interpretation, due to the large number of hypotheses tested, the

comparatively small sample sizes that are generally employed, and the finite number

of true gene effects that are likely to be detectable. This high level of risk coupled

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)



OTE/SPH OTE/SPH

JWBK136-18 February 16, 2007 15:29 Char Count= 0

448 CH 18 GENOME SCANS

with some over-optimistic projection about the potential success of the genome

scan approach, have led some researchers to question the value and veracity of this

admittedly expensive approach to genetic analysis (Weiss and Terwilliger, 2000).

What is certain is that designing, performing and successfully analysing the results

of these studies presents some formidable challenges, including the identification of

marker maps that capture a maximal amount of information with a minimal amount

of redundancy; assaying these markers with a cost-effective, high-throughput geno-

typing technology; ascertaining a large number of well-phenotyped individuals; and,

finally, developing computational and statistical methods to cope with these high

volumes of data. Even if we manage to deal with these challenges, it is important to

understand the fundamental limitations of the genome-wide association approach

and some of the technical and analytical issues that might undermine the success

that this approach may well offer.

18.1.1 Why use genome-wide association scanning to identify
complex disease genes?

The primary objective of human complex disease genetics is to determine the molec-

ular basis of common diseases with major clinical impact, such as diabetes, asthma,

cardiovascular diseases and psychiatric diseases. These are likely to be based on a

complex array of interactions among multiple genetic and environmental factors.

Most studies to date suggest that individual genetic variants are likely to have a rel-

atively modest effect on lifetime risk of susceptibility to complex diseases. This has

been attributed to modifying factors affecting the penetrance and the relative risk of

the allele. As relatively few complex disease-susceptibility genes have been identified

to date, it is still unclear what the typical frequencies of variants underlying these

traits are likely to be. There is some evidence that common variants (minor allele

frequency (MAF) of >5 per cent) may play a major role in complex disease suscepti-

bility (Reich and Lander, 2001). If so, then association analysis may be the method of

choice for detection of these alleles, as linkage analysis is not well powered for detect-

ing common alleles that have low penetrance. This was demonstrated clearly by the

failure of multiple linkage studies to detect the peroxisome proliferator-activated re-

ceptor gamma (PPARγ ) Pro12Ala variant, a moderate risk allele for type 2 diabetes,

which was subsequently identified by association analysis (Altshuler et al., 2000).

At the most basic level, association analysis compares the frequency of alleles of a

variant between cases and controls to see whether a particular allele or haplotype is

seen more often in cases than controls, suggesting an association between a particular

allele and a disease phenotype. Most association studies have focused on candidate

genes. Despite a somewhat chequered success rate, this approach has been modestly

fruitful, producing most of the complex disease-susceptibility genes that have been

identified. The primary drawback of candidate gene studies is that they rely on the

appropriate selection of candidate genes by biological rationale. This approach has
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a few drawbacks. Firstly, the biology of some diseases, such as psychiatric diseases,

is poorly understood, so selection of candidate genes on the basis of biology can be

difficult. Secondly, the candidate approach hinders the identification of novel genes

and pathways in disease. This is perhaps one of the most important roles of genetics

in biology and may help to explain the enthusiasm that the genome-scan approach

is generating.

18.2 Genome scan analysis issues

The key analytical considerations of genome-wide scans, such as power, type 1 error,

sample size, population stratification and genotyping error, exert a vice-like grip on

the design of these studies. Addressing all of these considerations is likely to be a tall

order, but it is important to be aware of the issues so that resources are directed to

maximal effect. Studies which consistently fail to address all of these issues are likely

to meet with little else than failure. Addressing all of them in full would require either

almost unlimited funds or the many minds and pooled resources of a well-organized

research consortium. Whichever of these approaches is employed, the chances of

success can only be improved further, or perhaps even accelerated, by bioinformatics

analysis. Below, we will review the major issues of genome scan analysis, and where

appropriate we will illustrate where bioinformatics approaches can help.

18.2.1 Common disease, common variants and the HapMap

The availability of the HapMap (reviewed in detail in Chapter 3) is the main reason

for the recent acceleration in plans for genome-wide association studies. HapMap is

an incredibly rich data source; however, there are some caveats which might hinder

its success as the basis of genome-wide association studies. The HapMap approach

is not free from controversy, and some researchers are highly sceptical about the

fundamental assumptions underpinning the project (Terwilliger and Hiekkalinna,

2006). These arguments stem from a struggle between two hypotheses: the common

disease, common variant (CD/CV) hypothesis (Reich and Lander, 2001) and the

‘multiple rare variant’ hypothesis (Pritchard, 2001). If the former holds true, markers

selected by HapMap LD relationships will effectively tag disease alleles, while if

the latter holds true, the LD relationships between disease variants and population

variants may be very different, suggesting that markers in high LD with a causal

variant might not actually show association with a disease as expected, even in

infinite sample sizes (Wright and Hastie, 2001; Terwilliger and Hiekkalinna, 2006).

These arguments, though complex, are quite reasonable. If we take a pragmatic view

of both arguments, both are likely to be right some of the time, depending on study

design and other factors (Pe’er et al., 2006a). For the optimist, however, the HapMap

approach is persuasive, and it is in use the world over (Kruglyak, 2005).
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The HapMap SNP ascertainment strategy is another issue that has generated some

debate. Phases I and II HapMap SNPs were prioritized for selection primarily on the

basis of prior validation; failing this, they were also considered validated if they

matched a variant in chimpanzee sequence data (Altshuler et al., 2005). This means

that the phase I, and to a lesser extent the phase II, data sets show some significant

ascertainment bias toward ancestral (generally common) alleles (Clark et al., 2005).

The impact of this is complex and dependent on the specific analysis undertaken,

but essentially it means that power to detect rare variants (MAF of <5 per cent) may

be reduced, while power to detect common variants is increased (Pe’er et al., 2006a).

18.2.2 On the likely nature of complex disease-susceptibility
alleles

Aside from the CD/CV debate, there is also some debate about the probable molecular

basis of complex disease-susceptibility alleles. If the wealth of mutations identified

in Mendelian disorders is a guide, missense mutations may play a key role. Botstein

and Risch (2003) proposed a concerted strategy to genotype all common missense

variants. This led several companies to develop genotyping panels capturing a large

proportion of known non-synonymous SNPs. Affymetrix (Santa Clara, CA, USA)

attempted validation of ∼60 000 missense variants from the dbSNP database (Ireland

et al., 2006). Only ∼20K missense SNPs could be validated in the four HapMap

populations; these were developed into a commercial oligonucleotide array (Human

20K cSNP kit). Although this approach of genotyping marker sets enriched for

functional variants might well succeed in some instances, there is a strong argument

that the mileage of this approach may be limited to simple disease mechanisms. The

argument stems from the fact that monogenic disease alleles are highly penetrant,

often severely affecting protein function; such mutations are likely to be subject to

negative (purifying) selection in populations. By contrast, the alleles that underlie

complex traits, by their very nature of low penetrance and modest effect, are likely to

be subtle in impact. Intuitively, such polymorphisms are likely to include non-coding

regulatory variants with a modest impact on expression and perhaps conservative

amino-acid substitutions. This makes sense on a population scale, perhaps explaining

the widespread nature of complex diseases, where alleles with modest impact or late

onset are far less likely to be subject to strong negative selection, having little impact

on reproductive fitness, in acute contrast to many Mendelian disorders.

18.2.3 On sample size and thresholds of significance

If variants that influence complex traits are likely to be modest in effect, the mandate

to increase sample sizes is very strong. Sample sizes are important for minimizing both

type 1 error (false-positive association) and type 2 error (false-negative association).
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Although ultra-high-density genotyping potentially offers a level of genome-wide

coverage that could detect most common alleles, sufficient sample sizes are required

to detect disease alleles of modest effect or low frequency. Without adequate sample

sizes, type 2 error would be an important problem. The imperative for large sample

sizes is increased further in high-density association scans by the inherent increase

in number of hypotheses tested and the type 1 error that this generates. Type 1

error is probably the most intractable problem that the high-density genome-wide

association approach creates. Elements of study design are crucial in the correction

of analysis results for type 1 error by methods such as Bonferroni correction (Balding

et al., 2003), false discovery rate (Benjamini and Hochberg, 1995) or permutation

testing (Churchill and Doerge, 1994). Risch and Merikangas (1996) anticipated the

problems of multiple testing at a very early stage, proposing that a P value of 5 × 10−8

is a conservative threshold for declaring a significant association in a genome-wide

study when one million independent tests are undertaken.

The consequences of applying such stringent thresholds to association studies are

stark. Wang et al. (2005) illustrated the influence of allele frequency and odds ratio of

a disease allele on sample-size requirements in a quite sobering fashion (Figure 18.1).
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Figure 18.1 Effects of allele frequency on sample-size requirements. The numbers of cases and

controls that are required in an association study to detect disease variants with allelic odds

ratios of 1.2, 1.3, 1.5 and 2 are shown. Numbers shown are for a statistical power of 80 per cent

at a significance level of P < 10−6, assuming a multiplicative model for the effects of alleles

and perfect correlative LD between alleles of test markers and disease variants. Reprinted by

permission from Macmillan Publishers Ltd: Nature Reviews Genetics 6(2), 109–118, copyright 2005
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In Figure 18.1, the lines represent the number of cases required to detect a specific

allele with 80 per cent power and a value of P < 10−6, assuming that the causal allele

or a marker in perfect LD with the causal allele is tested. Many of the polymorphisms

that have been consistently associated with complex diseases have relatively modest

effects. For example, the PPARG (Pro12Ala) type 2 diabetes-associated allele, shows

a Caucasian population frequency of 0.12 and an odds ratio of <1.3. Based on the

projection in Figure 18.1, 4000–5000 cases would be needed to detect this association

with P < 10−6. This actually fits well with the empirical observation. Altshuler

et al. (2000) evaluated a large number of conflicting published genetic associations

between Pro12Ala and type 2 diabetes, and they confirmed the Pro12Ala association

with P = 0.002 after analysing over 3000 individuals.

Collection and genotyping of thousands of samples can of course be prohibitively

costly, but, arguably, reducing sample sizes to reduce cost is a false economy if the

experiment fails or shows only limited success. Hirschhorn and Daly (2005) eval-

uated some alternatives, none of which is very encouraging. Setting a more liberal

P value threshold of 0.05 would still require 1200 cases and 1200 controls to achieve

80 per cent power to detect a variant like the PPARG Pro12Ala allele. Lowering sam-

ple sizes below this threshold would run the risk of missing variants of moderate

frequency and risk. In pragmatic terms, smaller sample sizes (e.g., 500 cases and 500

controls) are often employed in association studies, due to the practical and finan-

cial constraints of collecting large, well-characterized study cohorts. This inevitably

forces investigators to relax thresholds of significance, or lower the stringency of

Bonferroni correction to avoid discarding ‘real associations’ due to a lack of power.

Unfortunately, at a P value threshold of 0.05, one would expect 5 per cent of all geno-

typed SNPs to be associated by chance. For a 500K SNP genome scan, this equates to

25 000 false-positive associations, within which a few genuine causal alleles are likely

to exist – the proverbial needle(s) in a haystack, or, perhaps more appropriately, a

needle in a needlestack.

There are ways to improve the odds. For example, alleles of modest effect may

be detected by a quantitative trait approach, by genotyping relatively small sample

sizes at the extremes of a distribution of phenotypic values. Arking et al. (2006)

identified a common genetic variant that influences extremes of the electrocardio-

graphic QT interval, a phenotype associated with increased risk of cardiovascular

mortality. They used a multistage study design (Figure 18.2). First they carried out

a 100K SNP chip genome-wide association study on 200 subjects at the extremes

of a range of QT intervals seen in 3966 subjects. After identification of preliminary

associations, they followed up markers in the remainder of the cohort and then in-

dependently replicated their findings in two independent samples of 2646 subjects

from Germany and 1805 US subjects. The study identified a number of replicated

loci, including the NOS1AP gene, a regulator of neuronal nitric oxide synthase. This

approach could be applied to any other phenotype with a biomarker or other disease-

relevant measure that shows a distributed range of values throughout the disease

population.
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18.2.4 On the causes of type 1 error

False-positive associations can arise by different mechanisms, which can be loosely

divided into three main categories. The largest source of type 1 error probably re-

flects the statistical threshold used for inference. A significance level of 0.05 corre-

sponds to a 5 per cent type 1 error rate, and this rate increases with multiple testing.

Another contributor to type 1 error might be a systematic bias introduced by the

study design, such as an underlying ethnic admixture. In this situation, strong false-

positive associations may occur where a marker (unrelated to the phenotype) has

different allele frequencies in different population groups. Many methods and an-

alytical procedures have been developed to correct this problem (see Cardon and

Palmer (2003) for a review). Technical artefacts are the final common source of type

1 errors, which may be caused by a range of subtle (and not so subtle) issues of

genotyping and sample preparation. These can include issues such as preferential

amplification of alleles or dropout of heterozygote calls. Some of these issues should

be detected by testing for departure from Hardy–Weinberg equilibrium, a standard

QC procedure; however, other issues, such as missing heterozygote calls during TDT

analysis, can cause problems that are difficult to detect (Mitchell et al., 2003). This

latter category is essential to look out for as new technologies are employed for

the first time; this is highly pertinent at the time of writing, as genotype-calling

algorithms for the new-generation SNP chips and other support software are con-

stantly being upgraded to keep up with rapid recent developments in genotyping

technology.

18.2.5 Investigating positive findings

It is unlikely that it will ever be possible to resolve type 1 error completely from true

positives in genetic experiments. However, there are some approaches that can help

to uncover true associations. These approaches vary in their costliness in terms of

resource requirements. The simplest, most inclusive approach is to accept initially

a liberal P value threshold, say, a nominal P < 0.05, and then carry out follow-up

studies to try to distinguish false positives from real associations. The nature of these

studies could vary, the most conventional being independent replication. This again

raises the issue of the cost of sample ascertainment, and, arguably, if the samples are

available, they should be combined in the primary scan to increase power. However,

a staged approach, in which a more modest threshold for association is used during

the evaluation of the initial scan, has gained widespread acceptance as one practi-

cal solution of this problem (Lowe et al., 2004; Hirschhorn and Daly, 2005; Wang

et al., 2006). In some instances, replication of association may not be an option,

as in the case of rare population-based phenotypes such as adverse drug reactions,

which might be observed in phase II or III clinical trials. Such events might lead to

immediate termination of drug development, and hence there would be no further
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opportunity to collect cases (Camilleri et al., 2002). Another possible solution is to

seek cross-validation of associations with other biological data sources, including

animal models (e.g., mouse knockout (KO) phenotypes similar to disease), gene-

expression data (e.g., gene showing upregulation in disease), pathway information

(e.g., gene in known disease pathway), or functional data (e.g., associated marker

in LD with functional allele). Although this approach risks elevating genes that are

actually false-positive associations, there have been some notable successes to sup-

port the use of prior knowledge to assist prioritization of associated genes (Mootha

et al., 2003). This is clearly a major area where bioinformatics analysis can make a

real impact; therefore, we will review some of these approaches in detail below in

Section 18.4.

18.2.6 Replication – the troublesome ‘gold standard’

Efforts to identify complex disease-susceptibility alleles have been quite notable in

the failure of most associations to replicate (Weiss and Terwilliger, 2000). While many

of these failures can be expected to be explained by type 1 error and lack of power to

replicate, others may not be so immediately obvious. Spector et al. (2006) reviewed

some of the reasons that may explain these failures. They identified four key areas of

concern; the first two are matters of study design, while the last two rely to a great

extent on effective bioinformatics for resolution.

The first identified area was the overestimation of the genetic effect in the first

report. Perhaps this is in the ‘human error’ category; pressures on investigators to

publish statistically significant results can lead to a bias toward the most favourable

odds ratio in an association study. This is sometimes called the ‘winner’s curse’.

Therefore, a study to confirm a reported genetic association should have a sample

size large enough to detect genetic effects that may well be smaller than the original

association. Overestimation of effect was identified as a possible source of type 2

errors, as underpowered replication studies failed to detect a true association.

The second concern was the clinical definition of the phenotype between studies.

Despite superficial similarities, subtly different phenotypes might be expected to

have very different underlying molecular mechanisms and disease alleles. Spector

et al. (2006) cited hip osteoarthritis and generalized osteoarthritis as a good example

of related but distinct phenotypes with different underlying biology.

The third area of concern was inconsistent coverage of genetic variation in the gene.

The concern here is that some replication studies genotype only the most significant

SNPs from the original study, or, worse still, different SNPs from the original study.

This approach risks a false-negative result, as it may fail to include, or indirectly tag,

the relevant causal variant. The information that the HapMap provides may help to

solve this problem, as full knowledge of haplotypes and LD across a locus should

make it possible to relate associations among different SNPs and, better still, to select

tag SNPs that capture most common variation.
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The final concern was inherent genetic differences in the populations studied. Even

if the same markers are analysed between a primary association and a replication,

a true association may not be detected second time around. This may be due to

subtle differences in LD between alleles or haplotypes, reflecting distinct population

histories following a shared founder mutation, and it suggests that replication should

be gene based, not allele based. One reasonable exception is where the same allele

is estimated to have opposite effects between studies. Although there are theoretical

arguments to suggest that different alleles of a marker may be in LD with the same

causative allele in different populations, there have been no clear examples of this.

Instead, association of different alleles of the same marker between studies should

probably be accepted as a clear example of type 1 error.

When a replication at a gene, rather than allele, level is suspected, a review

of the associated region by the HapMap or UCSC genome browsers may give clues

of potential differences in LD between or within populations. Moreover, evidence of

elevated recombination (viewable in both UCSC and HapMap viewers) may high-

light regions where haplotypes and LD differ between populations. If two markers

are separated by an area of elevated recombination, it is reasonable to expect to see

heterogeneity between populations in haplotype structure across this area. Accepting

that replication may be at a gene level does create problems; the most obvious one

is that of multiple testing. If 100 markers are typed across a large gene, five markers

would be expected to show association in both studies by chance alone; however,

these results could not reasonably be proposed as evidence of replicated association.

One solution of this problem is to apply a gene-based permutation test (Churchill

and Doerge, 1994; see Dudbridge et al. (2006) for a review of these methods). This

adjusts for multiple testing while preserving the correlation structure among markers

that are physically close.

18.2.7 Detecting gene–gene interactions (epistasis)

An important consideration in the detection of complex disease-susceptibility al-

leles is the possible role of gene–gene interactions, otherwise known as epistasis.

Analysis of how these interactions contribute to complex traits is very challenging

(Cordell, 2002). The problem is one of dimensionality; even a genome-wide as-

sociation analysis for a single-gene effect is over-burdened by hypotheses to test.

Increasing the dimensionality of these hypotheses to account even for simple in-

teractions between two genes is considered by some as a step too far, while others

have suggested that these analyses may be possible within certain limits (Marchini

et al., 2005).

It may be reasonable to use a biological hypothesis-driven approach to identify

epistatic interactions. In principle, modest individual effects detected during genome

scan analysis could be queried for interactions, either among all the other positive

markers or among specific biological candidates. For example, markers that show
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some evidence of interaction within the same pathway, or that share the same GO

term (see Section 18.4.6 below) could be tested for epistasis. Hirschhorn and Daly

(2005) pointed out that these types of approaches are likely to be important regardless

of epistasis, as scans that are conditional on known positive results are likely to be

more powerful for detecting novel effects once the variance explained by the major

loci has been controlled. The hope is that this approach will help to unmask the

signal from more minor contributing alleles.

18.2.8 Bayesian approaches to association analysis

An interesting recent response to the challenges of genome scan analysis is a move

toward Bayesian analysis (de Bakker et al., 2005; Morris, 2005; Pe’er et al., 2006b).

Bayesian and frequentist are two fundamentally different approaches to statistical

analysis (see http://en.wikipedia.org/wiki/Bayesian probability, for a lay review of

both approaches). Essentially, Bayesian analysis uses prior information to weight

probabilities. For example, an association with a SNP might be weighted (a ‘prior

weight’ – often just termed a ‘prior’) according to the potential functionality of that

SNP or other SNPs in LD with it; for example, a non-synonymous SNP might be

weighted more highly than a synonymous SNP. Priors do not need to be limited to

information about the SNP itself; they could also extend to the biological rationale

of the gene or the wider locus.

The move toward Bayesian analysis in genome-wide association analysis is an

obvious response to the problems of power and type 1 error. A key observation

is the fact that SNP tests that capture many putative causal alleles have different

statistical properties from tests capturing only a single site (de Bakker et al., 2005).

An immediate implication of this is that rather than treating all tests with the same

significance threshold in a frequentist approach, we may increase power by applying

Bayesian priors incorporating the number of sites captured by LD, together with each

site’s individual likelihood of being causal. The attraction of this approach is that it

utilizes much more of the available information.

While the standard frequentist approach to genome-wide association applies a

standard significance threshold across all markers tested based on their deviation

from the expected null hypothesis, it takes no account of other information that

may be relevant to this hypothesis. For example, a test that corresponds to a putative

functional variant in a gene that shows strong rationale for the phenotype in question

might be considered to have a stronger a priori rationale as a true positive than a

test that corresponds to a test with no known function. There are caveats in such an

assumption. Thus, all variation and LD relationships between variants have not been

characterized, so it is not possible to state conclusively that a given marker and all

other markers in LD with that marker have no function. Known is the key qualifier

here; therefore, we must accept that Bayesian methods are generally limited by how

much we know.
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Figure 18.3 Using SNP- and gene-based biological function to set prior weights in Bayesian

analysis

Clearly, this is an area where bioinformatics is critical to interpret biological data

and determine potential functionality and other measures that could be used to apply

weight to associations. In Figure 18.3, we describe a simple schema for determining

scores that could form the basis of prior weights in Bayesian analysis. To be truly

Bayesian in nature, these priors would need to be applied at the outset of statistical

analysis; however, the same system could also be used for post hoc weighting of

results obtained by frequentist analysis. The principle of the analysis is simple. To

begin, all SNPs showing LD with the genotyped marker should be identified (e.g.,

by HapMap data). The genotyped marker and the SNPs in LD with it constitute the

locus. Each marker in the locus should be evaluated for functional impact and scored

(see Chapter 11 for an overview of this process). In each case, the functional score

can be multiplied or modified according to the gene that is affected, by the rationale

of the gene in the disease. For example, in a study of Parkinson’s disease, expression

in the brain might multiply the SNP functional weight, or lack of expression in the

brain might reduce SNP functional weight. As shown in Figure 18.3, scores from all

SNPs in the locus could be added together to give a combined locus score to be used

in Bayesian analysis.

The reader may feel some intuitive resistance to some of these approaches, as they

are clearly liable to investigator bias in setting up the priors. Care must be taken

to ensure balanced incorporation of prior data; adjustments may need to be made

in areas of high LD where many SNPs may be correlated or where contradictory

information is available. However, there is some statistical support for the idea. Pe’er

et al. (2006b) described an algorithm for such analyses and showed by simulated
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association studies that incorporation of prior probabilities (in this case assuming

all SNPs to be equally likely to be causal) modestly but consistently improved power

to detect association. At the moment, there is really no ‘right way’ to do these types

of analysis. One of the most pragmatic approaches would probably involve testing

a number of different weighting strategies to see which ones work best in practice

according to analysis of a number of known genetic associations.

18.2.9 Genome scan analysis issues – conclusions

These are just a selection of the major issues that are confounding the effective

identification and replication of disease alleles. At the most fundamental level, the

greatest challenges concern the insufficient power that most studies have to de-

tect modest genetic effects, and issues of multiple testing. Application of stringent

P values or permutation testing (Dudbridge, 2006) may be a way to address mul-

tiple testing in genome scans, but it may not offer the best solution. The so-

lution is intuitively simple, but not so easy to bring about. Geneticists need to

collaborate and form larger and larger consortia to enable the collection of ad-

equate sample sizes. Until this occurs, a combination of modest genetic effects

and inadequate sample sizes will continue to confound identification of disease

loci.

18.3 Ultra-high-density genome-scanning technologies

Despite early recognition of the potential of high-density association studies to detect

disease-susceptibility alleles with weak to moderate effects (Risch and Merikangas,

1996), early attempts at genome-wide association analysis have been restricted by

limited knowledge of common variation and LD and the lack of a robust physical

mapping framework on which to place these variants. These clear technical limita-

tions have been swept away by the chain of events that followed the sequencing of the

human genome. The availability of a complete genome provided the robust, highly

accurate physical map. The sequence information also provided information on sev-

eral million common variants (SNP Consortium, 2001). The final critical piece to fall

into place was the HapMap (Altshuler et al., 2005; see Chapter 3), which characterized

LD relationships among ∼4 M SNPs in four population samples (Yorubans from

Ibadan, Nigeria (YRI); CEPH trios of European ancestry from Utah, USA (CEU);

Han Chinese from Beijing (CHB); and Japanese subjects from Tokyo (JPT)). With

the availability of these resources, ultra-high-density genome scan maps have become

a reality rather than a distant goal.

The genome-wide association approach relies on the assumption that most causal

variants are likely to be in LD with nearby markers. To detect these causal variants,

the markers selected for genome-wide association analysis must either be causal
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alleles or markers highly correlated (in LD) with the causal alleles (Kruglyak, 1999).

Encouragingly, the analysis carried out during the human HapMap project suggests

that most regions of the genome fall into segments of high LD, with limited hap-

lotype diversity, within which variants are strongly correlated with each other. Spe-

cific analysis of the intensively studied HapMap-ENCODE regions showed that over

80 per cent of common variants (MAF > 5 per cent) are either represented directly

in dbSNP or show tight correlation with other SNPs that are in dbSNP (Altshuler

et al., 2005). This analysis suggests that existing resources of SNPs could be used

to design SNP genotyping panels to capture the vast majority of common variants

and possibly a substantial proportion of rarer variants. Oligonucleotide-based SNP

genotyping arrays have emerged as the effective technical solution to address this

genotyping challenge; in this section, we review these new technologies and some of

the bioinformatics issues that they raise.

18.3.1 Commercially available fixed-marker panels for genome
scan analysis

Off-the-shelf SNP-based genotyping arrays are now being offered by companies such

as Illumina (San Diego, CA, USA) and Affymetrix (Santa Clara, CA, USA). These

technologies appear to be rapidly becoming standard genotyping tools, much as the

U95 and U133 Affymetrix GeneChips have become standard gene-expression analysis

tools. The content of these different array-based products varies quite widely. The

Affymetrix 100K and 500K arrays were selected primarily on the basis of technical

assay quality without the benefit of HapMap information, while the more recent

Illumina HumanHap300 and 550 arrays were selected by a tag SNP approach based

on HapMap LD information. Some of the key features of these different arrays are

compared in Table 18.1.

18.3.2 Affymetrix SNP panel design

A detailed description of the Affymetrix 100K design process, which is similar to

the 500K design process, is given by Matsuzaki et al. (2004); for the purposes of this

chapter, we will give a brief overview of the process used for the design of both chips.

The Mapping 100K and Mapping 500K GeneChip SNP arrays were both designed by

a restriction enzyme-based method for SNP map construction. To be included on the

array, a SNP must be within 2 kb of one of a given pair of restriction enzymes (XbaI

and HindIII in the case of the 100K chip, and StyI and NspI in the case of the 500K

chip). This is an important consideration of coverage. Although restriction enzyme

sites generally exist at regular intervals throughout the genome (depending on the

complexity of their cutting site), in some areas of reduced nucleotide complexity or

low or high G/C ratio, the frequency of sites may vary, leaving severe constraints on
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Table 18.1 Commercially available SNP genotyping microarrays

Array SNP no. Notes

Affymetrix

Mapping 100K

116 945 Evenly distributed genome-wide mapping panel. SNP

selection excluded markers showing complete LD

(r2 = 1) with other SNPs on panel. SNPs generally

selected with Caucasian MAF > 5%

Illumina

Sentrix Human-1

109 334 Exon centric content. >73 000 SNPs are within 10 kb of

coding exons

Illumina

Sentrix HumanHap300

317 502 Haplotype tag SNPs based on phase I HapMap. Tag

SNPs biased toward genic and evolutionarily

conserved regions. Over 7300 coding SNPs. Increased

density across the MHC region. SNPs generally

selected with MAF > 10%

Affymetrix

Mapping 500K

500 566 Evenly distributed, genome-wide mapping panel. 500K

SNPs selected with bias toward exons. Selection

excluded markers showing complete LD (r2 = 1)

with other SNPs on panel. SNPs generally selected

with MAF > 5%

Illumina

Sentrix HumanHap550

561 299 Combines all content of the HumanHap300 chip with

additional 240K tag SNPs derived from phase II

HapMap. Also includes >4300 SNPs in recently

reported copy number polymorphisms. SNPs

generally selected with Caucasian MAF > 10%

SNP selection, and possibly leading to gaps in the mapping panel. Map construction

for both the 100K and 500K was a three-step process (Matsuzaki et al., 2004). Firstly, a

larger number of candidate SNPs were genotyped in 54 ethnically diverse individuals;

a subset of these was selected on the basis of MAF and call rate. Secondly, SNPs were

genotyped on a total of 330 individuals, including various ethnicities. In the final

stage, 116 945 SNPs that showed an acceptable call rate (>90 per cent) and a minor

allele frequency of at least 1 per cent in at least one of the ethnic groups, were selected

at evenly spaced intervals for inclusion on 100K production chip. A total of 500 566

SNPs with an acceptable call rate and a MAF over 1 per cent in one of the ethnic

groups were selected for inclusion on the 500K production chip, with priority given

to SNPs located in exons, while SNPs in complete LD (r2 = 1) with a previously

selected SNP were not selected. The genome-wide SNP spacing of the 100K map

averages 1 SNP/24 kb, compared to the SNP spacing of the 500K map, which averages

1 SNP/5.4 kb. The genomic coverage of the 500K array is currently available to

view in the ‘Affy 500K’ track at the UCSC genome browser; this enables viewing

of the map coverage in the context of genes, genomic features and the HapMap

(Figure 18.4). These data and data for the Illumina HumanHap arrays should be

available on the UCSC production server, by the time this book is published. Coverage

of other SNP panels can be viewed in a similar way by creating custom tracks based

on the marker lists of each panel.
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18.3.3 Illumina SNP panel design

Illumina currently markets three SNP panels for genome-wide association anal-

ysis. Details of these panels are available on the Illumina website (http://www.

illumina.com); the genotyping technology is described in detail by Steemers et al.

(2006). The Human-1 Genotyping BeadChip is an exon-centric panel with over 109

334 SNPs, more than 70 per cent of which are either in or within 10 kb of a tran-

script. The remaining SNPs were used to provide an even genome-wide coverage of

5 SNPs per 200 kb. SNPs were selected with a MAF of >0.03 after genotyping the

120 HapMap samples from four ethnic groups. Hot on the heels of the release of

the phase I HapMap, the HumanHap300 Genotyping BeadChip was developed as a

genome-wide SNP genotyping panel designed entirely from HapMap-derived data.

This SNP panel contains over 317 000 haplotype tag SNPs selected by a pairwise

correlation-based algorithm (Carlson et al., 2004) applied to phase I CEU HapMap

genotype data. The HumanHap300 chip is also slightly gene centric, with a higher

density of tag SNPs within 10 kb of a gene or an evolutionarily conserved region

(an important surrogate for an unknown gene or regulatory region). The panel has

also been supplemented with 7300 non-synonymous SNPs (nsSNPs), and a panel of

SNPs across the major histocompatibility complex (MHC) region on chromosome

6. The most recently released panel from Illumina, the HumanHap550 genotyping

BeadChip, combines all the markers on the HumanHap300 panel with an additional

240 000 tag SNPs derived from the phases I and II HapMap data, and provides tag

SNP coverage in regions of lower LD in the genome. In addition to the tagSNPs,

there are also 180 mitochondrial SNPs, 11 Y-chromosome SNPs, and over 4300

SNPs in LD with genomic copy number polymorphisms (Newman et al., 2006; see

Chapter 9).

18.3.4 Evaluating genome-wide SNP genotyping panels

It is not immediately evident how these panels would compare in terms of overall

capture of information on variation on a genome-wide scale. A number of empirical

studies and theoretical simulations have provided estimates of the required density

of markers to obtain effective genome coverage (see Judson et al. (2002) for a review).

A recent empirical estimate, based on selection of haplotype-tagging SNPs from over

1.5 M SNPs, suggests that ∼300 000 tag SNPs may be required to capture common

variation in Caucasian populations (Hinds et al., 2002). However, these figures cannot

be considered accurate; the precise number of tag SNPs needed to capture common

variation will depend on the methods used to select SNPs, the degree of long-range

LD between blocks, and, perhaps most critically, the efficiency with which SNPs in

regions of low LD can be tagged (Ke et al., 2004).

In principle, evaluation of a genome-wide marker panel should seek to identify

the extent to which each marker in the panel is correlated with all common alleles
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(MAF > 5 per cent) in the genome – assuming that putative disease-causal alle-

les will be included among these alleles. Unfortunately, this ideal scenario is not

yet possible on a genome-wide scale – although the data contained in the phase

II HapMap are impressive in scale, it is still likely to represent a minority (per-

haps 40–45 per cent) of all common SNPs in the four sampled populations (the

phase II HapMap has characterized ∼4 million SNPs of an estimated 11 million

common SNPs).

However, there is a data set that approaches this ideal. The HapMap-ENCODE re-

gions are ten 500-kb regions, selected to represent a genome-wide range of evolution-

ary conservation and gene density, that have been subjected to intensive SNP finding,

to the point of near complete ascertainment of common variation (ENCODE Project

Consortium, 2004). This depth of ascertainment makes the HapMap-ENCODE re-

gions an ideal proving ground for genome-wide marker panels, offering an oppor-

tunity to evaluate directly the correlation between the marker panel and common

variants across the regions (see de Bakker et al. (2005) for a review). The near complete

ascertainment of the ENCODE regions also has an added benefit in the evaluation of

maps that have not been selected on the basis of the HapMap data, as most marker

should be represented across the ENCODE regions. For example, only ∼75 per cent

of the markers from the Affymetrix 500K array (which is not selected from HapMap)

are represented in the genome-wide HapMap, whereas 93 per cent of markers are

represented across the ENCODE regions.

The dense, but incompletely ascertained, genome-wide coverage of the phase

II HapMap, and the almost completely ascertained, but restricted, coverage of the

HapMap-ENCODE regions, give two options for evaluation of the power of genome-

wide marker panels. Both approaches were used by Pe’er et al. (2006b) to evaluate

the power of the Affymetrix 100K and 500K arrays, and the Illumina HumanHap300

array. For this evaluation, they calculated correlation between markers in each panel

with markers in the HapMap ENCODE regions, and with common markers in

the wider phase II HapMap. The results were quite encouraging, although they

highlighted the Caucasian bias of these genotyping products. First, Pe’er et al. looked

at the power of each array to capture information on common SNPs in phase II

HapMap data across the HapMap population samples (Figure 18.5). In the case of

the Affymetrix 100K, they found that the respective captures of common variation

at r2 ≥ 0.8 across each population were 15 per cent (in YRI), 31 per cent (CEU) and

28 per cent (CHB plus JPT). In the case of the 500K chip, the captures of common

variation were 44 per cent (YRI), 66 per cent (CEU) and 63 per cent (CHB plus JPT).

Finally, in the case of the HumanHap300 chip, the captures of common variation

were 31 per cent (YRI), 72 per cent (CEU) and 59 per cent (CHB plus JPT). As might

be expected, the performance of all three panels was poorer in the non-Caucasian

populations, as each panel had been selected on the basis of LD and frequency data

from Caucasians. Population-specific differences were most acute in the case of the

HumanHap300. Although the panel showed the highest performance in Caucasian

populations, reflecting the tag-based nature of the panel, it also showed the biggest
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drop in performance between populations, with a drop in performance from 72 to

31 per cent between Caucasian and Yoruban samples.

18.3.5 Case study – evaluation of genome-wide capture of
variation by a fixed-marker panel using HapMap data
in a database environment

Pe’er et al. (2006b) carried out a comparison of the performance of the Affymetrix

100K and 500K GeneChips across the common and rare variants in the phase II

HapMap and the HapMap-ENCODE regions. To enable a comparison with the Il-

lumina HumanHap300 and HumanHap550 panels, we carried out a similar analysis

of both panels within an ORACLE database environment (see Box 18.1). The anal-

ysis was based on publicly available Caucasian HapMap LD data from the HapMap

website (http://www.hapmap.org; see Chapter 3). The Hapmap LD data and the

marker lists for both Illumina panels were loaded to database tables and queried

with structured query language (SQL) to construct a report indicating all phase

II HapMap markers that showed LD of r2 ≥ 0.8 with the Illumina markers. Fur-

ther SQL queries enabled calculation of overall percentages of SNPs captured by

each marker panel. The results were combined with the analysis of the Affymetrix

100K and 500K reported by Pe’er et al. (2006b) and are presented in Figure 18.5.

Analysis of the close to completely ascertained HapMap-ENCODE regions appears

to validate the genome-wide results obtained from the incompletely ascertained

phase II HapMap. This suggests that even though the phase II HapMap may con-

tain ∼40–50 per cent of common variation (>5 per cent MAF), the unknown or

ungenotyped common variants are still likely to be captured at modestly high rates

by the three larger fixed genotyping panels. The performance of the HumanHap550

beadchip highlights the potentially impressive power of the tag-based approach for

genome scan analysis, particularly for the identification of common variants. Al-

though the tag-based HumanHap550 has only ∼10 per cent more markers than

the quasi-randomly selected 500K chip, it captures 25 per cent more information

on common variation and 42 per cent more information on rare variation (<5

per cent MAF). As might be expected, all the panels show greatly reduced perfor-

mance in the capture of rare variation. The representation of rare variants in the

HapMap is limited by the scope of the HapMap SNP ascertainment strategy (Clark

et al., 2005). However, rare variants still constitute a substantial component of the

phase II HapMap. Of the 2.5 M SNPs that are polymorphic in the Caucasian sample,

∼416K have a MAF of >0−5 per cent, while ∼107K have a MAF of >0−1 per cent

(Figure 18.6).

Arguably, the reduced performance at low frequencies may not matter too much,

as most modestly sized studies theoretically lack the power to detect associations

with low-frequency variants (Figure 18.1). This assumption has had a great deal
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of influence on the design of genome-wide association panels, effectively focusing

array content on common variants, using tag-SNPs with MAF of over 10 per cent.

This approach effectively maximizes overall capture of variation at the expense of

low-frequency variation, as exemplified by the performance of the HumanHap300

BeadChip (Figure 18.7), which captures a higher percentage of common variation
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Figure 18.7 Minor allele frequency distribution of CEU polymorphic phase II HapMap SNPs.
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genome-scan panel at r2 > 0.8
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than the 500K chip, but captures less rare variation than the 100K chip. It is clear

that some of these panels may be suboptimal for genome scan analysis if the risk

alleles of common disease alleles are rare and heterogeneous. Under that scenario,

comprehensive scans of rare causal alleles will require a completely different

approach, such as genotyping millions of low-frequency markers, or even complete

genome resequencing (Service, 2006). Alternatively, a more directed approach

might involve genotyping rare variants that have been predicted to be functional by

in silico analysis (see Chapters 11–14) or more sophisticated analysis to investigate

the enrichment of low-frequency alleles in extremes of the population distribution

of certain traits (Cohen et al., 2006). There is also some hope that haplotypes of

common variants may capture slightly rare disease alleles (MAF <5 per cent) that

are enriched in cases, as seen in the association of CARD15 with Crohn’s disease

(Vermeire et al., 2002).

18.3.6 Alternative measures of marker panel performance

The pairwise measures of LD used by Pe’er et al. (2006b) to characterize the extent of

LD between HapMap SNPs and given marker panels are widely used (Pritchard and

Przeworski, 2001). However, other multilocus measures of LD have been developed

recently, and these may further improve the power of analysis (de Bakker et al., 2005;

Nicolae et al., 2006). They are somewhat analogous to pairwise measures, such as r2,

but may provide a more comprehensive measure of LD by taking into account the

wider haplotype structure of a region. Pe’er et al. (2006b) evaluated multilocus predic-

tors of LD against the r2 measure and found that the multilocus approach captured an

additional 9-25 per cent of SNPs in the ENCODE or phase II HapMap data, improving

the performance measure for the 500K GeneChip from 66 to 78 per cent, and the Hu-

manHap300 BeadChip from 72 to 86 per cent, in the CEU sample. However, we must

strike a balance between testing all observed allele combinations and single SNPs,

bearing in mind the additional hypothesis-testing burden (de Bakker et al., 2005).

18.3.7 Conclusions on genome-wide association studies using
fixed-marker panels

The available data on the Affymetrix and Illumina genome-wide association panels

suggest that all of these panels would be largely successful in detecting genetic associ-

ations with common causal alleles, either directly or by LD. However, there are some

distinct differences in performance of these panels. Despite some successes – for

example, the identification of major susceptibility allele for macular degeneration

(Klein et al. 2005) and a gene influencing QT interval (Arking et al., 2006) – the

Affymetrix 100K GeneChip is clearly underpowered for genome-wide association
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analysis of complex traits. However, the 100K is suitable for other applications that

require lower-resolution genome coverage, such as chromosomal copy number anal-

ysis (Slater et al., 2005; see Chapter 16).

The 500K GeneChip and the HumanHap300 BeadChip both offer broadly similar,

effective genome-wide coverage, but each carries distinct advantages and disadvan-

tages. The 500K chip shows good performance across all the HapMap population

groups, outperforming the HumanHap300 chip in African and Asian populations

due to the Caucasian bias in the HumanHap300 tag selection process. This feature is

counter-balanced by the excellent performance of the tag-based HumanHap300 in

Caucasian populations. Furthermore, in analytical terms, the HumanHap300 suf-

fers less from multiple testing than the 500K. The statistical cost of performing this

additional number of hypothesis tests is very high, leading to increased statistical

significance thresholds to maintain constant type 1 error rates. One solution to this

may be to run a marker-selection algorithm to identify tag SNPs that capture the

majority of the variation in the entire 500K marker panel.

The performance of the HumanHap550 BeadChip (Figure 18.3) is clearly ahead of

all the other panels, with an 89 per cent capture of common variation in Caucasians

at an r2 threshold of over 0.8. Clearly, this reflects use of the phase II HapMap in the

design of the panel; it can be expected that the next-generation high-density arrays

from Affymetrix will also be selected on the basis of empirical data from the HapMap.

In terms of cost, the economies of scale that these high-throughput genotyping

technologies afford are bringing the cost of genotyping down dramatically. The

500K array breaks the 1 �c /genotype barrier (the 500K array retails at ∼$1200, which

translates to 0.24 �c /genotype). The success of these arrays in genome-wide association

studies is likely to depend, above all, on the prevailing nature of disease-susceptibility

alleles. If the ‘common disease, common variant’ hypothesis (Risch and Merikangas,

1996) prevails, with disease alleles often showing over 5 per cent frequency, the level

of performance seen with the larger arrays is likely to be adequate in most cases.

If causal alleles are rarer, as others argue in the ‘multiple rare variant’ hypothesis

(Pritchard, 2001), and we restrict our analysis to low-frequency SNPs (>0–5 per

cent MAF), then the results from these panels may be at least erratic at the best of

times.

18.4 Bioinformatics for genome scan analysis

Although the new ultra-high-density genotyping technologies, coupled with the

HapMap, are enabling a comprehensive evaluation of association between common

genetic variants and disease, these technologies are also creating huge new analytical

challenges. Although we have reviewed many of these analytical challenges in Section

18.2, the best way to get a feel for the issues is to look at real data and examine the

steps required to analyse them. In the following section, we will do exactly this; in a
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case study, we will progress from the preliminary results of a ∼200K marker genome-

wide association study to a final list of prioritized genes with supporting rationale in

the disease under study. There are many steps along the way to this end point, many

of which can be enhanced by bioinformatics analysis.

18.4.1 Case study – analysis of a 200K genome scan for
Parkinson’s disease

The example we will use for our case study is a somewhat pioneering one in terms of

scale, carried out by Maraganore et al. (2005). This study involved a genome-wide

association scan for susceptibility to Parkinson’s disease (PD) (see Farrer (2006) for

a review of the genetics and biology of PD), typing 248 535 SNPs in 443 sibling pairs

(n = 886) discordant for PD. After removing SNPs that were monomorphic or out

of Hardy–Weinberg equilibrium (based on a threshold of P = 0.001), the authors

generated results on 198 345 SNPs. They followed up this initial scan by typing 1892

of the most strongly associated SNPs in 332 matched case-control unrelated pairs.

Notably, all 198 345 single-SNP association results were made publicly available

as supplementary information with the online publication of the study (including

minor-allele frequencies, odds ratios (ORs), SNP to gene mapping and P values). The

details of this study illuminate the probable direction of genome-wide association

analysis on a number of levels – not all of which are encouraging.

Following the publication of the genome scan, four independent research teams

sought to replicate the associations in the 11 most highly ranked SNPs. The results

were mixed at best. Two groups (Clarimon et al., 2006; Li et al., 2006) reported

statistically significant association between PD and one or more of these SNPs, but

with different alleles, which does not represent a true replication. The other two

groups found no statistically significant association between PD and any of the SNPs

investigated (Farrer et al., 2006; Goris et al., 2006). In a meta-analysis of the data

from three of the groups (Maraganore et al., 2006), none of the 11 SNPs showed

statistically significant association with PD. Taken together, these four studies do not

appear to provide substantial evidence of replication for any of the SNPs originally

identified as potential PD loci. The general conclusion drawn was that these 11 most

convincing PD loci may all be false-positive associations (Myers, 2006).

The failure to replicate these associations is obviously a disappointment, so what

are the weaknesses of this study and how might they be overcome? The first question

is the completeness of the genomic coverage of the scan. This looks encouraging –

Maraganore et al. evaluated the genomic coverage of their 248K panel, and its statisti-

cal power to detect unassayed, disease-associated variants. They did this by using the

SNPs in their genome scan panel to genotype a set of 152 genes that had undergone

intensive SNP discovery to a level at which all variants with over 10 per cent MAF

had been identified (Hinds et al., 2005). Using this set of known common variants, in

a very similar manner to the way the HapMap-ENCODE regions have been applied
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to the evaluation of fixed marker panels (see Section 18.3.4), they were able to deter-

mine that the mean r2 for unassayed SNPs was 0.57. This in itself seems reasonable

coverage under the assumption that any undetected PD-susceptibility alleles have a

MAF over 10 per cent and are in strong LD with alleles of over 10 per cent MAF;

below this, the level of coverage is likely to decline relatively steeply.

The next question concerns power and population-attributable disease risk.

Pathogenic PD mutations have so far been confirmed in seven genes, with famil-

ial mutations often turning up in sporadic population-based cases of PD (see OMIM

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=168600). A number of fur-

ther susceptibility loci have also been identified by linkage and association approaches

(Farrer, 2006). The ORs for disease risk of PD genes identified to date are quite vari-

able; in the case of parkin, a recessively inherited PD-susceptibility gene, West et al.

(2002) reported an association with a core promoter SNP (–258G) in 296 Caucasian

PD patients and 184 controls, with an OR of 1.52. Tan et al. (2005) reported a repli-

cated association with the –258G promoter variant in 386 Chinese patients and 367

controls, with an OR of 1.83. Other genes may exert a stronger effect; for exam-

ple, Skipper et al. (2005) found a haplotype, for the dominantly inherited LRRK2

susceptibility gene, which indicated a PD risk with an OR as high as 5.5. This infor-

mation can be used to estimate the power of this study under several OR scenarios via

the Genetic Power Calculator website (http://pngu.mgh.harvard.edu/∼purcell/gpc/;

Purcell et al., 2003). The site includes a suite of power calculation tools, dealing with

TDT and quantitative traits among others, but in this case, we can use the discrete trait

case-control power calculator. If we follow the instructions on the website to enter

study parameters and ORs, a picture rapidly emerges that bears a great deal of similar-

ity to Figure 18.1 (Wang et al., 2005). Assuming an OR of ∼1.5, we would expect to see

80 per cent power with 598 cases, whereas an OR of 2 would give us similar power with

200 cases.

Myers (2006) commented that the lack of replication might also be due to the re-

duced penetrance seen in PD, a disease with a complex aetiology caused by interaction

of genetic and environmental factors. He suggested that the randomly ascertained

sporadic PD cases used in the replication study might have included a substantial

proportion of cases with little or no genetic basis for disease.

If we account for all these factors and take sample size and the relatively thorough

genome coverage of this study into consideration, it is reasonable to expect that true

PD-risk alleles, with relatively high ORs, might be found among the associations

generated by Maraganore and co-workers. The key question is how to identify them

and effectively follow them up.

18.4.2 Dealing with genome-scale data sets

Before we delve into the complex possibilities for follow-up of this data, it is

worth addressing some of the practicalities of analysis of 100K+ genome scans.
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The Maraganore study was carried out on a genome-wide SNP panel just shy of

250K markers. In a foretaste of the sheer volumes of data that need to be pro-

cessed in scans of this nature, it is worth noting that the scan generated 172 420 019

genotype calls, while the follow-up study generated 1 176 772 genotypes. Aside

from the general processing, QC and analysis of these genotypes, this creates new

data-handling and storage challenges at every stage. One of the most mundane prob-

lems relates to processing and viewing the association data by standard PC software.

Microsoft Excel, the non-statistician’s standard for handling and viewing data sets

of this nature, has a row limit of 65 534 (although there are rumours that this limit

will be increased to 1.1 M in Microsoft Office 12). This creates an immediate prob-

lem for data handling; in the case of the 198 345 single SNP associations, the file

needs to be divided into four sections to allow viewing in Excel! Files of this nature

can be processed by some MS-DOS text editors. FTE (http://fte.sourceforge.net/),

a freeware text editor aimed at the development community, is also very useful for

(relatively) painless editing of files containing millions of rows. A tool like FTE can

divide large data files and load them in appropriately sized sections. Another, perhaps

preferable alternative is to use commercial software intended for large-scale data anal-

ysis. Several software packages developed for gene-expression analysis generate data

files of similar scale to genome scan analysis. Spotfire (http://www.spotfire.com/),

an example of such a tool, can visualize and analyse millions of rows of data. This

tool was used for some of the preliminary analyses and data visualization in this

case study. Although Spotfire is useful for visualization and analysis of large data

sets, it currently lacks the basic annotation and spreadsheet capabilities of Microsoft

Excel. However, the two applications can be used in a complementary manner;

for example, Spotfire can be used to identify and copy key subsets of data, such

as all SNPs of P < 0.05. Once the data are pasted into Excel, they can be sorted

and annotated. Incidentally, the functionality of Excel itself can be improved with

commercially available macros that can also help greatly in these types of analy-

ses. Spreadsheet Assistant (http://www.add-ins.com/assistnt.htm), a recommended

example of such a tool, allows a wide range of formulas and functions, dupli-

cate detection (e.g., finding duplicate SNPs or genes), and conditional selection

queries.

The commercial software approach is the easiest avenue to genome-scale data

analysis. However, the limitations of these tools are very substantial. Frankly, the

approaches described in the previous 2-3 paragraphs should be avoided if possible

(see Chapter 2 for reasons why). If you are interested in an approach with fewer

limitations, or if Microsoft products and software are anathema to you, the only

alternative is to deal with these data files with Perl or similar programming languages

and a database environment (see Box 18.1). This approach is unquestionably the

most powerful, integrative way of dealing with data of this nature, and it should be

pursued whenever possible.
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Box 18.1 Dealing with genome-scale data in a database environment

While a lot can be achieved in the analysis of genome-scale data by simply using data

in flat files, the use of programming languages and a database environment adds power

and flexibility to data manipulation and analysis tasks. Perl is a de facto programming

standard in bioinformatics, being well suited to tasks such as genome scan analysis.

Several fundamental bioinformatics functions are also publicly available written in Perl

(see http://bioperl.org/wiki/How Perl saved human genome). Where statistical analysis is

required, R is another commonly used language. More computationally intensive tasks may

be best written or rewritten in other languages, C being one of the most common. Perl is an

interpreted language, while C is compiled, and hence faster.

Perl, R and C are procedural languages; they work as a series of steps, some of which may be

conditional, or repeated in a loop. Another, newer style of programming, object orientation,

in which data-containing objects interact to achieve the required functionality, is also widely

used. Perl can be written in an object-oriented way, and many Perl modules are written thus.

C++ and Java are both object-oriented developments of C. Writing procedural programs

is probably the best way to start programming; having gained experience, one moves on to

object orientation.

Two relational database management systems (RDBMS) commonly used for bioinfor-

matics are the open-source, MySQL (http://www.mysql.com) and the commercial ORACLE

(http://www.oracle.com). MySQL is widely used, but tends to be limited to relatively small

databases, while Oracle is used for very large databases. MySQL is used for the various En-

sEMBL databases, but these databases are designed to be species, genome build and even data

type specific, limiting their size. The UCSC Genome Browser also uses MySQL in a similar

way.

At its simplest, a database is a grouping of tables, each of which contains rows and columns,

with data of different types – broadly equivalent to flat files – and which are related to

each other by key relationships. Good database design emphasizes the avoidance of data

redundancy through normalization. Data in an RDBMS is accessed with Structured Query

Language (SQL), which allows the user to create tables and indexes, insert data into tables,

update/delete data in tables, and select data from one or more tables.

Perl programs can also access an RDBMS with SQL. This is achieved by using the Database

Interface (DBI) Perl module, which allows a user to access a database of any type in a generic

way through an application programming interface (API). When dealing with genome scale

data sets, care should be taken when implementing SQL to ensure that indexes are utilized

wherever possible, ideally by simple integer keys. This will have a major performance benefit.

The minimum data possible should be selected, as moving large volumes of data across

networks may well be slow. And consideration should be given to where the database you

want to access is.

Finally, it is usually best to keep things – databases or programs – relatively simple, as this

will make it much easier when you, or possibly someone else, need to maintain things in the

future. Complex functionality can be built up by repeatedly using reusable modules. Start

with something small and simple; you can always add complexity by extending it.
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Figure 18.8 Genome scan for Parkinson’s disease (PD) susceptibility: results across chromo-

somes 1–22. Results (log P values) of the first round (tier 1) genome-wide association analysis

carried out by Maraganore et al. (2005) are plotted by chromosome. The number of SNPs meeting

various P value thresholds is indicated in parentheses on the right hand side of the figure

18.4.3 Devising a robust follow-up strategy

Examination of the first-round association data set for the PD genome scan by

Maraganore et al. (2005) quickly highlights the all-pervasive problem of the genome-

wide association approach. Figure 18.8 shows the range of P values seen on a

chromosome-by-chromosome basis. Of the 198 345 single-SNP associations, 9965

(5 per cent) show a nominally significant value (p < 0.05). Figure 18.8 shows the

range of P values across chromosomes 1–22. The overwhelming majority of these

associations are likely to be false. This highlights the need for a rigorous follow-up

strategy. As discussed in Section 18.2, there are several possible approaches. Con-

sidering the limited power of this study, the correlation between the markers, and

the benefit of hindsight in terms of the failure to replicate the most significantly

associated loci (Myers, 2006), it seems reasonable to assert that a stringent P value

threshold set by Bonferroni correction is inappropriate. Figure 18.8 gives an idea

of the impact of altering the P value threshold for follow-up in the first round, at

P < 0.01 (the threshold used by Maraganore et al.); 1862 associations are observed.

The original strategy employed by Maraganore et al. (2005) applied two different

rationales to select SNPs for follow-up studies. The first group, which they called

tier 2a, followed a purely statistical rationale. SNPs were selected on the basis of PD

association with P < 0.01 (1862 SNPs). The second group, tier 2b, were all selected

from nominally significant SNPs (P < 0.05), but on the basis of a priori biological
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or genetic hypotheses of PD susceptibility, and also by proximity to known genes.

In this case, eight nominally significant SNPs were selected that were positioned

within 10 kb of known PD-susceptibility genes, and 145 nominally significant SNPs

were selected on the basis of their localization within PD loci previously identified by

linkage studies, including PARK3 [OMIM 602404], PARK8 [OMIM 607060], PARK9

[OMIM 606693], PARK10 [OMIM 606852] and PARK11 [OMIM 607688]. A total

of 589 SNPs (with P < 0.05) were selected on the basis of being within exons or

within 10 kb of a known transcript. Both tier 2a and 2b, which comprised a total

of 3148 SNPs, were tested for association with PD in the combined samples by the

sib-TDT method (Schaid and Rowland, 1998). Robust data were obtained for 3034

SNPs, 174 of which showed nominal significance.

It is interesting to examine the P values obtained in the primary association

screen and the subsequent replication screen. Nominally significant P values were

seen in 9965/198345 (5 per cent) SNPs in the first-round association study, and

163/3034 (5.7 per cent) SNPs in the replication study. The numbers of nominally

significant P values are reduced further to 77/3034 (0.8 per cent) if we require that

SNPs show association with the same allele (direction of effect) between first round

and replication. The 3034 SNPs analysed in the replication study are plotted in

Figure 18.9 on a marker-by-marker basis, in the order of the significance of the

SNP Ordinal (ordered by primary scan p value)
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Figure 18.9 Comparison of P values from the primary association scan (tier 1) for PD suscep-

tibility and the subsequent replication scan (tier 2) (Maraganore et al. 2005). SNP log P values

are plotted on a marker-by-marker basis in order of the significance of the primary association.

SNPs that showed association with different alleles in tiers 1 and 2a were removed. SNPs reported

as replicated are highlighted with a circle and, where possible, genes mapping to these SNPs are

indicated
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primary association. SNPs that showed association with different alleles are removed

from the second-round association data set. The most striking finding is that mark-

ers which showed an initially low P value in the primary screen appear to have no

greater rate of replication than those with more modest P values in the primary

screen. Taking the 200 lowest P values (P < 0.001) from tier 1, only three markers

replicate in tier 2 and nominally so with no P value lower than 0.027. It is tempting

to speculate that this may reflect the underlying nature of very low P values, possibly

suggesting that they may have a tendency to contain artefacts of genotyping (confir-

mation genotyping by another technology might help to resolve this) or population

stratification (see Cardon and Palmer, 2003). In the most pessimistic view, it is also

possible that this study is simply insufficiently powered to detect alleles that truly

influence the complex genetics of PD, and the results simply reflect a product of type

1 error.

18.4.4 Expanding follow-up into the entire ‘SNP space’
and ‘gene space’

However the results presented in Figure 18.9 are viewed, they highlight the possible

drawbacks of approaches that focus on following up only the lowest P values in

genetic association data. Clearly, genome scans that are under-powered will fail to

detect true associations of modest effect. This suggests that the true associations (of

modest effect) may be nestling (like needles) somewhere at the bottom of the haystack

among the nominal P values (P = 0.01−0.05). This raises a problem; considering

the number of nominally significant associations that would be seen in a high density

genome scan, such as 25 000 in a 500K scan, a balance needs to be struck between all-

inclusive follow-up strategies and evidence-based follow-up strategies. Maraganore

et al. (2005) tried to achieve this balance by including all nominally significant

markers in known PD genes and loci as well as all nominally significant SNPs that

mapped to an exon or within 10 kb of an exon. This is quite an inclusive approach,

but in the case of a larger scan, it might involve a considerable genotyping burden

in follow-up studies. An alternative approach that could be applied here would

be to use a range of filters based on biological rationale and other supporting data.

Figure 18.10 illustrates this concept. By intersecting statistical significance with other

biological data, it may be possible to ‘filter’ the mass of false-positive associations to

enrich for associations which are more likely to be true. These might meet biological

criteria relating to the phenotype. For example, in the case of PD, we might expect

susceptibility genes to be expressed in whole-brain samples, encompassing the main

brain regions affected by PD (Farrer, 2006). Other criteria could also be applied

simultaneously or consecutively. For example, genes could be evaluated on the basis

of biological rationale, such as activity in pathways with a known role in PD or on

the basis of positional rationale in known PD-linkage regions. Sometimes it can also

help to review all PD genes identified to date in order to get some idea of what a
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Figure 18.10 Four-box model approach to genome scan prioritization. A threshold is set on both

dimensions to allow prioritization based on genetic and biological rationale (e.g., expression,

pathways). A similar approach could be employed with n dimensions. SNPs denoted in black are

candidates for further investigation (Figure courtesy of Dr Nick Galwey, personal communication)

PD-susceptibility gene looks like, in terms of expression profile, biological function

and pathway involvement.

18.4.5 Using LD data to maximize inclusivity of analysis

Before applying filters to prioritize loci for follow-up analysis, it may be worth-

while to ensure that all genes in LD with associated markers are taken into account.

The genome scan approach relies heavily on LD between markers and disease-

susceptibility alleles; therefore, in biological terms, concentrating only on the genes

that map to the marker panel may miss important data. The availability of the phase

II HapMap LD reference data set makes it possible to make the link between as-

sociated markers and other genes in LD with these markers. In the example of the

PD genome scan generated by Maraganore et al. (2005), there are nominally 9965

significantly associated markers. Approximately half of the associated SNPs map to

intergenic regions and do not map to any known genes. It is possible to identify all

HapMap SNPs that are in LD with the PD-associated SNPs by querying the HapMap

data and thus to determine which genes might be implicated. For smaller numbers

of SNPs, this can be achieved with tools such as HapMart. However, for thousands

of SNPs, a database environment is required.

In this case, we queried an ORACLE database table (see Box 18.1) containing

CEU LD data for all HapMap SNPs that showed LD (r2 > 0.8) with the 9965 nom-

inally significant SNPs. This identified an additional 54 252 SNPs in LD with the

PD-associated SNPs. This expands our overall ‘SNP space’ of direct associations and

indirect associations to 64 217 SNPs – all potential candidates for PD susceptibility.
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Table 18.2 Useful bioinformatics tools and resources for analysis of genome scans

Data manipulation

ID converter (GEPAS) http://idconverter.bioinfo.cipf.es/

SNPPER http://snpper.chip.org/

Spreadsheet Assistant http://www.add-ins.com/assistnt.htm

Spotfire http://www.spotfire.com

SNP/LD analysis

HapMap/HapMart http://www.hapmap.org/

Expression analysis

Symatlas http://symatlas.gnf.org/SymAtlas/

GEO http://www.ncbi.nlm.nih.gov/geo/

Integrated genome-scale data annotation tools

DAVID http://david.abcc.ncifcrf.gov/

GEPAS http://gepas.bioinfo.cipf.es/cgi-bin/anno

GFINDer http://www.medinfopoli.polimi.it/GFINDer/

L2L http://depts.washington.edu/l2l/

Specialist Gene Ontology (GO) analysis

GO tools http://www.geneontology.org/GO.tools.shtml

Gene Ontology Tree Machine http://bioinfo.vanderbilt.edu/gotm/

FatiGO http://fatigo.bioinfo.cipf.es/

Pathway analysis

BIOCARTA http://www.biocarta.com/genes/index.asp

KEGG http://www.genome.ad.jp/kegg/

Cytoscape http://www.cytoscape.org/

Disease biology and genetics

OMIM www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Genetic Association db http://geneticassociationdb.nih.gov/

Uniprot http://www.uniprot.org

Whole-genome association resources

NCBI Whole Genome Association

resource

http://www.ncbi.nlm.nih.gov/WGA/

Wellcome Trust Case Control

Consortium (WTCCC)

http://www.wtccc.org.uk/

As the general objective is to try to reduce the scale of the analysis, it is useful to

move from the large ‘SNP space’ that we have defined to the total ‘gene space’ by

filtering this information down to a non-redundant list of the genes covered by

the SNPs. Mapping of SNPs to genes can be achieved by tools such as SNPPER

(Table 18.2). To add some statistical ranking to these genes, we could apply per-

mutation testing or false discovery rate testing; however, in this case, we will apply

the simplest measure, by capturing the lowest P value recorded for each gene. The

original set of 9965 associated SNPs mapped to 2878 genes. By including the genes

that are covered by the extra SNPs in LD, an additional 1532 genes are added, ex-

panding our total ‘gene space’ to 4410 genes with some evidence of association with

PD susceptibility.
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Since LD leads to a substantial increase in associated loci, this is obviously a con-

cern, especially when the total numbers of loci are already at an untenably high level.

But taking LD into account may help to clarify potentially important genetic associ-

ations from a mass of unpromising leads. For example, the SNP, RS16837037, which

was identified in the first-round screen (P = 0.03), maps to the hypothetical gene

FLJ20203. This SNP was not progressed to the second-round screen by Maraganore

et al. (2005), because it did not show P < 0.01 and it did not map to a known

gene. However, RS16837037 is in complete LD (r2 = 1) with RS4971106, a marker

located over 108 kb away, in the intron of synaptogamin XI (SYT11). Intriguingly,

Huynh et al. (2003) showed that SYT11, an important synaptic vesicle-forming and

docking protein, is bound and modified by the parkin protein, which is mutated in

autosomal recessive juvenile PD. SYT11 is expressed in the core of the Lewy bodies in

sporadic PD brain sections. The loss of parkin activity could affect multiple proteins

controlling docking and release of synaptic vesicle pools, explaining the deficits in

dopaminergic function seen in patients with parkin mutations.

This is just an example of the types of extra information that can be gleaned from

LD data. Although the SNP in SYT11 is a tempting PD candidate, its P value is also

well within the bounds of type 1 error, so it should not be over-interpreted. However,

follow-up of both RS16837037 and RS4971106 in a second-round screen would

probably be warranted. Unfortunately, phase II HapMap data were not available to

Maraganore et al. (2005) when they formulated their follow-up study.

18.4.6 Filtering and annotating the output of genome scans

The large number of genes under consideration emphasizes the potential risks of

an unfiltered approach to genome scan analysis. By our analysis, almost 15 per cent

of human genes show some evidence of association with PD. Clearly, this is not a

realistic reflection of PD pathology; instead, it primarily reflects the type 1 error of

this experiment. The application of filters based on biological and other rationales

to the output of genome scans can help to focus follow-up, and to annotate the

output of a genome scan. Such annotation in itself can be useful for the formation of

biological hypotheses, and also for identifying genes in shared pathways that could

be subjected to further analysis to identify putative epistatic interactions.

Using expression data

Gene expression is one of the simplest filters that can be applied to the output of

a genome scan. In the case of PD, risk-enhancing genes might be expected to be

expressed in the brain in view of the neurodegenerative pathology of this disease

(Farrer, 2006). Other diseases may not show such clear localization to one tissue,

although primary tissue involvement is the norm in most of the commonest complex
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diseases and medically important traits, such as type 2 diabetes (pancreas, liver and

muscle), asthma (lung), obesity (adipose and endocrine tissue), and adverse drug

reactions (liver, gut and skin). There are many caveats in the application of such

filters; for example, a gene might be expressed in the target tissue during a defined

developmental stage, or under specific cellular conditions (e.g., cell stress). Therefore,

expression data should probably not be applied as an absolute filter, but if we are faced

with thousands of associations and resource constraints, there may be no choice but

prioritization by this method.

In the case of the PD association scan, brain is an obvious tissue on which to

filter by the pathology of PD (Farrer, 2006), so it may be valuable to identify all

brain-expressed genes among the 4410 PD-associated genes. A good Web-based tool

for this purpose is GNF SymAtlas (http://symatlas.gnf.org/SymAtlas/), which can

be used to identify all genes that are expressed in a given tissue as follows. First

load the list of gene symbols or accessions (obtained from the SNP annotation) to

SymAtlas; the gene list should appear in the left-hand panel of the tool. Select the

entire list of genes by the check box. Next follow the ‘search expression’ link and

select a human expression data set from the drop-down box (e.g., Human GeneAtlas

GNF1H, gcRMA). Then select ‘intersect with previous’ from the combined results

drop-down menu, select ‘whole brain’ at the bottom of the list of tissues, and select a

‘fold above median’ value. A threshold of ‘>2-fold’ above the median would generally

find most genes that are significantly expressed in a tissue, although exact definition of

what constitutes expression in a tissue is a matter of some debate. This debate largely

concerns issues of normalization between genes to adjust for the innate variability

in experimental conditions and probe efficiency, to name a few issues (see Royce

et al. (2005) or Quackenbush (2001) for reviews). After you press the ‘search’ button,

the uploaded gene list will be modified to show only those genes expressed in whole

brain. The expression data and gene IDs for this list of genes can be downloaded by

selecting the ‘download data’ pull-down menu. After you run this query on the 4410

genes, 633 genes show evidence of expression in whole-brain tissue at twofold over

the median. This is quite a stringent threshold for expression, and these 632 genes

are all likely to represent genes that are substantially expressed in the brain. Setting a

lower threshold includes a larger number of genes. For example, >1.5-fold over the

median includes 850 genes; >1-fold includes 1965 genes. These will include some

genes that are genuinely expressed at low levels in the brain, which might still be

significant in its biology, but at great risk of including false-positive expression calls.

If expression in multiple tissues needs to be evaluated, the entire unfiltered expres-

sion data set for your list of genes can be downloaded from SymAtlas by selecting the

same pull-down menu, before applying the tissue-expression filter. Manual analysis

of these data in a spreadsheet has some advantages, especially when large data sets are

analysed; they can be slow to process over the Web. An identical median expression

level analysis to that offered by the Web interface can be carried out by calculat-

ing a median value for all tissues on a gene-by-gene basis (by the Microsoft Excel

MEDIAN function). Thresholds can then be applied to genes that are expressed
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at 2 × the median expression for a specific tissue. This also allows combining of data;

so, for example, it is possible to identify genes that are expressed at 2 × the median

in any one of a range of tissues. This allows a great deal of flexibility in the stringency

of filtering that is applied to the data.

Tools such as SymAtlas can also be used to run more sophisticated queries of

genome-scale data sets, which can help to identify genes sharing characteristics. For

example, it is possible to identify genes that share a similar expression profile across

all tissues by the ‘find correlated’ function in the SymAtlas expression profile view

(Figure 18.11). Using this function, we can identify, on a genome-wide scale, genes

that show similar expression characteristics to genes with known involvement in PD.

For example, ubiquitin carboxyl-terminal esterase L1 (UCHL1) recycles polymeric

ubiquitin to its monomeric form and is highly specific to neurons (OMIM: 191342).

Variants of this gene are linked to increased susceptibility to PD, although they are

not believed to be sufficient in themselves to cause PD (Liu et al., 2002). UCHL1

may be a particularly interesting gene to evaluate in terms of expression, as the

ubiquitination pathway seems to be key in PD (Liu et al., 2002); two other gene

products, α-synuclein (SNCA) and parkin (PARK2), which are linked to familial

PD, are sensitive to or involved in this pathway (Liu et al., 2002). Therefore, other

genes showing nominal association with PD, and expressed in the same location at

UCHL1, could be strong candidates for PD.

After running the ‘find correlated’ function for UCHL1 in SymAtlas on a genome-

wide scale, 166 genes show a 0.8 correlation with UCHL1 expression. Cross-

comparison of this list of genes with the 4410 genes with nominal association

to PD identifies 57 genes that are correlated with UCHL1. This includes SYT11,

the gene identified by LD in Section 18.4.5. Markers in these genes are plotted

against the general background of associated SNPs from the first-round screen in

Figure 18.12. Notably, 13 of these genes show P < 0.01 in the first-round screen,

and again it is tempting to speculate about the potential rationale of these candidate

genes in PD. These genes might be worthy of further analysis; for example, to evaluate

epistasis.

Exploring pathways, Gene Ontology (GO) and other functional annotation in
genome-scale data sets

Currently, many public databases focus on the functional annotation of genes, pro-

teins and related, disease-specific data, Entrez Gene, UniProt and OMIM being no-

table tools that are leading the field in this area. However, most of these tools can

be queried only on a gene-by-gene basis, making them unsuitable for analysis of

genome-scale gene sets. The field of microarray analysis is one area of research

with strong similarities to genome-wide association analysis – both deal with highly

multidimensional data on a genome-wide scale, and both involve multiple test-

ing, generating many thousands of results, with a large false-positive burden. Tools
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Figure 18.11 Human tissue expression profile of UCHL1 presented by SymAtlas. Genes with

highly correlated expression profiles can be identified by the ‘find correlated’ tool. Human tissue

expression profile of UCHL 1 presented by SymAtlas [SymAtlas c© Genomics Institute of the

Novartis Research Foundation (GNF), 2003. All rights reserved.]

specifically developed to deal with the output of genome scans are in their infancy:

at the time of writing, there were no tools specifically developed for this purpose.

Fortunately, tools focused on similar issues in the microarray domain are more ma-

ture, and several now available are worth exploring (Table 18.2; see Verducci et al.

(2006) for a review).
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Figure 18.12 Visualization of markers in genes showing over 0.8 correlation in expression with

UCHL1 plotted against the background of associated SNPs from the first-round PD association

screen. Markers are plotted in chromosome order, with dithering to resolve data points for viewing

One of the most versatile tools for functional analysis of large gene sets is DAVID

(Dennis et al., 2003; http://david.abcc.ncifcrf.gov/), which provides a suite of data-

mining tools that systematically combine functionally descriptive gene annotation

based on GO (Ashburner et al., 2000; see below), KEGG (Kanehisa et al., 2004),

Biocarta (http://www.biocarta.com) and other pathway tools with intuitive graph-

ical displays. The tool provides exploratory visualizations of functional categories,

pathways and GO terms that are enriched at statistically significant levels in the data

set. Tools such as DAVID can be used in two distinct ways; simply to expedite the

process of functional annotation and analysis of a list of genes for further analysis,

or to identify genes that are significantly enriched in specific pathways or functional

classes. The latter use is quite appropriate for gene-expression analysis, where whole

pathways might be expected to show regulatory changes, and hence changes in gene

expression in a specific disease state. However, in genome-wide association analy-

sis, this is likely to be highly problematic due to the likelihood that only a limited

number of genes may show genetic variation in a specific disease, whereas many

may show differences in expression as a result of these variations. This is not to

suggest that tools such as DAVID cannot be used to assess the significance of mul-

tiple genetic associations, but rather that their greatest strength lies in the effective



OTE/SPH OTE/SPH

JWBK136-18 February 16, 2007 15:29 Char Count= 0

484 CH 18 GENOME SCANS

annotation of these genes to enable further analysis, such as epistatic or functional

SNP analysis.

Using DAVID to annotate and explore the results of genome scans

Returning to our PD genome scan case study, it would be valuable to explore the

genes identified in the first round of the genome scan by Maraganore et al. (2005).

At this stage, after initially identifying the genes on the basis of the associated SNP-

to-gene mapping, very little information is available on the list of genes, beyond the

HUGO identifiers. With SymAtlas, we have determined a subset of 632 genes that

showed evidence of significant expression in the brain (see above). Deriving a real

understanding of the biological processes and pathways of these genes on a gene-

by-gene basis would be tremendously laborious. As described above, tools such as

DAVID can systematically annotate all the genes with a biologically rich range of

information from a number of bioinformatics resources.

The first stage in this annotation process requires the user to upload the genes of

interest. The DAVID tool does not accept HUGO gene names, although it does ac-

cept a wide range of other identifiers, such as Entrez Gene IDs, GenBank accessions

or Affymetrix probe IDs. These can be retrieved from HUGO gene symbols with

tools such as the ID converter tool (Table 18.2). In our case, the data output from

SymAtlas for the 632 brain-expressed genes includes Entrez Gene IDs, so these can

be loaded directly in box A of the DAVID upload page. Once the list is submitted,

a number of options are offered. In the first instance, we will use the ‘functional

annotation tool’. This returns an expandable list, annotating the input genes in order

of significance of over-representation to GO terms, KEGG and BIOCARTA path-

ways (Figure 18.13). This annotation is immediately valuable, as it highlights key

pathways that may be relevant to the phenotype under study. In our case, as the

genes loaded are all expressed in the brain, neurological pathways are represented at

highly significant levels (this is likely to be biased by the brain-expression filter rather

than any rationale in PD!). These pathway classification data and functional infor-

mation can be used to scan quickly for information relevant to the phenotype under

analysis.

Using GO information

The controlled vocabulary of the GO Consortium provides a structured language

that can be applied to the functions of genes and proteins in all organisms, even

as knowledge of gene function continues to accumulate and evolve (Ashburner

et al., 2000; see Lomax (2005), for a review of the use of GO). The GO module

in DAVID allows us to evaluate the distribution of submitted genes across three

general types of classification: biological process (GOTERM BP), cellular compo-
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Figure 18.13 Annotation summary from the DAVID tool. DAVID Bioinformatics Resources,

http://david.abcc.ncifcrf.gov/home.jsp

nent (GOTERM CC) and molecular function (GOTERM MF). These are divided

further into five levels of annotation of increasing specificity of term coverage. For

example, at level 1 of the biological process classification, genes are just subdivided

into the broad terms of ‘cellular process’ and ‘development’, covering ∼65 per cent of

submitted genes. However, at level 5, annotation is at its most specific and biologically

meaningful, with disease-relevant terms such as ‘neuron differentiation’ or ‘synaptic

transmission’, although this comes at a cost, as these terms cover only 2.5 per cent and

3.8 per cent of genes respectively. Intermediate-level annotation allows for broader

terms, such as ‘nervous system development’, a term used at level 3 and covering

7.5 per cent of genes. These differing levels can be very useful for modifying the

threshold of inclusion for selection of genes for follow-up based on biological ratio-

nale. Evaluation of the level 5 biological process term annotations quickly identifies

a number of genes among the 632 brain-expressed genes that are involved in pro-

cesses that are highly relevant to PD; these are summarized by a tabular visualization

(Figure 18.14).
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Figure 18.14 GO term annotation produced from the DAVID tool. DAVID Bioinformatics Re-

sources, http://david.abcc.ncifcrf.gov/home.jsp

Using pathway tools

DAVID also provides annotation on highly characterized pathways contained in

KEGG (Kanehisa et al., 2004), BioCarta (www.biocarta.com/) and a selection of

other databases. While GO is based mainly on functional inference by homology,

this information is based on experimental evidence and can be valuable for placing

a gene in a validated pathway context. The volume of data in these databases is

somewhat limited, but generally of high quality. Figure 18.15 shows some of the

pathways identified among the 632 brain-expressed genes. Many of these pathways

are also highly relevant to the PD phenotype (Farrer, 2006). For example, among the

KEGG pathways, 12 genes are identified with a role in long-term potentiation (LTP),

and nine genes are identified with a role in long-term depression (LTD), which are,

respectively, a long-lasting increase, or an enduring decrease in synaptic strength and

plasticity, known to play an important role in PD (Pisani et al., 2005). Other KEGG

pathways are also highlighted, with 22 genes identified in the axon-guidance pathway.

In the case of the highly curated BioCarta pathways, five genes are highlighted with

a role in the formation of synaptic junctions, which may also be important in PD.

In each case, if the user follows the hyperlinked KEGG or BioCarta term, a detailed

pathway model is returned, which can rapidly put a gene into full biological context.

It is worth re-emphasizing that strong conclusions should not be drawn from

the results of this analysis of the first-round associations with PD susceptibility
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Figure 18.15 Pathway annotation produced from the DAVID tool. DAVID Bioinformatics Re-

sources, http://david.abcc.ncifcrf.gov/home.jsp

obtained by Maraganore et al. (2005). There is no doubt that the vast majority of

associations recorded here are likely to be false because of the influence of multiple

testing alone. However, the rapid identification of genes in this first tranche of data

that are expressed in the CNS or in pathways with a role in PD susceptibility is of great

value for the design of follow-up studies, even if the preliminary associations are at

the most nominal level. These tools allow the geneticist rapidly to dissect genes and

pathways of interest from a very noisy genome-wide signal. Figure 18.16 shows the

end result of this analysis: SNPs mapping to genes involved in PD-relevant pathways

and biological processes highlighted against the genome-wide background of 9965

nominally associated SNPs. To simplify the whole process even further, Figure 18.17

shows the steps taken and demonstrates how at each stage the dimensionality of the

analysis problem is reduced. In a world of unlimited resources, both financial and

computational, these biological filtering steps might not be necessary. But in our

world, filtering of results is necessary to improve the true-positive to false-positive

ratio. In this case study, we move from a ‘SNP space’ of 64 217 nominally associated

SNPs to a ‘gene space’ of 4410 genes, to a final list of 119 genes that make the cut as
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Figure 18.16 Visualization of markers in genes in key neurological pathways identified

by the DAVID tool and plotted against the background of associated SNPs from the first-

round PD association screen. Markers are plotted in chromosome order, with dithering to re-

solve data points for viewing. Data plotted with Spotfire. DAVID Bioinformatics Resources,

http://david.abcc.ncifcrf.gov/home.jsp
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Figure 18.17 A filtered approach to genome scan prioritization
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our most ‘true-positive-enriched’ set of genes. SNPs in only 42 of these genes were

analysed in the tier 2 replication study by Maraganore et al. (2005).

Maraganore et al. (2005) identified 26 SNPs with P values of <0.01 in both tiers

1 and 2a of their study. Of these SNPs, 11 showed P values of <0.01 and the same

associated alleles in tiers 1 and 2a. They considered these to be the only truly repli-

cated loci in their study. Unfortunately, four independent research teams failed to

replicate these associations (Myers, 2006). Given the problems in replicating associ-

ations with genes of modest effect (see Section 18.2.4), it is possible that these are

in fact true associations, and with that in mind, we took a step back to re-examine

the entire data set for other nominally replicated loci. Seventy-seven SNPs in 37

genes show nominally significant P values with the same alleles (replication) in both

tiers 1 and 2a samples. Five of these genes are in our subset of 632 genes that are

significantly expressed in the brain, and one gene, EphB6, is contained within the

set of neurological pathway genes. This gene is modestly associated in both tiers,

with P = 0.017 in tier 1 and P = 0.037 in tier 2a, but the rationale of the gene

in PD is interesting. Very little is known about the biological role of EphB6, other

than that it is predominantly expressed in the brain and pancreas, but, functionally,

it is very interesting, as it has the primary structural features of an Eph family re-

ceptor tyrosine kinase, but it lacks several invariant residues that have been shown

to be essential for tyrosine kinase activity (Matsuoka et al., 1997). Although EphB6

has been shown to be catalytically inactive, it may not be biologically inactive. In a

follow-up to their original study, Matsuoka et al. (2005) demonstrated that EphB6

exerted biphasic effects in response to different concentrations of its activating lig-

and ephrin-B2. At low ligand concentrations, EphB6 promoted cell adhesion and

migration, but at higher ligand concentrations, it induced repulsion and inhib-

ited migration. The authors suggested that this molecular switch for the functional

transition of cells from an adhesive to a migratory state might play a key role in

axon guidance. Considering this, it is particularly arresting that EphB6 is strongly

expressed in the ganglionic eminence, a source of tangentially migrating neurons,

which has been reported to improve symptoms when transplanted into PD patients

(Lee et al., 2003).

18.5 Conclusions

In the future, complete genome resequencing in a large population of patients and

controls will be the most comprehensive approach to understanding complex dis-

ease susceptibility. This approach would cover the complete spectrum of coding and

non-coding variants and, unlike the current use of LD-based genotyping panels, it

would allow comprehensive testing of both rare and common variants in disease.

Several technology companies are focused on making genome resequencing afford-

able (Service, 2006), suggesting that the ‘$1000 genome’ may be more than a glint in

Craig Venter’s eye. If and when this breakthrough comes, genome resequencing may
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become the method of choice for genome scanning, although it is hard to overstate

how challenging this is likely to be to interpret.

This chapter has reviewed the key steps in the design and implementation of

genetic studies, using annotated genomic sequence as a template. As technologies

advance, studies of the genome will become more and more precise, and much of

the genetic analysis that we know today may become an increasingly in silico process.

Ten years ago, it might have been difficult to believe that the genetic study process

would have changed as dramatically to what we find today. Even as this chapter is

being written, human genetics is clearly on the cusp of further great change. SNP

chips have effectively removed traditional limitations on genotyping, although it is

not clear how effectively they will detect rare disease alleles. Trends toward the for-

mation of major research consortia such as the WTCCC (http://www.wtccc.org.uk/)

promise to bring well-powered genetic association studies much closer to reality.

As the genomic information wave continues to roll forward, we may be looking at

much more intelligently designed genetic studies, with maps which account for local

recombination, LD and a detailed knowledge of the impact of variation in genes and

regulatory regions. With technology and samples in hand, we will just have to wait

to see how close this brings us to the elucidation of the genetic basis of common

human diseases.
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19.1 Introduction

Despite occasional lapses into hyperbole about the potential of genetics and genomics

as a cure for all ills, there is no doubt that these rapidly maturing fields are beginning to

edge beyond ‘future promise’ into a much more serious phase where tangible impact

is becoming evident. Genetic and genomic approaches to drug discovery are starting

to become an integral part of pharmaceutical research and development. Already

there are a few drugs that have been developed against targets identified by ‘genomics

approaches’; for example, a small molecule inhibitor of cathepsin K was developed

for treatment of osteoporosis after identification of this target by expression analysis

in bone tissues, and subsequent mouse knockout analysis (Gowen et al., 1999). Still,

it is not easy to find a published example of a drug that has been identified by genetics,

although, curiously, cathepsin K might also have been identified by this route, as it

is also mutated in pycnodysostosis, a monogenic disease of bone (Gelb et al., 1996).

However, it may not be long before we are talking about concrete examples of genetics
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playing a major role in target identification leading to novel drugs. Genetic associ-

ation analysis of complex diseases is already yielding new disease-validated targets

(Roses et al., 2005); as these move through the drug discovery process, it will be only

a matter of time before drugs developed against this new cohort of targets enter the

clinic.

Genetics offers opportunities for the enhancement of drug discovery at almost

every stage. As a source of target identification, it offers a unique opportunity to

identify targets with no precedent rationale in disease. The hope is that such disease-

validated targets will logically lead to more efficacious – and with effective develop-

ment – safer new chemical entities (NCEs) that act upon these targets. This is quite

an urgent hope, as, historically, more than 89 per cent of NCEs entering development

have not reached the clinic (Kola and Landis, 2004). The failure of these compounds

can be multifaceted. Firstly, they may show insufficient efficacy, often as a result of

inadequate target validation. Secondly, they may have unacceptable toxicity profiles

in animals or man. Finally, even after clinical trials involving hundreds of patients,

they still retain the risk of unexpected side effects or toxicity in a subset of the popula-

tion due to rare or population-specific adverse events. Genetics can be an underlying

factor in all these issues of failure in the drug discovery process; pharmaceutical

companies are now beginning to recognize this and invest their efforts accordingly in

this area.

These multiple sources of attrition in drug discovery can be addressed, at least in

part, by the integration of genetic analysis into the drug discovery process. Genetics is

already yielding new disease-validated targets (Roses et al., 2005). Further ahead in the

development process, pharmacogenetics (PGx) is also having an impact by improving

the understanding of the role of genetic variation in differential response and adverse

reactions to drugs (Roses, 2002; Lindpaintner, 2003; Goldstein and Tate, 2004).

19.1.1 Genetics and bioinformatics in drug discovery – some
unique challenges

Bioinformatics has traditionally led the search for new targets in the pharmaceuti-

cal industry by improving the understanding of disease biology and the criteria for

druggability in target proteins. These bioinformatics-led concepts are also critical

to the effective integration of genetics within the drug discovery and development

process. A good understanding of disease biology and effective chemistry is not the

only requirement for an efficacious drug; we also must understand how variation

at the target affects drug action, and how variation in other genes affects the way

drugs are absorbed, disseminated, metabolized and excreted. Genetic analysis in the

drug development paradigm also faces some unique challenges; for example, the

exquisite rarity of some adverse reactions makes collection of sufficient samples for

well-powered genetic analysis almost impossible. Given some of these very special

challenges, it is more important than ever that the right questions are asked and an-

swered during genetic analysis. Bioinformatics is probably one of the most important
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means to ensure that this is done. This may include modelling the impact of varia-

tion on a drug target, identifying genes, which may be involved in the metabolism

of a drug, or navigating a pathway to move from a disease-associated gene to a

potential drug target. Many of the concepts underpinning these activities are covered

in detail in other chapters in this book; this chapter focuses on some of the specific

bioinformatics issues that arise in the application of genetics to drug discovery and

development.

19.1.2 Genetics in the pharmaceutical research and
development paradigm

Figure 19.1 illustrates how genetics can affect drug discovery and development. The

figure shows some of the common genetics activities that are being incorporated into

drug discovery and development pipelines. These activities include inputting targets

identified by disease genetics at the start of the pipeline, screening patient populations

for genetic variants that might alter drug efficacy or safety, and finally integrating a

pharmacogenetic element into the clinical trial process during drug development.

The last activity is looking increasingly like a possible future regulatory requirement

as the US Food and Drug Administration (FDA) becomes more and more PGx

focused. The FDA conducted a survey of recent investigational new drug (INDs) and

new drug applications (NDAs) to identify the extent to which PGx is used in clinical

studies (Lesko and Woodcock, 2002). The survey found over 15 applications in which

PGx tests were reported, with all but one test related to pharmacogenetic variability

in cytochrome P450 (CYP) enzymes. Despite the interest of the FDA, pharmaceutical

companies are still moving forward quite cautiously in integrating PGx into their

drug development programmes. In the case of the 15 applications mentioned above,
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Figure 19.1 The impact of genetics on the drug discovery and development process
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differences thought to be related to PGx subgroups were not used as a basis for any

specific dosing recommendations on the product labels; however, it seems likely that

this may well be a future direction for the industry.

19.2 Target genetics

19.2.1 Introduction to the use of genetics and bioinformatics
for target discovery and progression

As genetic and genomic studies provide new insights into the molecular mecha-

nisms of disease, it is possible that these insights will open up new opportunities for

diagnosis, classification, prognosis, therapeutic intervention and outcome assess-

ment of disease. While the intervention modalities of biopharmaceuticals, such as

monoclonal antibody therapies or specific nucleic acid-based transcript suppres-

sion (e.g., anti-sense-based therapies), can be contemplated, the most common

and desirable paradigm of therapy is still the development of a pharmaceutically

tractable small molecule that modulates the activity of a protein, typically enzyme

inhibitors or receptor antagonists. Such a protein is therefore, post hoc, classi-

fied as a drug target, and it is this subject that will be covered in the rest of this

section.

Let us consider the context in which bioinformatics supports genetics for the

exploitation of potential drug targets. It is certainly possible that a geneticist could be

tasked with identifying drug target opportunities by simply walking up the keyboard

and trawling external data rather than actually participating in a laboratory genetics

project. In fact, the avalanche of public data referred to in many parts of this book

is increasingly making such an in silico exercise plausible. But however compelling

the accumulated evidence and inferences may be, such projects will eventually need

to perform confirmatory experiments. It is therefore more practical to consider

target bioinformatics in the context of supporting an experimental study where both

external and internal data are being utilized. Because the median time for a drug

discovery project is still 7–14 years, it is necessary to have a realistic end point for the

target discovery aspects of a genetic study (Verkman, 2004). Even studies from which

no target inferences can be drawn in the first instance may contribute knowledge of

disease mechanisms from which a therapeutic intervention emerges only at a later

date. The minimal end point within a project could be just a sentence on target

inferences in a paper or grant application. The maximal could be a commitment to

follow through to compound development.

19.2.2 The big issues in target identification and progression

The main task facing the bioinformaticist/geneticist is likely to be triaging genetic

data down to plausible therapeutic intervention points. This immediately presents
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the following list of constitutive challenges that bioinformatics can play an important

role in overcoming:

1) whether the study should be designed to pinpoint targets from the outset

2) dealing with type 1 error – risking progression of a false-positive association

3) localizing the result to a known coding exon

4) interpreting associations outside the proximity of exons or known functional

elements

5) finding orthogonal data that supports a biochemically plausible mechanism for

a causative contribution of the polymorphism to disease

6) assessing the feasibility of direct drug intervention where gain-of-function (GOF)

is implicated

7) converting the more likely loss-of-function effects (LOF) to a GOF intervention

point by a ‘mechanistic walk’

8) selecting common, best-bet or multiple intervention points where results impli-

cate multifactorial contributions from a number of genes

9) assessment of patent information associated with target candidates.

These points will be addressed in more detail below. Studies aimed at elucidating

the genetic basis of any phenotype can be based on a specific hypothesis, or they can

be hypothesis neutral, corresponding to the candidate gene approach and genome

scans. To date, most genetic association studies have focused on the candidate gene

approach, and this has been reflected in the pharmaceutical sector (Pettipher et al.,

2005; Roses et al., 2005), where many studies have been designed from the outset for

direct validation of specific drug target hypotheses. However, with the availability

of HapMap data, efficient sets of tagging SNPs, and increased genotyping efficiency,

genetic studies are now moving toward a more hypothesis-neutral approach. It seems

likely that pharmaceutical sector activities in this area are likely to move in a similar

direction. This is a potentially exciting prospect, as hypothesis-neutral studies to

identify new drug targets have the potential to identify paradigm-breaking pathways

and unprecedented new targets. These in turn could potentially be developed into

more effective therapeutics for some of the most pressing unmet medical needs,

such as the development of new drugs with better side-effect profiles for psychiatric

diseases (Sundram et al., 2003).

The lack of robustness of disease-association results (chiefly in the form of type

1 error) is covered elsewhere in this book (Chapter 18), but, clearly, PubMed is the
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central resource for information to compare positive and negative studies. The prob-

lem common to all literature mining is the choice between specificity (retrieving only

relevant articles at the cost of missing some) and sensitivity (retrieving everything

at the cost of including some that are irrelevant). For example, 38 610 PubMed arti-

cles are returned by the search term ‘genetic association’, whereas the term ‘genetic

disease association’ retrieves 12 017 articles. Yet, ‘genetic disease association drug

target’ returns only 17 articles (are pharmaceutical companies doing that badly?).

However, a resource that already has much higher specificity is the Genetic Asso-

ciation Database (GAD), which so far contains 3613 PubMed-linked genetic study

results (Becker et al., 2004). While this may not have full sensitivity, the simple ex-

pedient of using the ‘related articles’ link in PubMed and ‘Sort by – Pub Date’ gives

an instant update on both positive and negative associations. Although this database

currently collapses to a small number of unique human genes, a major update is in

progress (Kevin Becker, personal communication). The links to this database include

Entrez Gene, under the ‘Link out’ button, so any gene entry can be checked for a GAD

entry. Other portals are being developed in which association results with relevance

to target identification are being pooled and thus will also facilitate comparisons.

Other databases are being developed to capture highly curated information on ge-

netic associations, most notably HGVBase (http://hgvbase.cgb.ki.se/). This database

is currently being redeveloped as HGVBase-G2P, a genotype-to-phenotype associa-

tion database, and by the time this book is published, it should be an active source

of genetic association data. The Whole Genome Association database is another

valuable site; this will contain clinical phenotype measures and associated whole-

genome genotype data for several different studies, including the Framingham Heart

Study (http://www.nhlbi.nih.gov/about/framingham/index.html). This is likely to be

a more ‘raw’ source that the published studies collated in GAD. Another useful web-

site, the Obesity Gene Map, includes detailed information on disease-related genes

focused on one therapeutic area. Finally, the Wellcome Trust Case Control Consor-

tium (WTCCC) is also generating high-density, genome-wide association data in

more than 10 diseases (http://www.wtccc.org.uk/).

The majority of replicated genetic associations that have convincing mechanistic

links to disease involve protein LOF effects. Unfortunately, this mechanism does not

offer the best chance of chemical intervention, as antagonistic small molecules are

much easier to generate than agonists. A series of PubMed queries makes this clear.

The query ((inhibitor OR antagonist) AND (‘Journal of medicinal chemistry’[Jour]))

gives 3358 hits. Substituting ((activator OR agonist) AND (‘Journal of medicinal chem-

istry’[Jour])) gives only 1256 hits. While these should not be considered fixed ratios,

they clearly suggest that for receptor LOF the development of agonists is certainly fea-

sible. However, the chances of therapeutically correcting an enzyme LOF by activator

development seem much less likely.

Even if the more potentially tractable GOF were discovered, this would have

to involve a druggable gene (a status assigned to ∼10 per cent of genes—see be-

low). If, as is stochastically more likely, the results point to the involvement of a
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non-druggable gene (∼90 per cent of genes) in the disease, then a ‘mechanistic

walk’ has to be considered whereby the biological system module in which the non-

druggable gene participates has been analysed in the hope of revealing a druggable

intervention point that compensates for the defect.

Because research to identify and exploit targets for human disease is highly com-

petitive on a global scale, both the commercial sector and academic organizations

have been filing patent claims at all stages of the process. While the consequences for

freedom to operate are outside the scope of this chapter, what can be made clear is that

patents are an increasingly important information source. Whereas biotechnology

patent information has hitherto been mainly brokered by vendor databases, much of

it is now publicly available. The Patent Abstracts DB is a set of over 1 million biology-

related abstracts of patent applications derived from data products of the European

Patent Office (EPO) together with US and world patent documents. An example

of a specific query (([patabs-Applicant:Decode∗] & [patabs-Applicant:genetics∗]) |
[patabs-Applicant:Decode genetics∗]) found 85 entries of patents filed by this com-

pany that are focused on the discovery of drug targets from genetic studies.

19.2.3 Target validation and tractability

Any consideration of drug discovery brings up the term ‘target validation’ sooner or

later (Betz, 2005). Many commentators have made the obvious point that a target

is only fully validated when compounds with a confirmed congruency between the

in vitro and in vivo mechanism of action against that protein prove to be effective

therapies. This could be extended to regulatory approval and marketing, but failures

here can be compound-specific off-target effects or lack of advantages over other

therapies, rather than target ‘de-validation’ per se (see Kola and Landis (2004) for a

review of this complex area). In the earlier stages of target investigation, validation can

be more pragmatically defined as the accumulated evidence package, from all sources,

that pushes an initial target concept up the ‘resourcing slope’ of the various stages

of drug discovery. Support for such decisions will not only include comprehensive

bioinformatics analysis but also consider all available genetic data and inferences.

While the great advantages of acquiring human genetic evidence have already been

outlined at the beginning of this chapter and elsewhere in this book, it is also clear

that many drug targets have been at least initiated without it, and few proceed where

this remains the one and only source of validation data.

19.2.4 The targetome: the drugged and druggable target universe

The starting assumptions for this section are (a) that the genetic results and bioin-

formatics analysis have pinpointed a protein the expression or activity of which is

causally related to a disease, and (b) that it should ideally be a GOF association.



OTE/SPH OTE/SPH

JWBK136-19 February 16, 2007 15:29 Char Count= 0

502 CH 19 GENETICS IN DRUG DISCOVERY AND DEVELOPMENT

The human genome
~30000 genes

Biopharmaceutical targets
~10000 genes

Druggable targets
~3000 genes

Disease genes
~4000-10000 genes?

Figure 19.2 The ‘target universe’

So how do we decide whether the development of a small molecule modulator as a

therapy is feasible? As pointed out above, drug targets are generally defined retro-

spectively by previously successful translations of concept to effective therapies by

medicinal chemistry. Generally, we can conceptualize in three ways the pool of genes,

or rather their protein products, that may affect human disease (Figure 19.2):

1. There are proteins, specific variants of which may cause or modify disease.

2. There are proteins that can be targeted by biopharmaceutical approaches (non-

small molecule approaches): monoclonal antibodies, antisense, siRNA, etc.).

3. Finally, there are proteins which can be targeted by small molecules, the ‘druggable

genome’.

These categories all overlap and their relative sizes are relatively fluid, but, generally,

they illustrate the point that the therapeutic target space is rather finite.

The concept of a ‘druggable genome’ was introduced in 2002 as the group of pro-

teins and their homologues that are known either to interact with, or be modulated

by, drug-like chemical compounds (Hopkins and Groom, 2002). The initial total of

known protein drug targets was 399, and they were distributed among 130 protein

families, but only 120 of the non-redundant sequence set were the targets of marketed

drugs. The wider set of 130 protein families was extrapolated on the basis of protein

homology to 3051 potential druggable proteins, of which, unsurprisingly, G protein-

coupled receptors (GPCRs), kinases and proteases constituted the largest part. Thus,

if our GOF association is with one of these target homologues, it is likely to become a
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new target based on the retrospective success with old targets. However, as Hopkins

and Groom (2002) pointed out, there are two key factors that suggest the currently

achievable druggable genome will be much smaller. The first is that while genetics

should eventually allow us to estimate the number of genes causatively involved in

disease, these will show only partial overlap with the druggable families. The second

is that the extrapolation from a very small number of targets to entire gene families

is a broad-brush approach and in many cases is likely to include individual members

that are sufficiently divergent from successful targets in their biochemical properties

to render them unlikely intervention candidates. Examples of these would include

protease paralogues that are intracellular rather than extracellular and those GPCRs

classified as odour receptors.

So what do these numbers look like now and how can we find data sets to intersect

with what our genetic studies have come up with? The most obvious of these would be

information on known protein targets, not necessarily restricted to marketed drugs

because these would effectively encompass 10 years of drug discovery, but also those

that are ‘declared’ in the sense that they had already passed a substantial validation

threshold, with small molecule modulator development well under way. Perhaps

surprisingly, this information has hitherto been confined to vendors who have mar-

keted compilations of targets together with the compounds that act on them. For

marketed drugs, Inpharmatica (http://www.inpharmatica.com/biopendium.htm)

has curated the targets down to 225 human sequences, below the Hopkins and

Groom total of 399. To expand the druggable target domain a little more,

Pharma Projects (http://www.pjbpubs.com/pharmaprojects5-1.htm) claims to have

identified 1451 unique protein targets for drugs that have entered commer-

cial pipelines (although this includes some microbial targets), and WOMBAT

(http://sunsetmolecular.com/products/?id=4) includes 1320 target sequence

entries.

Recently, two academic endeavours have produced the first comprehensive public

drug target databases with explicit sequence links. The first of these, the Therapeutic

Target Database (TTD), includes 1535 target protein sequence links, but the absence

of a sequence search option limits its current utility. However, the authors of TTD

have produced a comprehensive review of the distribution of targets by a range of

different criteria (Zheng et al., 2006). Their listing includes 997 distinct proteins

with 268 targeted by at least one marketed drug; the remainder are targeted by

investigational agents not yet approved for clinical use. The indications are that the

current conversion rate of investigational to marketed (i.e., a ‘declared’ to ‘successful’

target transition) is low, and the overall family distribution of declared successful

targets is roughly similar to the pattern of the 120 successful targets from 2002.

The second resource linking chemical data with comprehensive drug target se-

quence information is DrugBank(Wishart et al., 2006). As well as linked molecular

biological information about drug targets, this resource also offers extensive small-

molecule drug information, including physical property data, compound struc-

ture, and pharmacological and physiological data about drug products. It has the
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major advantages of not only a local BLAST search that supports both single and

multiple sequence queries but also links to PubChem. It also supports visualizing,

querying and search options, including a structure similarity search tool and data

extraction.

Usually when a disease association is traced to a protein, it is easy to recognize

whether it is a GPCR, protein kinase, protease or nuclear hormone receptor (NHR).

These protein classes are targeted by approximately 60 per cent of known drugs.

However, it is still important to perform a BLAST search against DrugBank, not

only to determine the level of homology to known targets and immediate links to

chemistry but also to check the obvious, that is, whether the putative target has been

targeted already! While it is also worth a search against the Druggable Genome website

nucleotide sequences, the BLAT algorithm is not optimized to find anything more

than close matches. However, this website does contain a very useful Excel download

of 2935 sequences as a supplementary table with comprehensive sequence links and,

crucially, a list of InterPro identifiers (Orth et al., 2004). It is clear that druggable

genome collection still needs be filtered beyond the simple homology arguments to

bring it closer to the properties of the smaller subset of successful targets. While there

is no bioinformatics equivalent of the Lipinski ‘rule-of-five’ (a widely used filter for

drug-like properties) (Hopkins and Groom, 2002; Lipinski, 2004) by which we could

set cut-offs, the following softer rules increase the likelihood of success:

1) If the investigation points unequivocally to an ‘old’ target, new genetic data

could indicate a new therapeutic context for existing drugs; that is, an indication

switch. A search against DrugBank is a good option here.

2) The sequence similarity with a known target should be solid rather than a

‘twilight zone’ match (same as above).

3) The protein should have an established biochemical and physiological function.

OMIM includes very useful gene summaries. SwissProt entries have references,

but they tend to focus on primary sequence submitters. The RIF entries in RefSeq

are a good entry point, and can be expanded in PubMed by the ‘related articles’

(remember the green label gives full text access via PubMed Central).

4) If an enzyme is indicated, it should be secreted (this is usually clear from

the SwissProt signal peptide annotation, but it is worth checking with SignalP

http://www.cbs.dtu.dk/services/SignalP/, particularly in cases where it is difficult

to distinguish between a signal peptide and an N-terminal transmembrane

anchor.

5) Ideally, a target should have relatively few paralogues to avoid compound speci-

ficity issues. Both the ‘Ensembl human family view’ and the ‘View other genes

with this (InterPro) domain’ are good options here.
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6) Mammalian orthologues should be strictly 1:1 and show moderate sequence

conservation (Ensembl ‘Orthologue prediction’ is useful here.

7) The target should be readily assayable; PubMed should come up with existing

functional assays.

8) Ideally, a target should not be part of a major pathway interaction hub or

complex.

9) Ideally, a target should show a restricted pattern of tissue expression.

10) A known structure or a homology model is a bonus allowing the possibility of

rational drug design.

19.2.5 Target family databases: proteases as an example

Entry to a deeper level of collated information about druggability is facilitated by

specific target family databases. Examples of these are given in Table 19.1, but it is

instructive to examine just one of these in more detail. Proteases have a long his-

tory of being drug targets, and it is estimated that at least 10 per cent of this class

of enzyme are under active investigation across a wide range of diseases (Southan,

2001; Puente et al., 2003). However, the bioinformatician has to deal with both the

advantages and disadvantages of such a large family of targets. The first problem is

retrieval specificity, because they are united primarily under the mechanistic um-

brella of peptide hydrolases rather than common ancestry. So, while it is trivial to

identify all 48 known NHRs and fairly straightforward to retrieve GPCRs by three

InterPro IDs, a very large number of InterPro IDs would be needed to retrieve all

proteases. Fortunately, there are excellent secondary annotation sources to use (as

for most target classes, some of which are represented in Table 19.1; the rest are just

a short google away). The biggest and most comprehensive of these is MEROPS,

which now lists 550 known and putative human peptidases. It is also unique among

the target databases in linking not only to species orthologues, the available sub-

strate assay, endogenous inhibitors, small molecule inhibitors and structural infor-

mation, but also to the pharmaceutical relevance of many of the entries. However,

because MEROPS is homology based and maximally inclusive, it also exemplifies

the problem of broad categories of druggability, by including not only pseudogenes,

retroviral components and hypothetical ORFs but also, as judged by the absence

of critical active site residues or clear evolutionary shifts to non-proteolytic roles,

over 400 entries that are not likely to be active proteases. But this depth of anno-

tation and flagging of inactive homologues save a lot of bioinformatics analysis,

and one should also be open to other potential catalytic or interaction functions.

For example, some non-peptidase members of the S33 family with an
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Table 19.1 Bioinformatics tools for target genetics

Tool URL

Target genetics

Genetic Association Database http://geneticassociationdb.nih.gov/

Whole Genome Association http://www.ncbi.nlm.nih.gov/WGA/

Obesity Gene Map http://obesitygene.pbrc.edu/

Known targets with explicit medicinal chemistry links

DrugBank http://redpoll.pharmacy.ualberta.ca/drugbank/index.html

Therapeutic Target DB http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp

PDSB Ki db http://pdsp.cwru.edu/kidb.php

GLIDA GPCR-Ligand db http://gdds.pharm.kyoto-u.ac.jp:8081/glida/

ligand classification.php

BindingDB http://www.bindingdb.org/bind/index.jsp

Target families

The Druggable Genome http://function.gnf.org/druggable/index.html includes

DNA search page and download of potential target

listings

GPCRDB http://www.gpcr.org/ also snake plots at

http://www.gpcr.org/7tm/seq/snakes.html

List of SwissProt GPCR entries

and servers

http://www.expasy.ch/cgi-bin/lists?7tmrlist.txt

Human, mouse and rat proteases http://web.uniovi.es/degradome/index.htm

MEROPS (all proteases) http://merops.sanger.ac.uk/

Peptidase entries in Swiss-Prot

(from MEROPS)

http://www.expasy.ch/cgi-bin/lists?peptidas.txt

NucleaRDB (nuclear receptors) http://www.receptors.org/NR/

Nuclear Receptor Signaling Atlas http://www.nursa.org/

Compendium of Voltage-gated

Ion Channels

http://www.iuphar-db.org/iuphar-ic/index.html (not a db

but a useful journal listing)

Ligand-Gated Ion Channel DB http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php

Kinweb human protein kinases http://bioinfo.itb.cnr.it/kinweb/index.htm

(not updated recently)

Global analysis of kinases genes

in genomes

http://kinase.com/

General resources

siRNA results for some human

genes

http://www.rnainterference.org/HumanSequences.html

InterPro protein families,

domains and functional sites

http://www.ebi.ac.uk/interpro/index.html

PubMed http://www.ncbi.nlm.nih.gov/entrez/query/static/

overview.html

UCSC Genome Bioinformatics http://genome.cse.ucsc.edu/

Human Proteomics Initiative

(HPI)

http://www.expasy.ch/sprot/hpi/

International Protein Index (IPI) http://www.ebi.ac.uk/IPI/IPIhelp.html

Patent Abstracts http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+LibInfo+-

id+1 uFX1SnYup+-lib+PATABS
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alpha-beta hydrolase fold may have epoxide hydrolase or lipase activities

that would still make them potentially tractable (http://merops.sanger.ac.uk/cgi-

bin/make frame file?id=S33). MEROPS also shows a continual widening of the

druggable envelope by updating new superfamily relationships that reveal hitherto

undetected protease ancestry or novel catalytic mechanisms.

Surprisingly, perhaps the best characterized of all druggable enzyme families,

namely, the S01 trypsin-like proteases, have proved particularly difficult to ‘close’

in terms of their final protein numbers. Thus, according to different annotation

sources, these vary between 133 (MEROPS), 118 (Druggable Genome), 97 SRS (query

(((([swissprot-Species:homo sapiens∗]) & ([swissprot-DbName:MEROPS∗] > parent ))

& [swissprot-DBxref :S01∗]) and only 81 (Ensembl IPR001254).

To establish whether an association result is in the vicinity of a protease, a BLASTX

against MEROPS would be the first check. By including only the catalytic domain, this

search has a higher specificity than a full-length database. The comprehensiveness

of MEROPS curation also helps with two other key issues common to all target

classes. These are orphan function (e.g., where the physiological role is unknown)

and absence of any declared target precedents in certain subfamilies.

19.2.6 Disease case study: presenilins in Alzheimer’s disease (AD)

Mutations in presenilin-1 (PS1; OMIM: 104311) and presenilin-2 (PS2; OMIM:

600759), which cause early-onset AD, both carry molecular defects that can be clas-

sified as GOF mutations. Mutations in both PS1 and PS2 result in the increased

cleavage of the APP peptide (OMIM: 104760). In this case, the genetic studies were

certainly the first to implicate PS1; prior to the genetic association of PS1, it was en-

tirely unclear what role this polytopic membrane protein plays in AD pathology. PS1

was initially considered non-druggable, and it was some years later that the function

of PS1 as part of an intramembrane aspartyl protease complex responsible for the

gamma secretase cleavage was firmly established. Thus, genetic studies of PS1 muta-

tions led to the identification of the gamma secretase protein complex (comprising

PS1, PS2, NCSTN, APH1 and PEN2) as a drug target for AD, and the development

of inhibitors is well advanced.

19.2.7 Outlook for genetics and bioinformatics in target discovery
and progression

We can deduce a number of future trends in the contribution of genetics and bioin-

formatics to target discovery and progression. First, evidence presented elsewhere in

this book shows that the combination of HapMap data and large academic consortia

for genetic studies means that a substantial proportion of common variants caus-

ing common diseases may be discerned within a few years (if the common disease,
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common variant hypothesis holds up). It remains to be seen how effectively these

results will flow into databases and metadata systems to facilitate bioinformatics in-

terrogation and analysis to discern new details of molecular pathology and elucidate

new therapeutic intervention points. It also seems likely that the commercial sector,

by the application of target prioritization strategies based on diverse genomic data

sources, will have triaged a substantial number of druggable targets against roughly

the same set of diseases. While this may enhance the pharmaceutical companies’

target portfolio, it is not clear to what extent these results will surface in the pub-

lic domain and corroborate the academic output. This convergence is scientifically

highly desirable and will go some way to counter the issues of independent repli-

cation. However, it also means that the chances of novel target discovery for major

diseases will diminish over time. We can envisage a ‘second wave’ of genetic stud-

ies using increasingly complex techniques to detect epistasis, epigenetic effects and

rare variation in less common diseases. We also expect to see more use of surrogate

quantitative profiling, such as metabolite measurements, for clearer differentiation

of disease states. Alongside advances in genetics, we also expect to see advances in

functional genomics and systems biology ‘filling in the gaps’ and thus opening up

more chances of postulating testable mechanistic connectivity from a genetic result.

This should leave fewer genes that the bioinformatician cannot at least have a stab at

fitting into the big jigsaw of genes and disease.

19.3 Pharmacogenetics (PGx)

It is well known that after exposure to a drug, almost any given cohort of patients show

a wide variety of responses. In an ideal situation, patients show a beneficial response

to the therapy, although they may also show no response or a weak response, and

perhaps most worryingly, they may experience an adverse drug reaction (ADR),

which in extreme situations could lead to serious illness or even death. ADR is an

increasingly serious problem with a huge toll in lives and health-care costs every year.

For example, in one year, 2 216 000 (6.7 per cent) hospitalized patients in the USA

had serious ADR and 106 000 (0.32 per cent) had fatal ADR, making these reactions

the fifth leading cause of death in the USA (Lazarou et al., 1998). Providing patients

with drugs that are most likely to be effective and least likely to cause harm is the

primary objective of medicine development and perhaps the single most important

area where genetics can make an impact.

A genetic contribution to variability in drug response has been recognized for

many years. In 1902, Garrod reported a group of metabolic disorders, including

alkaptonuria, that showed ‘chemical individuality’; he accurately identified these

disorders as ‘inborn errors of metabolism’. Taking this concept a step further, he

proposed that just as endogenous substrates undergo biotransformation by specific

pathways, defects in such pathways could alter drug concentrations and effect. It took

94 more years to identify the defective gene responsible for alkaptonuria, homogen-

tisate 1,2-dioxygenase (HGD), but we now know this to be a monogenic disease, and
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Garrod’s concept of chemical individuality is alive and well as the modern science of

PGx.

19.3.1 An environmental or pharmacogenetic basis for drug
efficacy and ADR?

Before getting into the complexities of PGx, it is important to recognize that many

non-genetic factors also influence the efficacy of medications, including the patient’s

age, sex and general health, but also environmental factors, such as concomitant ther-

apies, drug interactions and diet. To give a seemingly innocuous example, grapefruit

juice is an inhibitor of intestinal cytochrome P-450 3A4, which is responsible for the

first-pass metabolism of many medications. Inhibition of this enzyme by grapefruit

juice leads to elevation of the serum concentrations of certain drugs, most notably

antihistamine medications, which can lead to severe heart palpitations (Kane and

Lipsky, 2000). Although these non-genetic factors may be very important, this is not

within the scope of this chapter, so we direct the reader to more detailed reviews in

this field (e.g., Sorenson, 2002).

19.3.2 Target genetics in the PGx paradigm

Variation in the drug target, preferably in the region where the drug binds, forms

the basis of the classic paradigm of PGx in drug response (Figure 19.3). The simple

concept here is that a therapeutic agent, which could be a small molecule, a peptide
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Figure 19.3 The classical PGx paradigm – target polymorphism and therapeutic response
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or an antibody, binds to a specific region in the drug target (or in some cases several

regions in target protein complexes). Assuming that variation exists in the drug-

interacting target region, a range of responses is likely to be seen, depending on the

impact of the variation on drug interaction. In most cases, this is a gross simplification

of the mechanisms underlying a PGx phenotype, as differences in target response

might also be seen in variants that destabilize the overall target protein in locations

remote from the drug-interacting region(s). Variants might also affect downstream

signalling of the target, or variants outside the target might alter the way that the

drug is absorbed or metabolized (see below). Although in most instances efficacy or

ADR issues are quite complex, there are known cases that fit the paradigm shown in

Figure 19.3, a good example of which is the impact of polymorphism on β-agonist

action in the β2-adrenergic receptor (ADRB2).

Case study: analysis of ADRB2 receptor polymorphism

The ADRB2 plays an important role in vascular responses to physiological adrenergic

stimulation, which, in turn, has a role in the pathogenesis of diseases such as hyper-

tension, heart failure and asthma. Small-molecule ADRB2 agonists are one the most

effective medications to treat acute asthma. A rare ADRB2 Thr164Ile polymorphism

(found at frequencies ranging from 0.5 to 2.3 per cent in Caucasian populations)

was found to have profound functional consequences in terms of isoproterenol ac-

tion (a β2-receptor agonist used for asthma). Dishy et al. (2004) carried out in vivo

studies of the Thr164Ile polymorphism and found that it was associated with a five-

fold reduction in sensitivity to β2-receptor agonist-mediated vasodilatation, whereas

vasoconstrictor sensitivity was increased. The overall effect of this polymorphism was

to shift the balance of adrenergic vascular tone toward vasoconstriction. They pro-

posed this as a mechanistic explanation for the clinically observed decreased survival

of Thr164Ile heterozygotes with congestive heart failure.

These observations raise immediate questions about the molecular mechanism of

the Thr164Ile polymorphism. Where is this polymorphism located and how might

it affect receptor agonism so dramatically? These are all questions which bioinfor-

matics can answer. To get an idea of the context of an amino-acid substitution, one

of the best places to start is UniProt. A quick review of ADRB2 in the UniProt fea-

ture table (http://www.expasy.org/uniprot/P07550#features) shows that Thr164 is

located in the fourth transmembrane domain of ADRB2. This protein is a GPCR, so

UniProt provides a link to the GPCRDB, a valuable GPCR family-specific resource.

GPCRDB allows us to review a range of information about this receptor, including

sequences and a range of precomputed resources, such as protein family alignments

and structural models. The GPCRDB-family link leads to a page with a link to an

MSF-formatted multiple sequence alignment that includes known polymorphisms

and mutations. A review of orthologues in the alignment reveals that Thr164 is in

a strongly conserved region, with the Thr164 residue conserved in all organisms
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between man and Amphibia, although an Ile164 is seen in the fish genus, Fugu,

suggesting that the Ile164 is potentially functional. In itself, this strong phylogenetic

conservation testifies to strong selection for function at the Thr164 residue. In terms

of amino-acid properties alone, a threonine to isoleucine substitution in a trans-

membrane environment is likely to be relatively neutral in effect (see Appendix II).

However, threonine, is an uncharged polar residue, as would be expected in active

sites and phosphorylation sites, whereas isoleucine is an aliphatic non-polar residue,

which is much more hydrophobic and therefore much more likely to be buried in the

hydrophobic core of a protein or, in this case, the membrane. Isoleucine residues are

generally non-reactive, but they are known to play a role in the binding/recognition

of hydrophobic substrates (see Chapter 13, or the amino-acids variation tool in

SNPPER (http://snpper.chip.org/)).

It may be possible to clarify the role of Thr164Ile in agonist response by looking

at this polymorphism at a structural level. A directly determined crystal structure

for ADRB2 is not available; however, in the UniProt entry for ADRB2, the Mod-

Base link leads to a database of comparative protein-structure models (Pieper et al.,

2004). Three-dimensional (3-D) structure models have been constructed by homol-

ogy modelling, and here human ADRB2 has been aligned with the crystal structure

of bovine rhodopsin. These two proteins share only 22 per cent sequence identity,

so the accuracy of this model is likely to depend heavily on alignment quality. How-

ever, in our case, the alignment is likely to be reliable around Thr164, as it is located

within the transmembrane regions of ADRB2 (these form reliable anchor regions

for aligning GPCRs). We can retrieve the ADRB2 3-D structural model by select-

ing the coordinate file from the pull-down menu in the model information section.

To view the structure, save the file as ADRB2.PDB and load it with DeepView, a

protein-structure visualization tool (see Chapter 11 for details). After loading the

ADRB2 structure to DeepView (Figure 19.4), we can highlight the Thr164 residue.

To do this, select Window>Control Panel from the main menu. On the right-hand

side, all amino acids in the ADRB2 model are displayed; click on Thr164 to highlight

the residue in the structure and carry out a number of manipulations. First, we can

identify all residues that might interact with the ADRB2 ligand-binding residues. To

return to UniProt features for ADRB2, Asp113, Ser204 and Ser207 are all implicated

in agonist binding. Select these residues in the DeepView control panel by holding

down Control and clicking with the left mouse button. Once all agonist-binding

residues are selected, go to Select>Neighbors of Selected AA on the main menu. You

will now be asked to define the Ángstrom distance for neighbouring amino acids;

the default is 6 Á (a probable maximum distance over which amino acids are likely

to interact). Select this and press OK. This selects all residues in the ADRB2 model

that are within 6 Á of the three agonist-binding residues in ADRB2. Perhaps un-

surprisingly, Thr164 is one of the amino acids that are selected within 6 Á of the

Ser207 agonist-binding residue. Ser207 is the most distant agonist-binding residue

from Thr164 in linear terms, but in a 3-D environment, it is within 5.8 Á of Thr164.

It can be useful to focus the model on the agonist-binding site residues only, by
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selecting File>Save>Save Selected Residues Only. This saves all residues within 6 Á

of the agonist-binding residues as a separate 3-D structural model (Figure 19.5).

The final step in this analytical process is to review the impact of the Ile164 allele

on the agonist-binding site configuration. To do this, simply press the MUTATE

icon and then left-click on the Thr164 residue in the structural view, revealing a

menu of amino-acid changes – select Ile. The mutated residue is then displayed in

the structural view. This clearly shows an alteration in the protein configuration that

may alter the stearic configuration of the agonist-binding pocket, perhaps explaining

the fivefold reduction in agonism seen with the Ile164 allele. As an in silico exercise

using general Web-based bioinformatics resources, this matches quite closely the

conclusions of Swaminath et al. (2005) in a detailed characterization of the ADRB2

agonist-binding pocket. They identified Tyr199 as a key residue involved in agonist

binding, and inspection of this residue in the structural model shows that Tyr199

is adjacent to Thr164, with charge interactions within 3 Á, further supporting the

probable direct role of Thr164 in agonist binding.

Exploring target PGx

The case study above is just one example of some of the types of analyses that can

be carried out using purely in silico methods. Fortunately, there are some very rich

sources of information relating to the major druggable protein families. The critical

regions in drug targets that are involved in drug binding or protein structure and

function are defined in several public resources. UniProt is always a good place to

start looking for this kind of information; often this will annotate known functional

residues in a protein. UniProt also links to other target specific resources, which often

provide further detailed annotation; some of these are listed in Table 19.2. GPCRDB

is a good example of a target class-specific resource, but others, such as MEROPS, fo-

cusing on human proteases; Kinweb, focusing on kinases; and NucleaRDB, focusing

on NHRs, are also valuable. These resources provide detailed records that address

many protein family specific issues, such as transmembrane structure, known mu-

tations, active site configuration or phylogeny. For example, each MEROPS record

contains a section defining the active site residues of each protease; interestingly,

some, but not all, of these residues are annotated in UniProt, highlighting the need

to consider these specialist resources when available.

19.3.3 Drug absorption, distribution, metabolism
and excretion (ADME)

The mechanism by which a drug is absorbed, distributed, metabolized and excreted

(ADME) from the cell ultimately determines its concentration both at the target and

at off-target locations. Not surprisingly, this complex chain of events, alongside the
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Table 19.2 Bioinformatics tools for genetic analysis in the context of drug discovery and

development

Tool URL

Pharmacogenetics (PGx)

PharmGKB http://www.pharmgkb.org/

PubChem http://pubchem.ncbi.nlm.nih.gov/

DrugBank http://redpoll.pharmacy.ualberta.ca/drugbank/

Pharmacogenomics

Chemical Effects in Biological Systems

(CEBS)

http://cebs.niehs.nih.gov/index.html

Edge2 Environment, Drugs and Gene

Expression

http://edge.oncology.wisc.edu/edge.php

GNF SymAtlas http://symatlas.gnf.org/SymAtlas/

Target PGx

GPCRDB http://www.gpcr.org/

MEROPS (proteases) http://merops.sanger.ac.uk/

Kinweb (Kinases) http://bioinfo.itb.cnr.it/kinweb/index.htm

NucleaRDB (Nuc. receptors) http://www.receptors.org/NR/

Ligand-gated ion channel DB http://www.ebi.ac.uk/compneur-srv/LGICdb/

ADME gene families and pathways

CypAlleles DB http://www.imm.ki.se/CYPalleles/

Cytochrome P450 interaction table http://medicine.iupui.edu/flockhart/table.htm

Directory of P450-containing systems www.icgeb.org/p450/

Human membrane transporter

database HMTD

http://lab.digibench.net/transporter/

Human ABC transporters database http://nutrigene.4t.com/humanabc.htm

Resources for immune-mediated ADRs

Immuno-polymorphism database http://www.ebi.ac.uk/ipd/

MHC haplotype project http://www.sanger.ac.uk/HGP/Chr6/MHC/

IMGT Immunoinformatics page http://imgt.cines.fr/textes/Immunoinformatics.html

study of the target itself, forms the mainstay of most PGx research. The acronym

ADME is becoming ubiquitous in representing these four key events in drug ac-

tion. Sometimes the acronym ADMET is also used to capture toxicology within

this paradigm, although toxicology can arguably be subsumed within ADME, as all

drugs are toxic at sufficient dose, and of course dosage is usually related to one of

these events. Essentially, the study of ADME genetics involves identifying the vari-

ants that influence these processes. Bioinformatics is a valuable tool in the design

of ADME genetic studies, whether they are genome-wide scans or candidate gene

focused. In fact, ADME is rather well suited to the candidate gene approach. A PGx

phenotype can often give strong clues to the likely pathways that may be involved

and also the number of genes involved in ADME processes is likely to be quite fi-

nite. Estimates vary, but it is possible that fewer than 500–600 genes are regularly

involved in ADME processes. The ADME mechanisms of some classes of drugs are
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quite well known, and can be readily reviewed in resources such as PharmGKB or

DrugBank (see below). Adsorption, distribution and excretion are often mediated

by well-characterized drug-uptake or drug-efflux transporters, such as members of

the OATP and p-glycoprotein families, while drug-metabolizing enzyme complexes,

such as CYP, have been characterized for many drugs. This wealth of information cre-

ates opportunities for the creative use of bioinformatics to expand ADME candidate

genes, using expression, pathway and literature information.

Existing knowledge of the routes of drug ADME in the patient also makes targeted

queries of gene-expression data feasible. The route of a drug is well described by

Goldstein et al. (2003). An ingested drug enters gut enterocytes, from where it may

be metabolized, effluxed into the portal circulation, or effluxed back into the gut

lumen. Similarly, a drug delivered to hepatocytes can be metabolized (possibly into

a more reactive metabolite) and excreted into the bile, or returned to the systemic

circulation, from where it can also be excreted, generally through biliary or renal

routes. If the drug target is not located within the immediate reach of the vasculature,

it may be impeded from its target by a number of further barriers, such as the general

barrier between plasma and tissue and the often critical blood/brain barrier (see

Graff and Pollack (2004) for a thorough review of this area). Finally, some drugs

access intracellular molecular targets (e.g., nuclear targets), in which case uptake

into, and efflux out of, the target cell are also likely to be key determinants of drug

delivery and action. All of these further obstacles could limit drug access to certain

cell populations, and in many cases are likely to be mediated by specific ADME genes.

We review the main classes of ADME genes in the following sections.

Genes involved in drug metabolism

There are essentially two different classes of drug-metabolizing enzymes: phase I

enzymes are involved in drug oxidation, reduction, hydrolysis and other transfor-

mations, and phase II enzymes conjugate drugs (e.g., sulphation, glucuronidation,

and glutathione conjugation) to increase solubility, thereby aiding excretion. In man,

these two classes are represented by at least 30 different protein families (Figure 19.6).

Cytochrome (CYP) enzymes are the most ubiquitous phase I enzymes, CYP repre-

senting the largest family of CYP enzymes, and CYP2D6, an enzyme responsible

for the metabolism of 20–30 per cent of prescription drugs, being the most studied

among this family (Vermeulen, 2003). Several highly curated databases deconvolute

the complexity of variation in CYP enzymes. Most highly recommended among these

is the CYPAlleles database (Ingelman-Sundberg, 2002), which contains a detailed

compilation of standardized CYP alleles, based on direct submission and surveys

of the literature. A number of other resources exist in this area and are listed in

Table 19.2.

Conjugation of drugs by phase II enzymes typically results in inactivation, detoxi-

fication, and enhanced likelihood of the excretion of a drug. The three most prevalent
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Figure 19.6 Phase I and phase II drug-metabolizing enzymes

classes of phase II metabolism are sulphation, mediated by members of the cytoso-

lic sulfotransferase (SULT) superfamily; glucuronidation, mediated by the uridine

diphosphate-glucuronosyl transferase (UGT) superfamily; and glutathionation, me-

diated by the glutathione-S-transferase (GST) superfamily. These conjugations oc-

cur directly on the parent compounds that contain appropriate structural motifs, or,

more frequently, on functional groups added or exposed by phase I oxidation. The

increase in molecular weight and water solubility that these conjugations cause tends

to decrease membrane permeability dramatically, calling for active biliary or hepatic

transport mechanisms to excrete these conjugates effectively (Zamek-Gliszczynski

et al., 2006). Unlike phase I enzymes, there are few specific databases for phase

II enzymes; however, they are well represented in general PGx resources such as

PharmGKB (Table 19.2). Alternatively, as always, a query on one member of a gene

family with resources such as UniProt (http://www.uniprot.org/) can be used to de-

termine other human family members, by utilizing UniProt links to other resources

such as HoverGen and PFAM.

Genes involved in drug adsorption, distribution and excretion

Absorption, distribution and excretion of drugs and/or metabolites can sometimes

be mediated by the same proteins; in the case of transport from blood to hepatocyte

and vice versa, this can be mediated by bidirectional transporter families, such as

the organic anion-transporting polypeptides (OATP) or organic anion transporters

(OAT). In most cases, these proteins strongly favour inwardly directed transport into

the liver and so are probably most comfortably placed within the absorption group

in the ADME paradigm (Zamek-Gliszczynski et al., 2006).
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Drug efflux from the liver, appears to be carried out by a wide range of proteins, the

most notable of which are members of the ATP-driven multidrug resistance protein

(MRP) family, including ABCC2, ABCG2, ABCC3 and ABCC4. These proteins are

part of a large family of transporters, the ABC transporters, at least 48 of which exist

in man. A number of members of the ABC-transporter family are known to have

significant effects on drug absorption, distribution and excretion. These members

are reasonably well catalogued in several databases. Perhaps the most immediately

accessible is the Human ABC-Transporter Database (Table 19.2) (Dean et al., 2001).

This gives a summary of key information on expression, function and substrate for

each ABC family member. It is worth noting that members of the ABC family play a

significant role in the emergence of drug resistance in tumour therapy. Szakács et al.

(2002) profiled mRNA expression of the 48 known human ABC transporters in 60

diverse cancer cell lines. They showed that 29/48 transporters influenced the response

of cells to drug treatment, including a number of ABC transporters of unknown

function. Aside from the obvious relevance that this has to tumour therapy, it also

illustrates the possible role that uncharacterized members of this family may play

in ADME, and suggests that most of the 48 family members should be considered

candidates for ADME phenotypes.

Several other transporter families are known to play a role in ADME. A good

resource to identify these is the Human Membrane Transporter Database (HMTD)

(Yan and Sadee, 2000), which indexes all known transporters, including pharmaceu-

tically relevant members outside the ABC family, such as the serotonin transporter,

SLC6A4. Indexing is performed in a number of ways, as by the substrate or drug trans-

ported. Alternatively, it is possible to reverse the query and ask which transporter is

known to transport a given drug, using the drug as a query for the PharmGKB, or

DrugBank databases.

19.3.4 The role of pharmacodynamics versus
pharmacokinetics in PGx

One final word on the mechanisms that need to be investigated to study a PGx re-

sponse. Variability in drug action may not be directly related to functional changes

in ADME proteins (essentially a pharmacokinetic event); it may also arise through a

pharmacodynamic mechanism. For example, the drug might interact with other

(unintended) targets – so-called off-target effects. There may be variability in

the function or expression level of the target, which might be caused by varia-

tion in the promoter or other regulatory regions. Finally, it is possible that other

molecules (or drugs) might modulate the biological context within which the drug–

target interaction takes place. Variation in any of the elements that control these

types of processes can lead to variability in drug action, which might well con-

found the search for causative genes among the usual ADME and target-related

candidates.
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19.3.5 Using bioinformatics to gain understanding of adverse
drug reaction (ADR)

One of the biggest concerns during the development of any medication is the pos-

sibility of unintended consequences in the patient. When harmful, these events are

referred to as ADRs. While the nature of the intended benefit of a medication is

usually known, ADRs can be both unprecedented and unpredictable. This problem

mainly stems from the fact that phase I, II and III trials frequently do not have

sufficient power to detect rare ADRs reliably, which may occur at rates of less than

1 in 10 000. A very large proportion of these ADRs are believed to have a genetic

basis; however, by their intrinsic rarity, ADRs can be very challenging to study by

genetic means. The problems of mounting such studies are obvious. Firstly, the dif-

ficulty of ascertainment of sufficient cases usually means a study will be seriously

underpowered. Secondly, clinical trial populations are likely to show racial admix-

ture, further reducing power and introducing the possibility of association signals

due to population stratification (these might be resolved by tools such as STRAT;

see Chapter 10). Finally, the mechanism of the ADR may be completely unknown,

limiting the potential of a candidate gene approach. This combination of unknown

mechanism, limited power and probable admixture makes effective bioinformatics

more important than ever in genetic studies of ADRs.

The mechanisms of ADRs – immune mediation

As previously discussed, the mechanisms underlying ADRs vary considerably. Many

may be due to the traditional target- and ADME-related mechanisms discussed

earlier. However, there also appears to be a common, immune-mediated ADR

mechanism (Bugelski, 2005). For a drug to elicit an immune-mediated response,

it must be both immunogenic (i.e., able to sensitize the immune system) and anti-

genic (i.e., able to evoke a response from a sensitized immune system). Unlike pro-

tein therapeutics, small-molecule drugs are not usually immunogenic or antigenic.

Immune-mediated ADRs are likely to be the result of complex interactions between

drug-metabolizing enzymes, the metabolites of these enzymatic reactions (partic-

ularly reactive metabolites), and the ensuing immune sensitization and response

that may result from these events. Teasing apart the aspects of this interplay calls

for a full integration of data in this area and some quite demanding bioinformatics

analysis.

Immune-mediated ADRs can affect many tissues and organs, including the skin,

lungs, liver and kidneys. Most ADRs are mild (as in minor rashes); however, they can

be severe, leading to organ failure or anaphylactic shock. Although poorly defined,

it is clear that there is a major genetic component in these ADRs. Genetic poly-

morphisms have been identified in a range of immune-related genes and pathways,

including immune receptors, heat-shock proteins, and components of the major
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histocompatibility complex (MHC). A good example of this is the association be-

tween the HLA-B∗5701 haplotype and hypersensitivity to the anti-HIV drug aba-

cavir in HIV patients (Hetherington et al., 2002). Abacavir is a widely used nucle-

oside analogue with potent HIV-1 antiviral activity. Approximately 5 per cent of

patients treated with abacavir develop a hypersensitivity reaction (HSR) character-

ized by multisystem involvement, which has proved fatal in rare cases. The symptoms,

which usually appear within the first 6 weeks of treatment, include fever, rash and

a range of less specific gastrointestinal symptoms; these symptoms improve within

72 h of discontinuation. Rechallenge with abacavir after an HSR episode can be

fatal.

The abacavir HSR has been shown to have a very strong genetic and immune

component, a number of strong associations being reported across the MHC region

(Hetherington et al., 2002; Mallal et al., 2002). Most convincingly, the HLA-B∗5701

ancestral haplotype strongly predicts abacavir hypersensitivity; 74 per cent of patients

carrying this haplotype show a HSR when challenged with abacavir. It is difficult to

determine the molecular basis of this association, as HLA-B∗5701 extends across

several hundred kilobases, encompassing a large number of immune-related genes.

To add further complexity, an HLA-B∗5701 haplotypic polymorphism within the

tumour necrosis factor (TNF) promoter region (TNF-238A) has also been asso-

ciated with the HSR, probably influencing the severity of the HSR by increasing

TNF production (Hetherington et al., 2002). Deconvoluting the molecular basis of

an association to the MHC region is always a challenge, as the entire MHC region

is highly duplicated and polymorphic, making it quite refractory to refinement of

association by existing genetic analysis; however, some progress has been made in

the case of abacavir hypersensitivity. Martin et al. (2004) used recombinant map-

ping techniques to narrow the HLA-B∗5701-associated HSR susceptibility down to

a 14-kb region containing the Hsp70, heat-shock protein cluster. A Met493Thr SNP

in HSPA1L was found in combination with HLA-B∗5701 in 94.4 per cent of hyper-

sensitive cases and 0.4 per cent of controls. Martin et al. speculated that heat-shock

proteins might be involved in hapten formation between reactive metabolites of

abacavir and the HLA∗B5701 peptide substrates. The reactive metabolite hapten

hypothesis of ADRs is becoming well established. It is thought that CYP may bioac-

tivate drugs to chemically reactive or toxic metabolites. These reactive metabolites

may cause initial idiosyncratic hypersensitivity reactions, but further propagation

of these reactions in serious ADRs seems to be mediated by the immune response

of different individuals (Naisbitt et al., 2001). By this hypothesis, haptenation of

HSPA1L with reactive metabolites of abacavir and subsequent presentation of these

haptens in the context of the general presentation of HLA-B∗5701 antigens appears

to induce vigorous T-cell response and HSR. This indicates that the abacavir HSR

may follow the classic two-step process (immune sensitization, followed by response)

mediated by at least two alleles: first, sensitization to a reactive metabolite, in this

case, haptenation mediated by HSPA1L, and then the immune response, the severity

of which appears to be mediated by the TNF-238A allele, which appears to increase
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the severity of the autoimmune HSR. This also illustrates an important point in

the development of robust diagnostic tests for HSRs, especially in the case of drugs

for life-threatening conditions. In the case of abacavir, not all HLA-B∗5701 carri-

ers show HSR. Martin et al. (2004) showed that the use of HLA-B∗5701 alone, as

a diagnostic marker, would inappropriately deny access of 1.6 per cent of their test

population toabacavir. Testing for the combined presence of HLA-B∗5701 and the

HSPA1LM493T variant reduced this percentage to 0.4 per cent, which, on a global

scale, could account for significant additional clinical impact for a badly needed

drug.

19.3.6 PGx and ethnicity

As a general rule, clinical trials in drug development are designed to capture the

full range of variation in drug response within the patient population that is ex-

pected to be exposed to the drug. This usually involves a substantial proportion

of Europeans, African-Americans and Asians – largely reflecting the demograph-

ics of the US population. This design may be relatively effective in assessing drug

response in the expected patient populations, but may miss important variability

in response in ethnic minority populations not included in the trial. Many well-

documented interethnic differences are seen in response to drugs; perhaps one of

the best known is that of response to cardiovascular drugs. In a number of stud-

ies, populations with European ancestry have been shown to respond significantly

better to beta-blockers, ACE inhibitors and angiotensin-receptor antagonists than

populations of African ancestry (Tate and Goldstein, 2004). Some have argued that

this represents a difference in the pathogenesis of cardiovascular disease between

these two populations. There is some evidence to support this; nitrous oxide bioac-

tivity differs between Africans and Europeans, leading to the first FDA approval of

a race-specific drug. BiDil is a nitric oxide enhancer for heart failure approved only

for use in African populations (Senior, 2005). However, there is also a great deal

of evidence that some of these observed differences are mediated by genetic vari-

ation between these populations, based on different polymorphism frequencies in

ADME genes and drug targets (see Goldstein and Tate (2005) for a review of this

area).

Considering these issues, and the likelihood that drug treatment could be tailored

for greater effect where important genetic variants exist between ethnic groups, it

may become important to incorporate this information into the drug development

process. Most analysis of variation to date has focused on Caucasian populations;

however, the HapMap project (see Chapter 3) has revolutionized the understanding

of the differences between four ethnic groups, by generating data from Caucasian,

Yoruban (Nigeria), Japanese and Chinese population samples. The number of data

generated in these population samples may for the first time enable robust genome-

wide studies of genetic variation related to drug response in these populations. Other
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population-specific resources are also being made available in this area; for example,

JSNP (http://snp.ims.u-tokyo.ac.jp/) is a database of common gene variations in

Japanese populations. The database contains 197 157 SNPs (1 July 2006), 84 612

with allele frequency; all SNPs are also deposited in dbSNP. Other databases are also

emerging, including ThaiSNP (http://thaisnp.biotec.or.th:8080/thaisnp/db) and the

Taiwan Han-Chinese SNP database (http://genepipe.ngc.sinica.edu.tw/thcsd/). Each

of these databases could go a long way to answering some of the population-specific

differences seen in drug response.

Now that ethnic variation data are available on a genome-wide scale, there are

great opportunities for PGx. For a given drug, it should be possible to highlight

common ethnic variation in all genes known to be affected by a drug or play a

role in the ADME of a drug. In many cases, rare Caucasian variants will be seen

at much higher frequencies in other ethnic groups and vice versa, highlighting the

importance of considering all variants in PGx phenotypes, regardless of allele fre-

quency. Genome-scale ethnic variation data also allow more esoteric (but pow-

erful) analyses of the possible impact of natural selection on drug response. For

example, individual variation in genes encoding CYP is already known, but their

evolutionary origins in processing dietary toxins are just beginning to be appre-

ciated (Jorge et al., 1999). This suggests that different populations may be under

different selective pressures, such as those of diet or environment, to give obvious

examples.

It is possible to test for signatures of natural selection in specific ethnic groups.

Carlson et al. (2005) and Voight et al. (2006) applied different analysis methods

to SNP data generated in each of three ethnic groups to identify a number of re-

gions showing evidence of strong, recent, selective sweeps. The term ‘selective sweep’

was coined because the alleles contained in the ancestral haplotype harbouring the

selected allele are ‘swept’ along through generation, while the allele undergoing se-

lection leaves a characteristic signature of reduced haplotype diversity in the region

undergoing selection. One gene found by Carlson et al. to undergo strong positive

selection in Caucasian populations (but not in African or Chinese populations) was

the lactase gene. This gene has previously been shown to undergo positive selection,

and has been proposed as an explanation of the observed predominance of lactose

tolerance in Caucasian populations, in contrast to the predominant lactose intoler-

ance in African and Asian populations. This strong positive selection is believed to

have occurred within the past 5000–10 000 years in Caucasian populations, from

the selective advantage that lactose tolerance afforded dairy farming populations

(Bersaglieri et al., 2004). Admittedly, this may not appear of immediate pharmaceu-

tical relevance, but the principle of an enzyme/substrate interaction under selection

is completely analogous to the drug/target paradigm. The data generated by Carlson

et al. (2005) and Voight et al. (2006) are available on the Web. The former is available

as a track (Tajima’s D) in the UCSC genome browser. The latter is available in the

stand-alone Haplotter tool to query by gene, genomic location or SNP (http://hg-

wen.uchicago.edu/selection/haplotter.htm).
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19.3.7 Key tools and databases for PGx

In the previous sections, some of the key mechanisms that form a common ba-

sis of many PGx phenotypes were reviewed. Gathering momentum in the field of

PGx has led to the development of a number of detailed resources that capture

much of this public knowledge of PGx. Table 19.2 lists all of the PGx tools and

databases described in this chapter. It is not possible to review all of these in de-

tail; however, two databases, PharmGKB and DrugBank, are worth some closer

attention.

The pharmacogenomics knowledge base (PharmGKB)

One of the most extensive public domain resources focused on drug pharmaco-

gentics and ADME is PharmGKB, the PharmacoGenomics Knowledge Base (Klein

et al., 2001). This database, which is driven by the NIH Pharmacogenomics Research

Network, is a valuable, highly integrated resource that captures experimental and

literature data on drug–gene interactions. The database is unique among public PGx

databases, in that it provides genotype information related to human drug response,

offering the potential for meta-analysis between related PGx phenotypes. PharmGKB

includes extensive data on drug-metabolizing genes, drugs, diseases and drug path-

ways, all of which are linked to each other and to several primary data sets collected.

The database contains partial information on 8860 human genes, of which 612 have

drug phenotype or genotype data associated with them. Conversely, the database

contains information on 3744 drugs, 82 of which have associated gene phenotype

or genotype information. PharmGKB also contains information on 4076 diseases,

23 of which have associated drug phenotype/genotype information. As these figures

illustrate, PharmGKB is quite data rich, although the high-value data can sometimes

be buried under less directly relevant information curated from the literature. This

is not a criticism of PharmGKB but simply an observation of some of the pitfalls in

data mining – the more sensitive the approach, the higher the signal-to-noise ratio

tends to be. However, we must credit the PharmGKB team with providing flexible

query interfaces that allow us to exclude data from different evidence sources. Phar-

mGKB also maintains an expanding range of fully interactive drug metabolism/action

pathways (18 pathways; June 2006). These describe the molecular pathways for

key drug classes, including ACE inhibitors, statins, antiarrhythmic agents and

glucocorticoids.

DrugBank

While PharmGKB offers a highly integrated view of drug–gene and drug–pathway

interactions, another quite complementary resource is DrugBank. This database is
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more drug-centric, focusing on 250 of the most frequently prescribed FDA-approved

drugs. For each drug, DrugBank provides drug structure, generic and chemical

names, 3-D structures, drug class, indication, and other aspects of pharmacology.

Alongside the drug information, it also provides pharmacodynamic information, in-

cluding the known protein target, 3-D structure, cellular localization and interacting

partners. Finally, it provides drug pharmacokinetic information, including toxicity,

metabolic fate and known metabolizing enzymes. The information in PharmGKB

and DrugBank does not appear to overlap substantially; for example, DrugBank of-

ten records which enzyme is involved in the metabolism of a drug, where PharmGKB

might only record other genes that are upregulated by drug treatment. The poten-

tial power of DrugBank probably lies in the wide range of query methods. We can

use simple browsing, text queries and sequence queries (BLAST), but we can also

do more complex queries based on chemical structure (using a structure-drawing

applet). This flexibility allows users to scan DrugBank with a new chemical structure

or a library of structures to identify the protein targets to which these compounds

might bind or which phase I metabolizing enzymes might act on them. The power

of a query to DrugBank is obviously limited by the quality and number of data in

DrugBank, but as the database continues to develop, it is likely to become increasingly

valuable.

19.3.8 Bioinformatics approaches to identify PGx candidate genes

We hope that this review has made the process of identification of candidate genes for

PGx traits clearer to the reader. By a combination of the resources reviewed here, it

should be possible to identify sets of genes in which polymorphisms might reasonably

be expected to modulate PGx phenotypes. It should be possible to front-load a study

with relevant PGx candidate genes or to filter a genome-wide approach by looking

for genes with a PGx rationale.

Beyond the known PGx candidate approach, there is clearly a lot that is still

unknown about PGx and ADME events; therefore, the candidate gene net should

sometimes be spread wider. For example, in the case of a genetic association with

a genomic region, it may be worthwhile considering all genes that are expressed in

the tissue where the phenotype is observed. Usually, this is likely to include the liver,

although in some ADRs the location may be more specific, as in the skin. More

general bioinformatics tools and databases can be used to carry out these types of

queries. For example, the GNF SymAtlas tool (http://symatlas.gnf.org/SymAtlas/)

can be employed by non-profit users to identify all genes in a genomic region that are

expressed in the liver. This is simply carried out by loading the list of gene symbols

or accessions to SymAtlas; these should appear in the left-hand panel of the tool.

Select the list of genes with the checkbox. Next, follow the Search Expression link

and select the Human GeneAtlas GNF1H, MAS5. Then select Intersect with previous

and select Liver > 2. After pressing the search button, the uploaded gene list will be
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modified to show only those genes expressed in liver (see Chapter 18 for more detailed

coverage of this tool).

A number of public data resources are also being established to provide freely

accessible microarray data on drug- and toxicity-related phenotypes. For example,

the Chemical Effects in Biological Systems (CEBS) database (Mattes et al., 2004) is

a highly recommended resource that accommodates gene-expression profiles, and

proteomics and metabolomics data and allows very complex queries across more

than 100 experiments, mostly performed in rat liver. These experiments include data

generated after exposure to members of key drug classes, including the antidiabetic,

troglitazone (Rezulin); the antiepileptic, valproic acid; and the antidepressive, fluox-

etine (Prozac) among other drugs (Mattes et al., 2004). The CEBS interface allows

the user to identify rat genes, which are differentially regulated by treatments with

these drugs, and to overlay known pathways and gene ontologies. Another expanding

database is the Edge2, which, though currently limited to data on 29 experiments,

may develop into a resource of value. The database contains mouse gene-expression

profiles recorded in response to treatment with different toxic molecules, protein

agents and drugs, including acetaminophen, TNF and carbamazepine (Hayes et al.,

2005).

19.4 Conclusions: toward ‘personalized medicine’

One of the ultimate goals of genetics research in drug discovery is to develop the

ability, based on in vitro and animal data, to predict in vivo drug efficacy and avoid

adverse events in man. Good progress is already being made in this direction, with

the cataloguing of genetic variants in targets and drug ADME genes. Evaluating the

in vitro consequences of these variants and relating these consequences to clinical

drug action is the next big challenge. As the fields of target genetics and PGx advance,

the ideal of personalized medicine is becoming more tangible. How soon this ideal

becomes reality will entirely depend on our understanding of the interplay between

the almost unfathomable complexity of interactions between drug, patient and envi-

ronment. Bioinformatics (alongside cheminformatics and mathematical modelling,

to name a few of the other players) may be one of the integrative solutions to this

problem.
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Appendix I

IUPAC nucleotide ambiguity codes

IUPAC code Meaning Complement

A A T

C C G

G G C

T/U T A

M A or C K

R A or G Y

W A or T W

S C or G S

Y C or T R

K G or T M

V A or C or G B

H A or C or T D

D A or G or T H

B C or G or T V

N G or A or T or C N

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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IUPAC amino-acid codes

IUPAC amino-acid Three-letter Amino

code code acid

A Ala Alanine

C Cys Cysteine

D Asp Aspartate

E Glu Glutamate

F Phe Phenylalanine

G Gly Glycine

H His Histidine

I Ile Isoleucine

K Lys Lysine

L Leu Leucine

M Met Methionine

N Asn Asparagine

P Pro Proline

Q Gln Glutamine

R Arg Arginine

S Ser Serine

T Thr Threonine

V Val Valine

W Trp Tryptophan

Y Tyr Tyrosine
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Human codon usage table

Second codon

First Last

codon U C A G codon

U

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C

Leu Ser Stop Stop A

Leu Ser Stop Trp G

C

Leu Pro His Arg U

Leu Pro His Arg C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

A

Ile Thr Asn Ser U

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met Thr Lys Arg G

G

Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G
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Appendix II Amino-Acid
Substitution Matrices

More information on these matrices is available at the following site:

http://www. russell.embl-heidelberg.de/aas.

All protein types

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0

ARG -2 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2

ASN 0 0 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2

ASP 0 -1 2 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2

CYS -2 -4 -4 -5 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2

GLN 0 1 1 2 -5 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2

GLU 0 -1 1 3 -5 2 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2

GLY 1 -3 0 1 -3 -1 0 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1

HIS -1 2 2 1 -3 3 1 -2 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2

ILE -1 -2 -2 -2 -2 -2 -2 -3 -2 2 -2 2 1 -2 -1 0 -5 -1 4

LEU -2 -3 -3 -4 -6 -2 -3 -4 -2 2 -3 4 2 -3 -3 -2 -2 -1 2

LYS -1 3 1 0 -5 1 0 -2 0 -2 -3 0 -5 -1 0 0 -3 -4 -2

MET -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 0 -2 -2 -1 -4 -2 2

PHE -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 -5 -3 -3 0 7 -1

PRO 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 1 0 -6 -5 -1

SER 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 1 -2 -3 -1

THR 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 -5 -3 0

TRP -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 0 -6

TYR -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 -2

VAL 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)



OTE/SPH OTE/SPH

JWBK136-App2 February 16, 2007 15:32 Char Count= 0

534 APPENDIX II AMINO-ACID SUBSTITUTION MATRICES

Extracellular proteins

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA 0 0 -1 -4 0 0 0 0 0 0 0 0 -1 0 0 0 -2 -1 0

ARG 0 0 0 -5 0 0 0 0 0 -1 1 0 -1 0 0 0 -1 0 0

ASN 0 0 1 -6 0 0 0 0 -1 -2 0 -1 -2 0 0 0 -3 -1 -1

ASP -1 0 1 -7 0 0 0 0 -2 -2 0 -2 -2 0 0 0 -3 -2 -1

CYS -4 -5 -6 -7 -5 -6 -6 -5 -5 -5 -6 -5 -5 -6 -5 -5 -5 -4 -4

GLN 0 0 0 0 -5 0 0 0 -1 -1 0 0 -2 0 0 0 -1 -1 0

GLU 0 0 0 0 -6 0 -1 0 -1 -1 0 0 -2 0 0 0 -1 -1 0

GLY 0 0 0 0 -6 0 -1 0 -2 -2 -1 -2 -3 0 0 0 -2 -2 -2

HIS 0 0 0 0 -5 0 0 0 -1 -1 0 -1 -1 0 0 0 -1 0 -1

ILE 0 0 -1 -2 -5 -1 -1 -2 -1 1 0 0 0 -1 -1 0 -1 0 2

LEU 0 -1 -2 -2 -5 -1 -1 -2 -1 1 -1 1 0 0 -1 0 -2 -1 1

LYS 0 1 0 0 -6 0 0 -1 0 0 -1 -1 -2 0 0 0 -2 -1 0

MET 0 0 -1 -2 -5 0 0 -2 -1 0 1 -1 0 -1 -1 0 -1 -1 0

PHE -1 -1 -2 -2 -5 -2 -2 -3 -1 0 0 -2 0 -2 -2 -1 1 2 0

PRO 0 0 0 0 -6 0 0 0 0 -1 0 0 -1 -2 0 0 -3 -1 0

SER 0 0 0 0 -5 0 0 0 0 -1 -1 0 -1 -2 0 1 -1 -1 -1

THR 0 0 0 0 -5 0 0 0 0 0 0 0 0 -1 0 1 -1 -1 0

TRP -2 -1 -3 -3 -5 -1 -1 -2 -1 -1 -2 -2 -1 1 -3 -1 -1 1 -1

TYR -1 0 -1 -2 -4 -1 -1 -2 0 0 -1 -1 -1 2 -1 -1 -1 1 0

VAL 0 0 -1 -1 -4 0 0 -2 -1 2 1 0 0 0 0 -1 0 -1 0

Intracellular proteins

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA 0 -1 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -2 -1 0

ARG 0 0 0 -1 0 0 0 0 -1 -1 1 0 -2 0 0 0 -1 -1 -1

ASN -1 0 1 -1 0 0 0 0 -2 -2 0 -1 -2 -1 0 0 -2 -1 -2

ASP -1 0 1 -2 0 1 0 0 -3 -3 0 -2 -3 0 0 0 -2 -2 -2

CYS 0 -1 -1 -2 -2 -2 -1 0 0 0 -1 0 0 -2 0 0 -1 0 0

GLN 0 0 0 0 -2 1 0 0 -2 -1 0 0 -2 0 0 0 -2 -1 -1

GLU 0 0 0 1 -2 1 -1 0 -2 -2 0 -1 -2 0 0 0 -2 -1 -1

GLY 0 0 0 0 -1 0 -1 -1 -3 -3 0 -2 -3 0 0 -1 -2 -2 -2

HIS -1 0 0 0 0 0 0 -1 -2 -1 0 -1 -1 -1 0 0 0 1 -1

ILE 0 -1 -2 -3 0 -2 -2 -3 -2 2 -1 1 0 -2 -2 0 -1 0 2

LEU 0 -1 -2 -3 0 -1 -2 -3 -1 2 -1 2 1 -2 -2 -1 0 0 1

LYS 0 1 0 0 -1 0 0 0 0 -1 -1 0 -2 0 0 0 -1 -1 -1

MET 0 0 -1 -2 0 0 -1 -2 -1 1 2 0 1 -1 -1 0 0 0 0

PHE -1 -2 -2 -3 0 -2 -2 -3 -1 0 1 -2 1 -2 -2 -1 1 2 0

PRO 0 0 -1 0 -2 0 0 0 -1 -2 -2 0 -1 -2 0 0 -2 -1 -1

SER 0 0 0 0 0 0 0 0 0 -2 -2 0 -1 -2 0 0 -2 -1 -1

THR 0 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 -2 -1 0

TRP -2 -1 -2 -2 -1 -2 -2 -2 0 -1 0 -1 0 1 -2 -2 -2 2 -1

TYR -1 -1 -1 -2 0 -1 -1 -2 1 0 0 -1 0 2 -1 -1 -1 2 0

VAL 0 -1 -2 -2 0 -1 -1 -2 -1 2 1 -1 0 0 -1 -1 0 -1 0



OTE/SPH OTE/SPH

JWBK136-App2 February 16, 2007 15:32 Char Count= 0

APPENDIX II AMINO-ACID SUBSTITUTION MATRICES 535

Transmembrane proteins

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA -1 -1 0 0 -2 0 1 -3 0 -2 -2 -1 -2 0 2 1 -4 -3 0

ARG -1 2 1 -1 6 2 0 5 -3 -3 9 0 -4 -3 -1 -1 5 -1 -2

ASN -1 2 6 -1 3 1 -2 3 -3 -4 5 -2 -4 -2 2 1 -3 -1 -3

ASP 0 1 6 -3 2 8 2 3 -3 -5 3 -3 -6 -2 0 0 -4 -2 -3

CYS 0 -1 -1 -3 -3 -3 -1 -1 -1 -1 -3 -1 1 -3 2 0 1 3 0

GLN -2 5 3 2 -3 7 -2 7 -4 -2 6 -2 -4 0 -1 -2 0 0 -4

GLU 0 2 1 8 -3 7 3 2 -4 -5 1 -3 -6 -3 0 -1 -3 -5 -2

GLY 1 0 -2 3 -1 -1 3 -3 -2 -4 -1 -3 -5 -1 1 0 -2 -5 -1

HIS -3 5 3 3 -1 7 2 -3 -4 -4 4 -3 -3 -4 -2 -2 -1 6 -4

ILE 0 -3 -3 -3 -1 -4 -4 -2 -4 1 -4 1 -1 -3 -1 0 -3 -4 2

LEU -2 -3 -4 -5 -1 -2 -5 -4 -4 1 -4 1 1 -1 -2 -1 -2 -3 0

LYS -2 9 5 3 -3 6 1 -1 4 -4 -4 -1 -5 -4 -1 -2 3 1 -4

MET -1 0 -2 -3 -1 -2 -3 -3 -3 1 1 -1 0 -3 -2 0 -2 -3 1

PHE -2 -4 -4 -6 1 -4 -6 -5 -3 -1 1 -5 0 -4 -1 -2 -3 2 -1

PRO 0 -3 -2 -2 -4 0 -3 -1 -4 -3 -1 -4 -3 -4 -1 -1 -6 -5 -3

SER 2 -1 2 0 1 -1 0 1 -2 -1 -2 -1 -2 -1 -1 2 -3 0 -1

THR 1 -1 1 0 0 -2 -1 0 -2 0 -1 -2 0 -2 -1 2 -4 -3 0

TRP -3 5 -3 -4 1 0 -3 -2 -1 -3 -2 3 -2 -3 -6 -3 -4 -3 -2

TYR -3 -1 -1 -2 3 0 -5 -5 6 -4 -2 1 -3 2 -5 0 -3 -3 -4

VAL 0 -2 -3 -3 0 -4 -2 -1 -4 2 0 -4 1 -1 -3 -1 0 -2 -4
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Affymetrix, 240, 372

microarrays, 166, 351, 372

SNP chips/arrays, 150, 151, 158, 426, 432,

460–1

compared with Illumina panels, 461, 466,

467, 469

Alagille syndrome, 273

alanine, 319, 320, 321

alcohol-related phenotypes, 408

aliases, checking, 99

alkaptonuria, gene responsible, 508

ALLASS software, 230

alleles

frequency, estimation using Perl, 26–8

identical by descent (IBD), 219, 223

identical by state (IBS), 219

sharing, 219

Alzheimer’s disease, 9, 166, 251, 507

amino acids

amphipathic, 319, 328–9

aromatic ‘stacking’ interactions, 320

characteristics (of individual amino acids),

321–34

classifications, 316–18

by chemical/physical/structural

properties, 317–18

by mutation/substitution matrices,

316–17

codes, 530

disulphide bond formation, 273–4, 312,

316, 331

glycosylation of, 316, 329, 330, 331

hydrophobic, 319–20

with aliphatic side-chains, 319, 321–3,

333–4

with aromatic side-chains, 319–20, 323–5

pairs, effect on protein structures, 337

phosphorylation of, 316, 324, 330, 331

polar, 320, 324–31

properties, 318–21

evaluation tools, 270

sequences, alteration by DNA variants, 10

small, 320–1

Taylor classification, 317–18

variants, impact on protein structures, 272,

334–9

Bioinformatics for Geneticists, Second Edition. Edited by Michael R. Barnes
C© 2007 John Wiley & Sons, Ltd ISBN 978-0-470-02619-9 (HB) ISBN 978-0-470-02620-5 (PB)
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amino-acid substitutions

factors affecting consequences, 268–74

functional context, 273–4

matrices, 533–5

physicochemical environment affecting,

269, 511

protein structure affected by, 270–2

site-specific, 335–6

ANALYZE software, 224–5

ancient repeats, 127–8, 132

aneuploidy, in tumour genomes, 425

Angelman syndrome, 157

anonychia, homozygosity mapping, 151–2

ApoE/APOE gene, 9, 166, 251

Applied Biosystem, 148, 150

Arg184Cys mutation, 273

arginine, 319, 320, 326–7

interaction with phosphates, 326, 327

in salt bridges, 326

Argonaute database, 345, 363

ARLEQUIN software, 172, 230

array comparative genomic hybridization

(aCGH)

analysis, 428–31

publicly available data resources, 427–8

technologies, 425–7

ArrayExpress data repository, 71, 75, 377,

432

asparagine, 316, 320, 329

aspartate, 317, 328

aspartic acid, 317

association analysis, 223–9

Bayesian approaches, 457–9

compared with linkage analysis, 9, 10, 448

complex disease susceptibility genes

identified using 448–9

cross-validation approach, 455

direct approach, 43

genetic loci defined using, 190–1

genome-wide, 11, 447

HapMap data used, 42–53, 176–8

indirect approach, 43

investigating positive findings, 454–5

replication aspects, 455–6, 475–6

sample sizes, 450–1, 452

thresholds of significance, 451–2

type I errors (false-positives), 11, 167, 187,

451, 454

asthma, 510

AVID alignment tool, 119, 121–2

BACE1 gene, 97

accession numbers, 98, 99

aliases/synonyms, 99

ECR comparative genome browser, 92, 93

UCSC genome browser, 89, 90, 98, 100, 101

Bacillus stearothermophilus, 338

backcross (BC), 235

bacterial artificial chromosome (BAC) clones,

60

basal cell carcinoma, 158

BASE microarray database package, 379–80

compared with other tools, 378

Bayesian analysis, 457

in genome-wide association analysis,

457–9

BayesMiRNAfind tool, 345, 350

BiDil (nitrous oxide enhancer), 521

BioCarta pathway tool, 478

and DAVID annotation tool, 483, 486, 487

BioMart software, 71, 80

BLAST, 71, 87, 97

applications, 62, 97–8, 120

limitations, 8

BLASTN, 65, 120

BLASTP, 67

BLASTX, 201

BlastZ alignment tool, 119, 121

BLAT, 65, 71, 76, 87, 97, 119, 124

homology searching, 87, 192, 193

BLOSUM matrices, 317

bone mineral density (BMD)

factors affecting, 167, 227

lowering stringency, 452, 474

Bonferroni correction, 180, 451

BRAC1/BRAC2 genes, 9, 148, 254, 416, 433

BRAF locus, 416

breast cancer, 9, 148, 254, 416

BXD recombinant inbred (mouse) strains,

398–9

C programming language, 473

cancer

breast cancer, 9, 148, 254

colon cancer, 439

epigenetics, 204, 438

lung cancer, 424

miRNA/ncRNA in, 356–8

neuroblastomas, 416, 425, 439

ovarian cancer, 9, 416

prostate cancer, 166, 175, 300, 437–8
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cancer cell lines, 417

cancer genetics, 413–45

approaches to studying, 415–18

cancer cell lines, 417

recent technologies, 418

stdy design, 416–17

general resources, 418–20

Cancer Genome Anatomy Project (CGAP),

418–20, 419

Cancer Genome Project (CGP), 418, 419

cancer-related gene list, 422

genome copy number data, 428

cancer genomes, 414–15

candidate gene(s)

bioinformatics approaches to identify,

524–5

biological rationale, 201–3

Crohn’s disease, 204, 210, 212, 251

interactions, 5–6

mapping, 152

Parkinson’s disease, 479

candidate polymorphisms, 251–2

CARD15 gene

association with Crohn’s disease, 192, 251,

468

see also NOD2 gene

case-control cohorts, 167, 176

Catalogue of Somatic Mutations in Cancer

(COSMIC), 419, 421–4

query interface, 423

catechol drug pharmacogenetics, gene(s)

associated, 251

cathepsin K, 495

CCDS project, 87

CCND1 gene, 433

CCR6 gene, 189

CDK4 gene, 435, 436

CDKN2A gene, 415, 424, 425

Celera Genomics (CG)

genomic sequence assembly method, 60–1,

61–2

compared with other assembly methods,

62–3

Center for Information Biology Gene

Expression (CIBEX) data repository,

377

CFTR gene, 8

CGHAnalyzer software, 429–30, 436, 437

CHAOS alignment tool, 119, 120

ChARM software, 435

Chemical Effects in Biological Systems (CEBS)

database, 515, 525

‘chemical individuality’, 508, 509

chi-square test, 175, 223, 224

chromatin immunoprecipitation (ChIP)

technique, 207, 286, 295

data, 206, 295

chromosomal aberration(s), databases, 357,

419, 427

circular binary segmentation (CBS) algorithm,

430, 431

cis-acting expression quantitative trait loci,

14

CisModule algorithm, 283, 293

cis-regulatory elements, 106

location, 136–7

cis-regulatory modules (CRMs), 257–8

constructing, 293

databases, 294

predicting, 294

Clusters of Orthologous Groups of proteins

(COGs), database, 67, 71

co-regulated genes, identification of, 295

codon usage, 531

colon cancer, 439

combinatorial network-analysis methods, for

system genetic analysis, 400

common disease/common variant (CD/CV)

hypothesis, 251, 449, 469

alleles supporting, 251

comparative genomic hybridization (CGH),

detection of, 157–60

comparative genomics, 8, 92–4, 105–44

applications, 132–7

disease-related studies, 135–7

specific locus studies, 135–7

ultra-conserved regions, 133–5

concepts, 109–13

branch length/distance, 111–12

divergence time, 111

phylogenetic scope, 111

future directions, 137–8

integration with genetic variation data,

137–8

and population genetics, 131–2

practicalities, 113–18

available genomic sequences, 113,

115–16

defining and obtaining genomic

sequences, 116–18
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comparative genomics (cont.)

technology, 118–32

alignment production, 118–25

detecting selection, 126–31

visualizing genomic alignments, 114,

125–6

‘compartmentalized shotgun assembler’, 61

complex disease, 9

multigenetic causes, 250

non-coding RNAs in, 359–62

role of epigenetics, 205

complex disease susceptibility alleles, likely

nature, 450

composite interval mapping (CIM), 235, 396

computer programming

documentation for, 19–20

modularity, 19

problem solution by, 20

COMT gene, 251

consensus coding sequence (CCDS) project,

89

CONSENSUS program, 283, 291

conserved non-coding sequences (CNS), 267

conserved non-genic sequences (CNGs), 133

copy number alterations, in cancer, 425–31

copy number polymorphisms (CNPs),

157–60, 186, 209, 415

tools for study, 209, 213

CpG islands, 255, 285

Crohn’s disease, 9, 166, 174, 191

candidate genes, 9, 166, 174, 192, 204, 210,

212, 251, 468

biological rationale, 201–2

susceptibility locus (IBD5), 191–209

cross-species genome comparison, 8

CSHLmpd database, 283, 285–6

CTSK gene, 227

CYP2D6 enzyme, 516, 517

CYPAlleles database, 515, 516

cysteine, 320, 331–2

cystic fibrosis, 8, 153

cytochrome (CYP) enzymes, 516, 517

cytoslic sulfotransferase (SULT) enzymes, 517

data entry, 20

data integration, 7

data management, 7, 17–31

data manipulation, 17–31

basic principles, 18–21

examples, 21–30

practical details, 21–2

see also Perl coding language

data mining, 7

factors affecting, 7

data repositories for microarray data, 377

compared with research databases, 377

data storage, 20–1

Database of Genomic Variants, 209, 213

database software, 21

Database of Transcription Start Sites (DBTSS),

256, 283, 285

databases

cancer mutation, 419, 421–52

chromosomal aberrations, 357, CHAP 17

cis-regulatory modules, 294

disease-specific, 424–5

drug–gene interactions, 515, 523–4

drug-metabolizing enzymes, 515, 516, 517

gene-expression data, 71, 75, 377, 427, 432

genetic associations, 500

micro-RNAs, 345, 351, 354, 363

Mouse Genome, 69, 71, 236

mRNA, 89–91, 265

non-coding RNAs, 72, 345

patents, 501

promoter regions, 256, 283, 285

proteins, 87, 91, 271, 340, 345

SNPs, 7, 8, 71, 72, 150

ethnic group specific, 522

transcription factor binding sites, 283, 290

see also individual named databases

DAVID tool, 478, 483–6

annotation by

BioCarta pathway, 486, 487

GO terms, 484–5, 486

KEGG pathway, 486, 487

dbSNP database, 7, 8, 71, 72, 150

data not represented, 150

HapMap data available, 39

dChip software, 434–5

deep vein thrombosis, gene(s) associated,

251

DeepView tool, 270, 272, 511

examples of use, 512, 514

diabetes

type 1, 180

type 2, 9, 251

gene(s) associated, 9, 251, 448, 452

DiGeorge syndrome, 157

disease-associated genes, 9, 103, 251
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Distributed Annotation System (DAS), 71, 80,

87

disulphide bonds, formation of, 273–4, 312

divergence time, 111

DMAP program, 230

DNA copy number alterations, 425–31

databases, 427–8

DNA methylation sites, 207

DNA mutations

diversifying selection, 110

purifying selection, 109

DNA polymorphism, 252, 260

dominant disease, mutation, 152

dotplots, genomic sequence alignments

visualized by, 114, 125–6

Down’s syndrome, 157

Dragon PF and GSF programs, 283, 288

drug absorption, distribution, metabolism and

excretion (ADME), 513, 515–18

genes involved in, 515, 516–18

routes, 516

drug discovery and development

causes of failures, 496

genetics in, 11, 497–8

project timescale, 498

drug-metabolizing enzymes, 516–17

DrugBank, 503–4, 506, 515, 523–4

druggable gene, 500

druggable genome, 502

website, 504, 506

ECR comparative genomics browser, 92

BACE1 gene, 92, 93

EHPLUS software, 172, 226, 229

embedded genes, 96–7

EMBOSS package, CpGPlot program, 207,

213, 283, 285

Encyclopaedia of DNA Elements (ENCODE)

project, 37, 138, 206, 351

epigenomic data, 206

ncRNA data, 351, 352

Ensembl database, 8, 13, 70, 72–3, 117

cross-species comparisons, 92

database management system used by, 473

genome browser, 71, 72–3, 87, 176, 213, 283

FOXP2 gene, 73, 74

promoter region annotation, 257

HapMap data available, 39

Entrez Gene database, 71, 78, 87, 88, 99, 283

ePCR program, 65, 71

EphB6 gene, 489

epigenetic analysis, Mendelian disorders, 160,

162

epigenetics, 12–13, 204

and cancer, 204, 438

integrated into genetic analysis, 205

epigenomic data, 206–7

epigenomics, 204

epistasis, 456–7

Eponine program, 283, 287

ESEfinder tool, 257, 260, 283, 297

ethnic groups, in HapMap, 37, 521

ethnicity, and pharmacogenetics, 521–2

Eukaryotic Promoter Database (EPD), 256,

283, 285

European Bioinformatics Institute (EBI)

ArrayExpress repository, 377

database(s), 68, 71

EvoFold RNA secondary structure prediction

method, 351

evolution

key mutations, 338–9

protein, 313–14

evolutionarily conserved region (ECR) data, 92

BACE1 gene, 92, 93

Excel (spreadsheet software), 20

limitations, 472

exonic splicing enhancers and silencers

(ESE/ESS), 180, 255, 259

example, 254

identification of, 297–8

exons, 255

expectation-maximization (EM), maximum

likelihood estimate (MLE), 172, 225

expressed sequence tags (ESTs)

as evidence sources of mRNA, 89

novel gene information, 200

spliced, 100, 155, 199

expression microarrays, 295

expression QTLs (eQTLs), 390

reducing size, 397

use in identifying candidate genes, 403–8

extracellular proteins, 312

amino-acid substitutions, 269, 534

facioscapulohumeral muscular dystrophy

(FSHD), 162

factor V gene, 251

false discovery rate (FDR), 392, 395, 451

Family Based Association Tests (FBAT), 176
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FASTLINK software, 218

FastSNP tool, 270, 275–6

FCGR3B gene, 158, 159

FGFR1 gene, 436

fibroblast growth factors, 314, 315

FirstEF program, 283, 288

FLT3 gene, 423

FlyBase database, 69, 71

Food and Drug Administration (FDA, USA),

on pharmacogenetics, 497

formaldehyde-assisted isolation of regulatory

elements (FAIRE) procedure, 207

four-box model approach to genome scan

prioritization, 476, 477

fourfold degenerate sites, 127

FOXP2 gene, 68

FOXP3 gene, 254

FPC program, 60

fragile X disease, 152

Frataxin, 9

frequentist analysis, 458

Friedreich’ ataxia, 9

FTE text editor, 472

functional polymorphisms

cis-acting, 282

in genes and gene regulatory sequences, 254

identifying, 211–12

trans-acting, 282

G-protein-coupled receptors (GPCRs), 87,

271, 502, 510

database, 506, 510, 513, 515

as oour receptors, 503

G2D (Genes to Diseases) tool, 210–11

gain-of-function (GOF) effects, 499, 500

GBrowse genome browser, 71, 80

Gecko microarray database package, 380–1

compared with other tools, 378

GenBank database

BAC clone sequence data, 60, 64

Homo sapiens CAGH44 mRNA, 68

gene(s)

aliases and synonyms, 99

anatomy, 255, 258–65

content, 106–7

definition, 106

embedded genes, 96–7

locating

by gene names and symbols, 99

by genome coordinates, 100

primary accession numbers, 98

by raw sequence data, 97–8

secondary accession numbers, 98

names and symbols, 99

overlapping genes, 96

splicing, 258

synonyms and aliases, 99

gene analysis, reasons for learning how to,

86–8

gene expression, 281

as filter for output of genome scans, 479–81

heritability, 391–3

sources of variation, 391

gene expression data

analysis software, 434–5

in cancer, 432–5

databases, 71, 75, 377, 427, 432

gene expression microarrays, 11, 295

earliest use, 390–1

Gene Expression Omnibus (GEO) data

repository, 71, 75, 377, 427, 432

gene finding and analysis, tools, 71–2, 87

gene–gene interactions, 456–7

gene locus

defining from linkage and association data,

189–91

definition, 188–9

gene models, complexities, 95–7

Gene Ontology (GO) project, 69, 71

classification terms, 211, 313

in DAVID annotation tool, 483, 484–5,

486

gene–phenotype association

detection of, 153–7, 175–6

proof required, 180

gene prediction, 65

ab initio 65, 66, 71, 91–2

Acembly program, 71, 77

GENEWISE algorithm, 66, 70, 71, 87

GENSCAN program, 66, 70, 72, 87

reasons for learning how to, 86–8

use of sequence similarity, 65–6, 92–4

gene product(s)

evidence cascade for, 88–94, 95, 101

heterogeneity, 96

gene regulation, factors affecting, 14

gene regulatory networks (GRNs), 281

gene regulatory sequences

analysis, 281–309

resources, 283
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GENEHUNTER software, 218, 226

GENEHUNTER-PLUS software, 219

GeneNetwork.org, 14, 390, 401–2

WebQTL tool, 390, 401

correlation results, 404

interval mapping, 405

query interface, 402

trait data page(s), 401, 403

Generic Genome Browser, HapMap data

available via, 40

Generic Model Organism Database (GMOD)

project, microarray data module, 382

Genetic Association Database (GAD), 500, 506

genetic association network, 407

genetic association scans, 102

see also genome scan analysis

genetic correlation analysis, 397–400

impact of study design, 398

reference populations, 398–400

genetic data

managing and manipulating, 17–31

see also data . . .

Genetic Data Analysis (GDA) tool, 230

genetic markers, combining data using Perl,

23–6

Genetic Power Calculator website, 471

genetic reference populations, 398–400

recombinant inbred mouse strains, 398–9

and relations of gene expression to complec

phenotypes, 399–400

standard inbred mouse strains, 399

genetic study design and analysis, 8–10,

145–246

genetic traits, role of bioinformatics in

understanding, 4–5

genetic variation

diseases caused by, 249

functional analysis, integrated tools for,

274–6

sources, 209

genetic/genomic data interface, analysis at,

10–12, 369–528

genetical genomics, 390

genetics research, role of bioinformatics,

4–12

GENEWISE algorithm, 66, 70, 71, 87

genome

annotation, 59–60, 64–80

conserved non-genic sequences (CNGs),

133

coordinates, location using, 100

copy number

analysis and visualization, 429

break-point analysis, 428–9

data analysis tools, 428–31

data resources, 419, 427–8

measurement technologies, 425–7

functional sequences, 110, 133

localizing markers in, 192–3, 194

portal inspection, 100, 101

pre-assembled, 117

repetitive elements/sequences in, 107–8,

123

segmental duplications, 109, 115–16

sequence mutation, 108–9

ultra-conserved regions, 133–5

‘unknown unknown’ elements, 14

variations in, 108–9

visualization tools, 71, 87, 213

see also human genome

genome-scale datasets, practicalities of

analysis, 471–3

genome scan, prioritization approaches, 476,

477, 488

genome scan analysis, 449–59

bioinformatics, 469–89

filtering and annotating output, 479–89

maximization of inclusivity, 477–9

genome-scanning technologies, 459–69

genome-wide association analysis, 11, 447

Bayesian analysis used, 457–9

follow-up strategies, 474–6

Parkinson’s disease case study, 470–1

reasons for use, 448–9

replication studies, 455–6, 475–6

SNP genotyping panels used, 460–8

genome-wide mapping of single-gene

disorders, 148–52

microsatellite mapping approaches, 148,

150

SNP-mapping approaches, 150–2

genome-wide SNP genotyping panels

Affymetrix design, 460–1, 461, 466, 467

evaluation of, 463–6

case study, 466–8

Illumina design, 461, 463, 466, 467

Genomes OnLine database, 59, 71

genomic control, 167–8

genomic databases, 8

genomic prediction, 91–2
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genomic sequence

annotation, 59–60, 64–80

future developments, 78–80

nucleotide level, 64–7

preliminary annotation, 59

process level, 68–70

protein level, 67–8

assembly

CG method, 60–1, 61–2

IHGSC method, 60, 61

NCBI method, 62

characterization

at locus under investigation, 168–9

tools, 71, 72–3, 75–8, 87, 176

defining and obtaining, 116–18

extracting and annotating across locus,

194–5

‘finished’, 63, 113

vertebrates, 102, 113–15

visualization of alignments, 114, 125–6

genomic sequence alignments, 118–25

anonymous/unannotated sequences, 128

distribution of control and test sequences,

129–31

global alignments, 121–2

local alignments, 120–1

multiple-sequence alignments, 122–4

tools, 119(list)

evaluation of success/accuracy, 124

visualizing, 114, 125–6

whole-genome, 124–5

genomics, comparative, 8, 92–4, 105–44

Genomics Unified Schema (GUS), 381

genotyping, improvements in technology, 3, 4

GENSCAN gene prediction program, 66, 70,

72, 87

germ-line polymorphism, and somatic

mutation, 415

glutamate, 317, 319, 328–9

glutamic acid, 317

glutamine, 319, 320, 329

glutathione-S-transferase (GST) enzymes, 517

glycine, 317, 320, 332–3

GNF gene-expression data, 203

GOLD program, 42, 230

GOLDsurfer program, 42, 230

Google, 7

Google Scholar, 99, 202

GPCRDB, 506, 510, 513, 515

grapefruit juice, effect on drug efficacy, 509

haemoglobin genes, mutations in, 311, 339

Haplotter tool, 522

haplotypes, 170–5, 225

construction of, 172

reconstruction of, 225–9

statistical analysis, 170, 175–6, 225–9

HaploView, 40, 42, 197, 213, 231

LD plots, 41, 233

worked example, 231–4

HapMap, 3, 7, 13, 35–58, 172

accessing HapMap data, 38–42

application in association studies, 42–53,

449

databases, 39

defining locus, 195–7

downloading HapMap data, 38–40

bulk download, 39–40

via Generic Genome Browser, 40

via HapMart, 40

ENCODE regions, 460, 464, 466

ethnic groups covered, 37, 521

and fine-mapping experiments, 53

future developments, 54

genome browser, 40, 41, 195, 196, 213

as data-mining/analysis tool, 196–7

genotyping of SNPs, 37–8

historical background, 35–6

linkage disequilibrium data, 40–2, 459,

460

quantitative trait analysis, 11

reasoning behind, 36, 173

SNP ascertainment strategy, 450, 466

subject populations, 36–7

criteria used to assign membership, 37

tag SNPs, 176, 178

viewing HapMap LD data, 40–2

website, 38, 39, 213

HapMart tool, 40, 52, 197, 198, 213

HAPPY software, 236

Hardy–Weinberg equilibrium, 225

testing for, 176, 454

heritability

estimation in microarray analysis, 392–3

gene expression, 391–3

heterozygosity, loss of, in cancer, 431–2

HEXB gene, 267

HGVBase, 500

Highwire search engine, 202

Hirschsprung’s disease, 135, 136

histidine, 319, 320, 325
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histograms of conservation, genomic sequence

alignments visualized by, 114, 126

HLA-B*5701 520, 521

HMMER software, 68, 72, 317

homologues, 110

homozygosity mapping, 151–2

Human ABC-Transporter Database, 515,

518

Human Epigenome Project (HEP), 13, 207

Human Gene Mutation Database (HGMD),

150, 419, 424

human genome

annotation

Ensembl browser, 70, 71, 72–3, 74

future developments, 78–80

nucleotide level, 64–7

preliminary annotation, 59

process level, 68–70

protein level, 67–8

UCSC browser, 71, 73, 75–6

browsers, 8

‘finished’ sequence, 63, 113

length/size, 106

locating known genes, 97–100

number of protein-coding genes, 94, 107,

258, 347

and other vertebrate genomes, 4, 102,

113–15

selective constraint in, 132–3

sequence, 186–7

characterization, 3–4

‘finished’ sequence, 63, 113

gene location using, 97–8

sequence assembly

CG method, 60–1, 61–2

IHGSC method, 60, 61

NCBI method, 62

‘unknown unknown’ elements, 347

Human Genome Organization (HUGO), gene

symbols, 99

Human Membrane Transporter Database

(HMTD), 515, 518

Human Structural Variatation Database, 158

example of use, 149

huntingtin, 9

Huntington’s disease, 9, 152

hypersensitivity reaction, 520

IARC, TP53 Mutation Database, 419, 424–5

IBD1 locus, 192

IBD5 locus

in silico characterization of, 191–209

building biological rationale around

candidate genes, 210–13

defining locus in HapMap, 195–7

definition of known and novel genes

across locus, 197–201

evaluating epigenomic and epigenetic

effects, 204–9

evaluating structural variation across

locus, 209

extracting and annotating genomic

sequence across locus, 194–5

gene expression analysis, 203–4

localizing markers in genome, 192–4

identical by descent (IBD) alleles, 219, 223

identical by state (IBS) alleles, 219

IdSelect program, 44

Illumina, 240

SNP arrays/panels, 150, 426, 461, 463

compared with Affymetrix chips, 461,

466, 467, 469

immune-mediated adverse drug reactions,

519–21

in silico analysis, gene regulatory

polymorphism, 281–309

in silico predictions, 102

prioritization for further investigation, 276

in silico science, bioinformatics perceived as, 12

indel-based measures of selective constraint,

131

inflammatory/irritable bowel diseases, 192,

202

biological rationale for various genes,

209–11

see also Crohn’s disease; IBD1; IBD5 locus

Inpharmatica, list of druggable targets, 503

insertions and deletions (indels), 131

see also indel . . .

Institute for Genomic Research, Multiple

Experiment Viewer, 435

insulin gene, 9, 180

internal ribosome entry site (IRES) elements,

263, 264

International Human Genome Sequencing

Consortium (IHGSC)

genomic sequence assembly method, 60, 61

compared with other assembly methods,

62–3

International Protein Index (IPI), 87, 91, 506
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Internet, 7, 99

InterPro database, 68, 71, 87, 270

interspersed repetitive elements (IREs), 107–8,

127–8

intracellular proteins, 312

amino-acid substitutions, 269, 534

introduction to bioinformatics, 1–31

intronic splicing enhancers and silencers

(ISE/ISS), 255, 259

examples, 254

introns, 255

inverse genetics, 266–7

example of use, 269

isoleucine, 319, 321–2, 511

IUPAC codes

amino acids, 530

nucleotides, 529

Jagged1 protein, evaluation of mutation in,

273–4

JASPAR database, 283, 290

JSNP database, HapMap data available, 39

Kcnj9 gene

association network, 407

QTL mapping analysis, 403–5, 408

KCNJ11 gene, 251

KEGG pathway tool, 478

and DAVID annotation tool, 483, 486, 487

Kinweb (kinases database), 506, 513, 515

knowledge management, 5–7

‘known’ gene product, meaning of term, 86

known gene, locating in human genome,

97–100

Kozak consensus sequence, 262, 263

KRAS gene, 424

laboratory information-management systems

(LIMS), 7

laboratory notebook discipline, in data

analysis, 18–19

lactase gene, inter-ethnic differences, 522

lactate dehydrogenase, 338

Lagan alignment tool, 119, 121, 122, 124

language-acquisition disorders, 68

leucine, 319, 322

linear discriminant analysis (LDA), 287

linkage analysis, 165–80, 217–23

compared with association analysis, 9, 10

genetic loci defined using, 190

nonparametric approach, 219–20

MERLIN used, 219, 221–3

parametric approach, 218–19

Perl used, 22

preliminary, 176–8

study population, 166–8

linkage disequilibrium (LD), 169–70, 229–34

characterization using HapMap, 7, 35

genome scan analysis inclusivity maximized

using LD data, 477–9

HapMap data, 40–2, 459, 460

maximum-likelihood methods, 230

measures, 229

moment method, 230

SNP selection using, 43–53

software, 42, 230–1

squared correlation coefficient, 229–30

Lipinski’s ‘rule-of-five’, 504

literature search, 6–7

locked nucleic acid (LNA) probes, 355

locus definition/identification, 187–9

locus refinement, 178–9

LOD (log of odds) score, linkage region

defined by, 190, 218, 222–3

Longhorn Array Database (LAD), 384

loss of heterozygosity (LOH)

in cancer, 431–2

data analysis tools, 431–2

loss-of-function (LOF) effects, 499, 500

LS-SNP tool, 270, 274

lung cancers, 424

lysine, 319, 320, 327–8

McDonald–Kreitman test, 131–2

McNemar’s test, 224

McPromoter program, 283, 287

malaria, protection against, 153

malate dehydrogenase, 338

Map Manager QTX software, 236

data input, 237

simple interval mapping, 238–9

single marker association testing, 238, 239

worked example, 236–9

mapping

candidate gene, 152

quantitative trait locus (QTL), 235–9

markers

genomic sequence, combining data, 23–6

multi-allelic, 224–5

simple tandem repeat, 165, 174–5
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MatchMiner, 99

MAVID alignment tool, 119, 123

MECP2 gene, 160

Mega2 data-handling program, 21, 31

melanomas, 416

genetic alterations, 435–6

MEME program, 283, 291

Mendelian disorders, 8–9

mutations, 259

identifying, 8–9, 147–64

Mendelian traits, epigenetic effects, 160,

162

MERLIN software, 150, 218–19

data input, 220–1

haplotype reconstruction, 226

NPL analysis, 219, 221–3

graphical output, 222

worked example, 220–3

MEROPS resource, 505, 506, 507, 513, 515

metabolic disorders, 508

methionine, 319, 323

MFOLD structure prediction tool, 264, 345,

350

microarray(s), 371–87

analysis

complementary approaches, 377

experimental process, 375

false discovery rate (FDR), 392, 395

heritability estimated in, 392–3

data

analysis, 376

annotation of, 375

Bayesian approaches, 400

filtering and selecting, 376

QTL mapping of, 394–7

research database packages, 377–85

sharing and publication of, 376, 377

storage of, 375

transformations, 375, 393

visualization of, 376

gene expression microarrays, 11, 295, 390–1

as genomics platform(s), 11, 371–87

miRNA expression studies, 354–5

splicing, 299–300

technologies, 372–3

Affymetrix technology, 372

principles, 373–6

spotted microarray technology, 372

Microarray Gene Expression Markup

Language (MAGE-ML), 376

microdeletion syndromes, 153

micro-RNAs (miRNAs), 4, 10, 14, 133

databases, 345, 351, 354, 363

expression studies, 354–6

first discovered, 343, 349

number in Man, 14, 343

role in cancer, 356–8

role in regulation of multiple genes, 346,

348, 349

see also miRNA genes

microsatellites, 8, 148, 174

data format, 26

mapping of single-gene disorders using,

148, 150

as markers, 192

see also simple tandem repeat markers

Microsoft Excel (spreadsheet software), 20

limitations, 472

Minimal Information About a Microarray

Experiment (MIAME) standard,

376

MiRanda tool, 345, 353, 354

miRBase database, 345, 351, 354, 363

miRNA genes

paralogues, 360, 361

prediction, 350–1

machine-learning approach, 350

species conservation approach, 350–1

variants, as disease alleles, 359–61

miRNA targets

genetic variation, as disease alleles, 361–2

prediction, 353–4

miRNAMap, 345, 363

MirScan algorithm, 345, 350

MiRseeker algorithm, 350

Mitelman Database, 357, 419, 427

lung tumour data, 430, 431

mLagan alignment tool, 119, 123

MLINK output, use by Perl, 29, 30

MODBASE protein database, 270, 271

monogenic disorders see Mendelian

disorders

Mouse Genome Database, 69, 71, 236

mRNA

alternative splicing, 258, 296

databases, 89–91

processing and translation, regulatory

control, 265

regulatory, 266

secondary structure, 264
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mRNA (cont.)

splicing

mutations affecting, 259

prediction of splice sites, 296

transcript polymorphisms, 263

analysis, 261–2

transcripts

anatomy, 262

delineating, 5′ and, 3′ ends, 95–6

inititation of translation, 262–4

regulatory elements, 262, 266

multidrug resistance proteins (MRPs), 518

multigenetic diseases see complex genetic

diseases

Multimapper software, 236

MultiPipMaker alignment visualization tool,

114, 119

multiple QTL mapping, 235, 396

‘multiple rare variant’ hypothesis, 449, 469

multispecies conservedseq (MCS) elements,

348

MultiZ alignment tool, 119, 125

mutation matrices, amino acids classified by,

316–17, 533–5

mutations

cancer, 420–5

databases, 421–5

correlated, 335

disease, 152

DNA, 109, 110

Mendelian disorders, 8–9, 152–60, 259

potentially deleterious, 276

protein structures affected by, 334–9

role in determining phenotypes, 281

MVP viewer, 207, 213, 438

example, 208

MySQL database management system, 473

use in microarray database packages, 378,

379, 384

National Cancer Institute (NCI)

Cancer Genome Atlas, 418

Center for Bioinformatics, 418, 419

see also NCI-60

National Centre for Biotechnology

Information see NCBI

National Human Genome Research Institute

(NHGRI), Cancer Genome Atlas, 418

NCBI database(s), 71, 75, 377

genomic sequence assemblies, 71, 117

NCBI genomic sequence assembly method,

62

compared with other assembly methods,

62–3

NCBI Map Viewer browser, 71, 77–8, 87, 176,

213

FOXP2 gene, 77, 78

NCI-60 tumour-derived cell lines, 417

Needleman–Wunsch algorithm, 122

neuroblastomas, 416, 425, 439

nitrous oxide bioactivity, inter-ethnic

differences, 521

N-myc gene, 416

NOD2 gene, 9, 166, 174, 192

non-coding RNAs (ncRNAs), 10, 133, 266,

343–67

annotation, 72, 344

classification, 344–5

computational analysis, 349–56

identification of noval small ncRNAs, 351,

352

prediction, 66–7

role in cancer, 356–8

role in complex disease, 359–62

variation

assessing impact, 362–3

role in disease, 356–62

see also micro-RNA (miRNA)

nonparametric linkage (NPL) analysis,

219–20

MERLIN used, 219, 221–3

graphical output, 222

non-synonymous coding polymorphisms,

functional analysis, 268–74

non-synonymous single-nucleotide

polymorphisms (nsSNPs)

functional annotation, 274

prediction tools, 270

NOS1AP gene, 452

novel genes

across IBD5 locus, 199–201

analysing, 101–2

evidence for, 200–1

meaning of term, 86

novel regulatory elements, 267

identification tools, 257, 268

nuclear hormone receptor (NHRs), 504

NucleaRDB, 506, 513, 515

nucleotide level annotation, 64–7

nucleotides, IUPAC codes, 529
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Obeity Gene Map, 500, 506

off-target events, 518

oligonucleotide micro-array technology, 460

use in oncology, 11, 418, 426–7

oncogenes, 414

regulation by miRNAs, 358

Oncomine, 433–4

oncomirs, 356

Online Mendelian Inheritance in Man

(OMIM) database, 7, 71, 72, 135

ontologies, see also Gene Ontology (GO)

project

open reading frame (ORF) approach, 255

opportunities for the future, 12–14

ORACLE database management system, 473

use in microarray database packages, 378,

380, 381, 382

organelles, proteins in various, 312–13

orthologues

genes, 110, 187–8

proteins, 67, 313

ovarian cancer, 9, 416

overlapping genes, 96

palindromic motifs, 293

paralogues

genes, 110

proteins, 67, 313

parametric linkage analysis, 218–19

parkin, 471, 479, 481

Parkinson’s disease

genome scan analysis, 470–1, 474

expansion of follow-up, 476–7

filtering and annotating output, 479–89

follow-up strategy, 474–6

LD data to maximize inclusivity, 477–9

Patent Abstracts database, 501, 506

PAX6 gene, 129, 135

pedigree analysis, software, 219, 220

percentage identity plots (PIPs), alignments

visualized using, 114, 126

Perl coding language, 7, 17, 473

advantage for simulations, 22

books/resources on, 30

examples of code, 22–30

automating single-marker analyses, 28–30

combining marker data, 23–6

estimating marker allele frequencies, 26–8

recoding marker alleles, 26

traditional first example, 22–3

hashes used, 25–6

uses, 21–2

Perlegen Sciences, 172, 240

permutation testing, 451

‘personalized medicine’, 525

Pfam database, 67–8, 71, 317

Pharma Projects, list of druggable targets, 503

pharmacogenetics (PGx), 12, 496, 508–25

databases and tools for, 515, 523–4

and ethnicity, 521–2

integration into drug development

programmes, 497

pharmacodynamics vs pharmacokinetics,

518

target genetics and, 509–13

PharmacoGenomics Knowledge Base

(PharmGKB), 515, 517, 523

PHASE software, 40, 172, 175, 176

phastCons tool, 130

phenylalanine, 319, 323

phylogenetic footprinting, 92, 109

phylogenetic scope, 111

phylogenetic shadowing, 113, 130

novel miRNA genes detected using, 350

phylogeny, 335

PicTar tool, 345, 353, 354

PIK3CA gene, 436–7

PipMaker alignment visualization tool, 126

PLASQ software, 432

PMPLUS software, 226

point accepted mutation (PAM) matrices, 317

‘pointing and clicking’, compared with

command-line programs, 18

polyadenylation signals, 255, 261

polymorphism analysis, 274–6

polymorphisms

candidate, 251–2

characterization of, 267

decision tree for analysis, 253, 255–6

DNA, 252, 260

functional

cis/trans classification, 282

in genes and gene regulatory sequences,

254

identifying, 211–12

mRNA transcript, 261–2, 263

non-synonymous coding, 268–74

predictive functional analysis, 249–80

in putative splicing elements, functional

analysis 259–61
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polymorphisms (cont.)

regulatory, 11

analysis of, 281–309

evaluating functional importance, 300–2

see also copy number polymorphisms

(CNPs); microsatellites; single

nucleotide polymorphisms (SNPs)

PolyPhen tool, 270, 274

population genetics

and comparative genomics, 131–2

growth in topic, 241

population stratification, 167

position shift loci (PSLs), 270

PPAR$gamma$/PPARG gene, association with

diabetes, 9, 251, 448, 452

Prader–Willi syndrome (PWS), 157

pre-assembled genomes, 117

‘predicted’, meaning of term, 86

presenilins, 507

Princeton University Microarray Database, 433

process level annotation, 68–70

processed pseudogenes, 107–8, 117, 128–9

proline, 317, 319, 320, 333–4

Promoser tool, 256, 257

promoter regions, 255

anatomy, 256–8, 284

characteristics/definition, 201, 284–5

databases and tools, 256, 283, 285–6

prediction, 286–8

tools, 283, 286, 287, 288

UCSC browser information, 211

promoters, CpG-related vs non-CpG-related,

287–8

prostate cancer, 166, 175, 300, 437–8

proteases

databases listing, 505, 506, 515

as drug targets, 505, 507

protein(s)

3D structure analysis tools, 270

amino-acid substitutions, 269, 533–5

cellular location, 269, 312–13

Clusters of Orthologous Groups (COGs),

67, 71

databases, 87, 91, 99, 271, 340, 345, 504

disulphide bonds in, 273–4, 312

duplication, 313

environments, 269, 312–13

evolution, 313–14

extracellular, 312

amino-acid substitutions, 269, 534

function, 314

effect of mutations, 334–9

intracellular, 312

amino-acid substitutions, 269, 534

orthologues, 67, 313

paralogues, 67, 313

post-translational modification, 316

as product(s) of genome, 106–7

secondary structure, prediction, 270

speciation, 313

structure, 270–2, 313, 334

effect of SNPs, 336

paired amino acids in, 337

tertiary structure, analysis, 270–2

transmembrane, amino-acid substitutions,

269, 535

protein-coding genes, 94, 106–7

number in human genome, 94, 107, 258, 347

regulation by micro-RNAs, 348

see also non-coding RNAs (ncRNAs)

Protein Data Bank (PDB), 270, 271

protein kinases, 324, 333

protein level annotation, 67–8

protein quantity locus (PQL), 390

protein sequences, experimentally determined,

88–9

proteome analysis, 79, 87

Proteome Browser, 76

pseudogenes, 96, 128–9

processed, 107–8, 117, 128–9

and regulatory mRNA, 266

PTEN gene, 437–8

public databases, accessing, 7

PubMed resource, 303, 499–500, 504

pupaSNP tool, 270, 275, 283

QTDT software, 223, 225

QTL Cartographer software, 235, 236

QTPHASE program, 227, 228

quantitative trait loci (QTLs)

cis QTLs, 394–5

cis/trans test, 395

effects, 390

trans QTLs, 394, 395

quantitative trait locus (QTL) mapping

composite interval mapping, 39, 235

distributional assumptions, 393

in experimental crosses, 235–9

microarray data, 394–7

multiple-QTL mapping, 235, 396
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multi-trait mapping, 396–7

in multistage study, 452, 453

single-locus models, 394–5

R programming language, 473

RAD microarray database package, 381–2

compared with other tools, 378

RankVISTA tool, 130

recessive disease, mutation, 152

redundancy, miRNA, 359, 360

RefSeq database, 71, 77, 87, 89, 99, 504

RefSeqNP database, 99

regulatory elements, 106, 136–7, 257–8

cross-species conservation, 287

identification and analysis, 266–7

regulatory polymorphisms, 11

analysis of, 281–309

evaluating functional importance, 300–2

regulatory regions

physical properties, 287

predicting, 282, 284–8

relational database management systems

(RDBMS), 473

see also MySQL; ORACLE

RepeatMasker software, 61, 65, 72, 123

RESCUE-ESE tool, 257, 260, 283, 298

RET gene, 135, 433

retinitis pigmentosa, X-linked, 136

Rett syndrome, 160, 162

reuse code, 19–20

Rfam database, 72, 345, 346, 347

RLMM software, 432

RNA abundance, 371, 373

RNA Abundance Database (RAD), 378, 381–2

RNA-primed array-based Klenow assay

(RAKE), 355

RNA processing, 295–6

RNA structure prediction tools, 363

RNAfold structure prediction tool, 345, 363

RNAHybrid tool, 345, 353, 354

RPGR gene, 136

Saccharomyces Genome Database, 69, 71

salt bridges, amino acids in, 326, 327, 328

schizophrenia, 205

segmental duplications, 109, 115–16

sequence mutation, 108–9

sequence similarity, 109

gene prediction using, 65–6, 92–4

sequence-tagged sites (STSs), 97

serial analysis of gene expression (SAGE)

technique, 373

miRNA characterization by, 355

serine, 316, 320, 330

‘shotgun sequencing’, 60

Shuffle-Lagan alignment tool, 119, 122

sib transmission disequilibrium test (S-TDT),

168, 224

application, 475

sickle cell anaemia, 311

sickle cell gene, 153

SIFT tool, 270, 274

simple interval mapping (SIM), 235

Map Manager QTX example, 238–9, 240

simple tandem repeat markers, 165

monogenic trait linkage analysis using,

174–5

see also microsatellites

SimWalk2 software, 223, 226, 230

single-gene disorders

genome-wide mapping of, 148–52

microsatellite mapping approaches, 148,

150

SNP- mapping approaches, 150–2

identifying mutations in, 8–9, 147–64

mutation in, 152–60

detection of comparative genomic

hybridization, 157–60

detection by sequencing, 153–5

detection of uniparental disomy,

157–60

other detection approaches, 155–7

see also Mendelian disorders

single-marker association testing, Map

Manager QTX example, 238, 239

single-marker linkage analysis, automation

using Perl, 28–30

single-nucleotide polymorphisms (SNPs)

association analyses on marker-by-marker

basis, 47–8

chips/arrays, 150, 151, 158, 426, 432

in conserved non-coding regions, 135

databases, 7, 8, 71, 72, 150

data not represented, 150

ethnic group specific, 522

density, 250

functional analysis, 211

genotyping of, 3, 11, 37–8

IBD5 risk haplotype, 212

iterative testing, 179
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single-nucleotide polymorphisms (cont.)

mapping of monogenic disorders using,

150–2

non-synonymous

functional annotation, 274

prediction tools, 270

novel, 179

protein structure affected by, 336

selection of, 37–8

use of linkage disequilibrium to inform,

43–53

tag SNP selection, 44–7

dependency on haplotype block

structure, 51–2

dependency on physical distance, 52

limitations of tagging methodology, 48–9

performance of HapMap-derived tags in

other populations, 49–50

processing burden, 52

relevance of statistical methods used to

test for association, 47–8

tools, 46, 173, 174

site-directed mutagenesis, 337

‘six degrees of separation’ concept, 5–6

SKY/M-FISH and CGH Database, 419,

427

SLC22A1 gene, epigenomic data, 207, 208

SLC22A4 gene, 204, 210

epigenetic features across, 206

SLC22A5 gene, 204, 210

‘sliding windows’ (alignment) approach,

129–30

SLITRK1 gene, 361–2

SMD package, 382–4

compared with other tools, 378

SMN2 gene, 297

SNAI2 locus, 415

SNPs see single-nucleotide polymorphisms

software

documentation for, 19–20

modularity, 19

SOLAR software, 219

somatic mutation

data resources, 150

and germ-line polymorphism, 415

Sonic Hedgehog (SHH) gene, 111, 136–7

spinal muscular atrophy (SMA), 297

splice sites, 255, 259

prediction, 260, 296

tools, 260, 283

splicing enhancers andsilencers, identification

of, 297–9

splicing enhancers and silencers, 180, 255, 259

examples, 254

in silico derivation, 298–9

splicing microarrays, 299–300

splicing regulation, 258–9

predicting regulatory elements, 295–300

Spotfire software, 472

spreadsheet programs, 20

SR-protein-binding sites, 297

SSAHA program, 65, 72, 87

Stanford Microarray Database (SMD), 378,

382–4, 427, 433

see also Longhorn Array Database (LAD);

SMD package

statistical analysis

general comments, 179–80

haplotypes, 170, 175–6

stochastic context-free grammar, 345

Structural Classification of Proteins (SCOP)

database, 345

Structured Query Language (SQL), 473

study population, 166–8

advantage of using, 168

Stxbp1 gene, 408

SwissProt database, 87, 91, 99, 270, 271, 504

SymAtlas tool, 478, 480, 481, 482, 515, 524–5

synonyms, checking, 99

synteny, 187

system genetic analysis, 400–2

see also GeneNetwork.org

system genetics, 390, 400

SYT11 gene, 479, 481

tag SNP selection see single-nucleotide

polymorphisms, tag SNP selection

Tagger software, 40, 46, 52, 53, 173, 174, 178,

197, 213

target family databases, 506

proteases example, 505, 507

target identification (of drugs), 498–501

role of bioinformatics, 499

target validation and tractability, 501

targetome, 501–5

TargetScan tool, 345, 353, 354

TBLASTN, 102

therapeutic response, effect of target

polymorphism, 509–10

Therapeutic Target Database (TTD), 503, 506



OTE/SPH OTE/SPH

JWBK136-ind February 16, 2007 15:3 Char Count= 0

INDEX 553

therapeutics development, use of genetic

studies, 11

threaded blockset aligner (TBA) tool, 119, 123

threonine, 316, 320, 330–1, 511

TIGR Gene Index, 87, 89

TM4 microarray database package, 384–5

compared with other tools, 378

TNFRSF11A gene, 155

Tourette’s syndrome, 361–2

transcript abundance, 371

as complex phenotype, 390–3

transcription factor binding sites (TFBSs)

consensus-based motifs, 289

de novo motif finding, 290–3

conserved motifs, 292–3

discriminative motifs, 291–2

most-over-represented motifs, 291

identification, 286

matrix-based motifs, 289–90

modelling, 288–93

position weight matrix (PWM)

representation, 289–90

predicting novel, 293–4

transcription factors (TFs), number in

humans, 290

transcription unit, gene as, 106, 255

transcriptional regulatory region analysis, 94

transcriptional start site (TSS), 255, 256–7, 284

database, 256, 283, 285

TRANSFAC database, 283, 290

MATCH program, 283, 294

transmembrane proteins, amino-acid

substitutions, 269, 535

transmission disequilibrium test(s) (TDT),

168, 175–6, 224–5

transporters, 517–18

Transterm database, 265

TRES tool, 257, 268

trisomy, 21 157

trypsin (enzyme), 314, 315, 328

tryptophan, 319, 324

tumorigenesis, 414

Tumour Gene Database, 419, 424

tumour modelling, 438–9

tumour protein 53 (TP53), 424

mutation database, 424–5

tumour suppressor genes, 414, 415, 424, 425,

437–8

tumours, miRNA expression in, 358

tylosis with oesophageal cancer (TOC), 155

type 1 errors (false-positives), 11, 167, 187

causes, 454

correcting, 180, 451

in Parkinson’s disease case study, 470

type 2 errors (false-negatives), 167

typhoid fever, protection against, 153

tyrosine, 316, 319, 320, 324

tyrosine kinase genes, 422–3, 422

UCHL1 gene, 481, 482

UCSC Coordinate conversion tool, 187, 195

UCSC database(s), 71

genomic sequence assemblies, 71, 123–4

UCSC GeneSorter, 203, 204, 213

UCSC genome browser, 8, 13, 71, 73, 75–6, 87,

117, 176, 213, 283

BACE1 gene, 89, 90, 100, 101

conserved non-coding sequences, 267

cross-species comparisons, 92

custom tracks, 199

database management system used by, 473

ENCODE project data accessed via, 138,

206, 351, 352

epigenetic data presentation, 206–7

FOXP2 gene, 75, 76

GNF gene-expression atlas, 203

HapMap data available, 39

in silico PCR tool, 193

LiftOver tool, 117

localization of markers in genome, 192–3,

194

micro-RNA targets, 354

microsatellite maps, 148, 149

Net alignments, 117, 131

non-coding RNA analysis, 351, 352

TFBS annotation, 257

WSSD duplication tracks, 116, 158, 160,

209

UCSC table browser, 275

ultra-conserved regions, 133–5

ultra-high-density genome-scanning

technologies, 459–69

UniGene database, 71, 72, 87

uniparental disomy (UPD), detection of,

157–60

UniProt dataset/tool, 87, 91, 269, 510, 511,

513, 517

‘unknown’ gene product, meaning of term, 86

UNPHASED program suite, 226–7

worked example, 227–9
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uridine diphosphate-glucuronosyl transferase

(UGT) enzymes, 517

UTRdb database, 265

valine, 322–3

vertebrate genomes, 102, 113–15

virtual mRNAs, meaning of term, 86

VISTA alignment visualization tool, 115,

126

VITESSE software, 218

Waardenburg syndrome, 415

WebQTL tool, 390, 401

query interface, 402

see also GeneNetwork.org
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