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Foreword

Despite a relatively short existence, bioinformatics has always seemed an unusually
multidisciplinary field. Fifteen years ago, when sequence data were still scarce and
only a small fraction of the power of today’s pizza-box supercomputers was available,
bioinformatics was already entrenched in a diverse array of topics. Database devel-
opment, sequence alignment, protein structure prediction, coding and promoter site
identification, RNA folding, and evolutionary tree construction were all within the
remit of the early bioinformaticist.!? To address these problems, the field drew from
the foundations of statistics, mathematics, physics, computer science and, of course,
molecular biology. Today, predictably, bioinformatics still reflects the broad base on
which it started, comprising an eclectic collection of scientific specialists.

Asaresultofitsinherent diversity, it is difficult to define the scope of bioinformatics
asadiscipline. It may be even fruitless to try to draw hard boundaries around the field.
It is ironic, therefore, that even now, if one were to compile an intentionally broad
list of research areas within the bioinformatics purview, it would often exclude one
biological discipline with which it shares a fundamental basis: Genetics. On one hand,
this seems difficult to believe, since the fields share a strong common grounding in
statistical methodology, dependence on efficient computational algorithms, rapidly
growing biological data, and shared principles of molecular biology. On the other
hand, this is completely understandable, since a large part of bioinformatics has
spent the last few years helping to sequence a number of genomes, including that of
man. In many cases, these sequencing projects have focused on constructing a single
representative sequence—the consensus—a concept that is completely foreign to the
core genetics principles of variability and individual differences. Despite a growing
awareness of each other, and with a few clear exceptions, genetics and bioinformatics
have managed to maintain separate identities.

Geneticists needs bioinformatics. This is particularly true of those trying to identify
and understand genes that influence complex phenotypes. In the realm of human
genetics, this need has become particularly clear, so that most large laboratories
now have one or two bioinformatics ‘specialists’ to whom other lab members turn
for computing matters. These specialists are required to support a dauntingly wide
assortment of applications: typical queries for such people might range from how to
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find instructions for accessing the internet, to how to disentangle a complex database
schema, to how to optimize numerically intensive algorithms on parallel computing
farms. These people, though somewhat scarce, are essential to the success of the
laboratory.

With the ever-increasing volume of sequence data, expression information and
well characterized structures, as well as the imminent genotype and haplotype data on
large and diverse human populations, genetics laboratories now must move beyond
singular dependence on the bioinformatics handyman. Some level of understanding
and ability to use bioinformatics applications is becoming necessary by everyone
in the lab. Fortunately, bioinformaticians have been particularly successful in de-
veloping user-friendly software that renders complex statistical methods accessible
to the bench scientists who generated and should know most about the data being
analysed. To further these analyses, ingenious software applications have been con-
structed to display the outcomes and integrate them with a host of useful annotation
features such as chromosome characteristics, sequence signatures, disease correlates
and species comparisons’. With these tools freely available and undergoing contin-
ued development, mapping projects that make effective use of genetic and genomic
information will naturally enjoy greater success than those less equipped to do so.
Simply put, genetics groups that cannot capitalize on bioinformatics applications
will be increasingly scooped by those who can.

The emerging requirement of broader understanding of bioinformatics within
genetics is the focus of this text, as easily appreciated by a quick glance at the title.
Equally obvious is that geneticists are the editors’ target audience. Still, one might
ask ‘toward what specific group of geneticists is this text aimed?” The software and
computational backbone of bioinformatics is shared most noticeably with the areas of
statistical and population genetics, so the statistical specialists would seem a plausible
audience. By design, however, this text is not aimed at these specialists so much as at
those with broader backgrounds in molecular and medical genetics, including both
human and model organism research. The content should be accessible by skilled
bench scientists, clinical researchers and even laboratory heads. Computationally, one
needs only basic computing skills to work through most of the material. Biologically,
appreciation of the problems described requires general familiarity with genetics
research and recognition of the inherent value in careful use of in silico genetic and
genomic information.

By necessity, the bioinformatics topics covered in this text reflect the diversity of
the field. In order to obtain some order in this broad area, the editors have focused on
computer applications and effective use of available databases. This concentration on
applications means that descriptions of the statistical theory, numerical algorithms
and database organization are left to other texts. The editors have intentionally
bypassed much of this material to emphasize applications in widespread use—the
focus is on efficient use, rather than development, of bioinformatics methods and
tools.
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The data behind many of the bioinformatics tools described here are rapidly
changing and expanding. In response, the software tools and databases themselves
tend to be (infuriatingly) dynamic. A consequence of this fluid state is that learning
to use existing programs by no means guarantees a knack for using those in the
future. Thus, one cannot expect long-term consistency in the tools and data-types
described here (or in most any other contemporary bioinformatics text). By learning
to use current tools more effectively, however, geneticists can not only capitalize on
technology available, but perhaps engage more bioinformaticians in the excitement of
genetics research. Bringing bioinformatics to geneticists is a crucial first step towards
integrating the kindred fields and characterizing the frustratingly elusive genes that
influence complex phenotypes.

LonR. Cardon

Professor of Bioinformatics

Wellcome Trust Centre for Human Genetics
University of Oxford

1. Doolittle, R. E. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences
(University Science Books, Mill Valley, California, 1987).

2. von Heijne, G. Sequence analysis in molecular biology: Treasure trove or trivial pursuit
(Academic Press, London, 1987).

3. Wolfsberg, T. G., Wetterstrand, K. A., Guyer, M. S., Collins, E S. & Baxevanis, A. D. A user’s
guide to the human genome. Nature Genetics 32 (suppl) (2002).






Preface

I say ‘locus-locus’ instead of ‘gene-gene’ because if you work in human genetics long
enough, you realize that you may never have a gene. But you learn not to let that
put you off.

Peter A. Holmans

Making sense of the results of a genetic experiment is a challenge on any level.
Writing a book about the use of bioinformatics to achieve this goal might seem like
a somewhat vainglorious exercise. Individual perceptions of what is constituted by
bioinformatics vary widely. However, in the context of this book, bioinformatics
seeks to illuminate biological function, while disease genetics, our primary focus,
is essentially about understanding biological dysfunction. With this in mind, please
think of bioinformatics as a tool for improving the understanding of genetics.

Since the first edition of this book, the reasons for thinking this way have
become more compelling. Human disease genetics is rapidly becoming a high-
throughput activity, and that means that making sense of a genetic experiment
now means making sense of millions of data points. Again this underlines the
need for genetics-focused bioinformatics. Quite simply, we need the informatics to
manipulate and analyse data on this scale, and we need the bio to make sense of
it all in the holistic biological system that is a human being.

This book could not have been realised without the insightful contributions of all
the chapter authors. I really feel they have helped to make this book worthy of both
the bio and the informatics monikers. I would also like to send my warmest thanks
to Ian C. Gray, who co-edited the first edition with me, for providing helpful input
and support on this edition. All the exciting science you see here would not exist
without the incredibly dedicated team at Wiley, who have always kept things on
track, including Joan Marsh, Andrea Baier, Fiona Woods, Kate Pamphilon and Emilie
McDonough. I have a day job besides editing books, and so I would also really like to
thank Philippe Sanseau and David Searls at GSK for giving me the time, encourage-
ment and support to get this done. Finally, I would like to thank my wife, Aruna, for
her constant love, support, encouragement and superior punctuation. Without her,
I would not have had the will or punctuation skills to complete this magnum opus.

Michael R. Barnes
August 2006, Harlow, UK
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Glossary of Bioinformatics

BLAST (Basic Local Alignment Search Tool) A tool for identifying sequences in a
database that match a given query sequence. Statistical analysis is applied to
judge the significance of each match. Matching sequences may be homologous to,
or related to, the query sequence. There are several versions of BLAST:

e BLASTP compares an amino-acid query sequence with a protein-sequence
database.

e BLASTN compares a nucleotide query sequence with a nucleotide-sequence
database.

e BLASTX compares a nucleotide query sequence translated in all reading frames
with a protein-sequence database.

e TBLASTN compares a protein query sequence with a nucleotide sequence database
dynamically translated in all reading frames.

e TBLASTX compares the six-frame translations of a nucleotide query sequence with
the six-frame translations of a nucleotide-sequence database.

BLAT (BLAST-Like Alignment Tool) BLAT might superficially appear to be like
BLAST, also being a tool for detecting subsequences that match a given query
sequence; however, BLAT and BLAST have a number of differences. BLAT was
developed at the UCSC; it searches the human genome by keeping an index of the
entire genome in memory. The index consists of all non-overlapping 11-mers
except for repeat sequences. A BLAT search of the human genome will quickly find
sequences of 95 per cent and greater similarity of length of at least 40 bases. It
may miss more divergent or shorter sequence alignments (see the UCSC FAQ for
more details on this tool: http://genome.ucsc.edu/FAQ.html).

CDS Coding sequence.
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Contig map A map depicting the relative order of overlapping (contiguous)
clones representing a complete genomic or chromosomal segment.

DAS (distributed annotation system) A protocol for browsing and sharing
genome sequence annotations across the Internet, allowing users to search and
compare annotations from several sources. Ensembl provides a DAS reference
server giving access to a wide range of specialist annotations of the human
genome (for more detail, see http://www.ensembl.org/das/).

Data mining The ability to query very large databases in order to satisfy a
hypothesis (‘top-down” data mining), or to interrogate a database in order to
generate new hypotheses based on rigorous statistical correlations (‘bottom-up’
data mining).

Domain (protein) A region of special biological interest within a single protein
sequence. However, a domain may also be defined as a region within the
three-dimensional structure of a protein that may encompass regions of several
distinct protein sequences that accomplish a specific function. A domain class is
a group of domains that share a common set of well-defined properties or
characteristics.

Electronic PCR (ePCR) An electronic process analogous to laboratory-based
PCR. Two primers are used to map a sequence feature (such as a single nucleotide
polymorphism). To validate the position, both primers must map in the same
vicinity spanning a defined distance, effectively producing an electronic PCR
product.

Expressed sequence tag (EST) A short sequence read from an expressed gene
derived from a cDNA library. Databases storing large numbers of ESTs can be used
to gauge the relative abundance of different transcripts in cDNA libraries and the
tissues from which they are derived. An EST can also act as a physical tag for the
identification, cloning and full-length sequencing of the corresponding cDNA or
gene.

FASTA format FASTA (Fast-All), originally devised for Lipman and Pearson’s
sequence alignment algorithm, is one of the simplest and most widely accepted
formats for sequences, taking the form of a simple header preceded by a greater
than (>) sign and sequence on the following line; e.g. >sequence_id
gataggctgagcgatgcgatgctagctagctagc.

Golden path The term applied to the first and subsequent assemblies of the

human genome.

Hidden Markov model (HMM) A joint statistical model for an ordered sequence
of variables. The result of stochastically perturbing the variables in a Markov chain
(the original variables are thus ‘hidden”), whereby the Markov chain has discrete
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variables that select the ‘state” of the HMM at each step. The perturbed values
can be continuous and are the ‘outputs’ of the HMM. An HHH is equivalently a
coupled mixture model where the joint distribution over states is a Markov chain.
HHHs are valuable in bioinformatics because they allow a search or alignment
algorithm to be trained by unaligned or unweighted input sequences, and
because they allow position-dependent scoring parameters such as gap penalties,
thus more accurately modelling the effects of evolutionary events on sequence
families.

Homology (strict) Two or more biological species, systems or molecules that
share a common evolutionary ancestor (general), or two or more gene or protein
sequences that share a significant degree of similarity, typically measured by the
amount of identity (in the case of DNA), or conservative replacements (in the
case of protein), that they register along their lengths. Sequence ‘homology’
searches are typically performed with a query DNA or protein sequence to
identify known genes or gene products that share significant similarity and
hence might clarify the ancestry, heritage and possible function of the query
gene.

in silico  (biology) (literally, computer mediated) The use of computers to
simulate, process, or analyse a biological experiment.

NCBI National Center for Biotechnology Information, Washington, DC, USA.

Open reading frame (ORF) Any stretch of DNA that potentially encodes a
protein. ORFs begin with a start codon and end with a termination codon. No
termination codons may be present internally. The identification of an ORF is the
first indication that a segment of DNA may be part of a functional gene.

Orthologue/paralogue Paralogues are genes related by duplication within a
genome. Orthologues retain the same function in the course of evolution, whereas
paralogues evolve new functions, even if these are related to the original one.

Perl (Practical Extraction and Report Language) Perl is relatively
straightforward up to a certain level, and this has facilitated its development as
the primary language of biological computing.

Relational database A database that follows E. F. Coddis’ 11 rules, a series of
mathematical and logical steps for the organization and systemization of data into
a software system that allows easy retrieval, updating and expansion. A relational
database management system (RDBMS) stores data in a database consisting of
one or more tables of rows and columns. The rows correspond to a record (tuple);
the columns correspond to attributes (fields) in the record. RDBMSs use
structured query language (SQL) for data definition, data management, and data
access and retrieval. Relational and object-relational databases are used
extensively in bioinformatics to store sequence and other biological data.
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Secondary structure (protein) The organization of the peptide backbone of a
protein that occurs as a result of hydrogen bonds, such as alpha helix or beta
pleated sheet.

Sequence tagged site (STS) A unique sequence from a known chromosomal
location that can be amplified by PCR. STSs act as physical markers for genomic
mapping and cloning.

Single nucleotide polymorphism (SNP) A DNA sequence variation resulting
from substitution of one nucleotide for another.

Structured query language (SQL) A type of programming language used to
construct database queries and perform updates and other maintenance of
relational databases. SQL is not a fully fledged language that can create
stand-alone applications, but it is powerful enough to create interactive routines
in other database programs.

Substitution matrix A model of protein evolution at the sequence level
resulting in the development of a set of widely used substitution matrices. These
are frequently called Dayhoff, MDM (mutation data matrix), BLOSUM or PAM
(percent accepted mutation) matrices. They are derived from global alignments of
closely related sequences. Matrices for greater evolutionary distances are
extrapolated from those for lesser ones.

Tertiary structure (protein) Folding of a protein chain via interactions of its
side-chain molecules, including formation of disulphide bonds between cysteine
residues.

UCSC (University of California, Santa Cruz) An excellent genome browser.

UTR (untranslated region) The non-coding region of an mRNA transcript
flanking either side of the open reading frame.
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Bioinformatics Challenges for
the Geneticist

Michael R. Barnes!

lBioinformm‘ics, GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK

1.1 Introduction

The first edition of this book was published in February 2003, and now it is reasonable
to say that expectations in the field of human genetics are higher than ever. Research-
funding bodies, such as the US National Institutes of Health (NTH) and the Wellcome
Trust, are intensifying their focus on initiatives to study the genetic basis of complex
diseases. Why is this happening? It would appear that genetics research is experiencing
something equivalent to an alignment of the constellations. Quite simply, 6 years after
the first draft, and 3 years after the completion of the genome, we have the HapMap
to complement the genome, and we have technologies to genotype rapidly hundreds
of thousands of single nucleotide polymorphisms (SNPs). Everything seems to be in
the right place to make a real leap in our understanding of the genetic determinants
of complex diseases. Clearly, there could not be a better time to publish the second
edition of this book!

To call this new edition of Bioinformatics for Geneticists, the second edition is
probably a misnomer, as thisimplies a great deal of continuity with the first. Generally,
as is reflected by the field of genetics itself, this is not the case. The challenges for
human genetics have changed almost beyond recognition between 2003 and July
2006, the date that this second edition went to press. In 2003, precisely 50 years after
the landmark discovery of the structure of DNA, the entire human genome sequence
was completed in a final, polished form. This fully indexed but semi-intelligible
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‘book of life’ immediately began to serve as a valuable framework for integration of
genetic and biological data. However, knowledge of the genome sequence did not
immediately clarify the nature and structure of human genetic variation. While in
terms of genome function, our understanding in 2003 was mainly limited to the
25 000 or so genes that we could determine encoded within the sequence, today
(July 2006), with the help of HapMap, a human haplotype map, we have a much
better understanding of the structure and complexity of genetic variation. Knowledge
of variation and improvements in genotyping technology have led to a dramatic
scaling up of genotyping experiments, generating in turn unprecedented volumes of
genotyping data. While, in terms of function, our knowledge of the human genome
is now enhanced by knowledge of at least 13 other vertebrate genomes, we are also
clarifying previously unrecognized but numerous genomic elements, such as non-
coding micro-RNA (miRNA). We are beginning to realize that these elements may
be just as important as the coding RNA component of the genome. Finally, our
understanding is starting to expand beyond the genome to the epigenome — heritable
changes other than those in the DNA sequence. All these factors add up to a complete
transformation of the genetic landscape. To address this, the second edition of this
book has also undergone a complete transformation, adding many new authors and
chapters and just a few critical, but completely revised chapters from the first edition.
Altogether, we hope these new contributions will address the lion’s share of the newer
and long-standing challenges that face the human geneticist.

1.2 The role of bioinformatics in genetics research

The function of bioinformatics is now essential to the effective interrogation of
geneticand genomic data as well as most other biological data. This makes expertise in
bioinformatics a prerequisite for effectiveness in genetics. Expertise in bioinformatics
is no mystery; the right bioinformatics tools, coupled with an enquiring mind and
willingness to experiment (key requirements for any scientist, bioinformatician or
not), can yield confidence and competence in handling bioinformatics data in a very
short space of time. The objective of this book is not to provide an exhaustive guide to
bioinformatics; other texts fulfil this role. Instead, it is intended as a specialist guide
to help the human geneticist navigate the Internet to some of the best tools and
databases for the job; that is, linking and associating genes with diseases and genetic
traits. In this chapter, we give a flavour of the many processes in human genetics
where bioinformatics can have a major impact, and refer to subsequent chapters for
greater detail.

1.2.1 Gaining understanding of genetic traits

The process of understanding a genetic trait typically proceeds through three stages:
first, recognition of the disease state or syndrome, including assessment of its
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hereditary character; second, discovery and mapping of the related polymorphism(s)
or mutation(s); and third, elucidation of the biochemical/biophysical mechanism
leading to the disease phenotype. Each of these stages proceeds with a variable de-
gree of laboratory investigation and data analysis, often by bioinformatics methods.
Bothactivities are complementary, bioinformatics withoutlaboratory workis a sterile
activity just as laboratory work without bioinformatics can be futile and inefficient.
In fact, these two sciences are really one, genetics and genomics generate data, and
bioinformatics allows efficient storage, access and analysis of the data — together, they
constitute the most efficient manifestation of genetic research in action.

1.3 Genetics in the post-genome era

Inthebroadest sense, bioinformatics in a genetic research context covers the following
aspects:

¢ knowledge management and expansion

e data management, integration and mining

® mastering genes, genomes and genetic variation data

e genetic study design and analysis

e determination of function (moving from candidate genes to disease alleles)

analysis at the genetic and genomic data interface.

These categories are quite generic and could apply to most fields of biology, but
are clearly applicable to genetics. Both genetics and bioinformatics are essen-
tially concerned with asking the right questions, generating and testing hypothe-
ses, and organizing and interpreting large numbers of data to detect biological
phenomena.

1.3.1 Knowledge management and expansion

Genetics, as the innate code of an organism, largely defines biology. Consequently,
few areas of biological research call for a broader background in biology than genetic
research. This background is tested to the extreme in the selection of candidate genes
to test for involvement in a disease process, or in identifying candidates from the
results of a genome scan. Candidate genes need to be chosen and prioritized by
many criteria. Often biological links may be very subtle. Candidate gene interactions
might be considered similar to human interactions, bringing to mind the famous
‘six degrees of separation’ concept from an experiment by social psychologist Stanley
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(Chap 6 ) (Chap 11
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Figure 1.1 Approaches moving from linked or associated genes to validated disease genes.
Chapters detailing each aspect are indicated

Milgram in 1967, which suggested that two random US citizens are connected, on
average, by a chain of six acquaintances. For example, a candidate gene may regulate
a gene that regulates a gene that, in turn, may act upon the target disease pathway.
Faced with the complexity of relationships between genes, geneticists must be able to
expand pathways and identify complex cross-talk between pathways. As this process
can extend almost interminably to the point that virtually every gene is a candidate
for every disease, knowledge management is important to help weigh up evidence
to prioritize genes for either initial analysis or follow-up.

Geneticists can rarely afford to be authorities on every disease that they study, nor
can they expect to know the details of all gene and pathway interactions. Therefore,
bioinformatics and effective use of disease biology resources on the Web are needed
for quick evaluation of the role of each candidate and its related pathways with respect
to the target phenotype. Figure 1.1 illustrates some of the areas to be effectively
utilized by geneticists to formulate the questions that need to be asked to move from
candidate genes to disease genes. These areas of biology are touched on directly or
indirectly throughout this book, so chapters that may help to formulate and perhaps
answer these questions are indicated in the figure.

Literature, as an embodiment of (almost) all prior knowledge, is the most power-
ful resource to support this process, but it is also the most complex and confounding
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data source to search. To expedite this process, some databases have been con-
structed that attempt to encapsulate the available gene/disease-focused literature,
such as Online Mendelian Inheritance in Man (OMIM) (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=OMIM). These centralized data resources can often be very
helpful for gaining a quick overview of an unfamiliar pathway or gene, but inevitably
one needs to re-enter the literature to build up a fuller picture and to answer the ques-
tions that are most relevant to the target phenotype or gene. The Internet is also an
excellent resource to help in this process; this probably makes the ubiquitous search
engine Google (http://www.google.com) one of the most powerful bioinformatics
tools. Well-chosen Google keywords can usually return highly relevant information
or links to tools and databases that contain information being sought, while Google
Scholar (http://scholar.google.com/) can offer even more focused results. We offer
pointers throughout this book to effective literature-searching strategies, and to some
of the best tools and databases related to genes, proteins, pathways and disease biol-
ogy on the Internet, but regular Google searches are also necessary to keep abreast
of the latest tool and database developments.

1.3.2 Data management, integration and mining

Efficient application of knowledge relies on well-organized data. Dependent on sta-
tistical analysis, genetics is also highly dependent upon good data, increasingly in
very large volumes. Accessing available data, particularly in bulk, is often the biggest
informatic frustration for geneticists. In Chapter 2 of this book, dealing with data
entry and manipulation, and taking the first steps in software coding, we have tried to
give some pointers for overcoming some of these frustrations. Generally, we focus on
accessing data from public databases and some of the more lightweight methods of
analysing data in locally installed databases with Perl and similar coding languages.
Methods of industrial-scale genetic data curation and analysis, in the form of either
‘off the shelf” or custom-built laboratory information-management systems (LIMS),
belong to a specialist area beyond the scope of this book.

1.3.3 Mastering genes, genomes and genetic variation data

A key problem that frequently hinders effective genetic data mining is the localization
of data in many independent databases rather than a few centralized repositories. A
clear exception to this is SNP data, which have now coalesced around a single central
database — dbSNP at NCBI (Sherry et al., 2001). This may have helped to stimulate
the genetics research community to complete the HapMap (International HapMap
Consortium, 2003), which has enabled the comprehensive characterization of linkage
disequilibrium (LD) and haplotype relationships between SNPs in four population
samples. As mentioned earlier, HapMap is revolutionizing genetic analysis, but this
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resource is not without caveats, so we provide a comprehensive review addressing
some of these issues in Chapter 3.

Perhaps with the exception of dbSNP, most database development in bioinformat-
ics has not been implicitly designed for geneticists; instead, genomic databases and
genome viewers have generally been developed to aid the annotation of genes and
the human genome. Of course, such data are vital for genetics, but this development
may explain why the available tools often appear to lack important functionality for
the geneticist. One has to make use of what functionality is available, although some-
times this means using tools in ways that were not originally intended (for example,
many geneticists use BLAST to identify sequence primer homology in the human
genome, but few realize that the default parameters of this tool are entirely unsuited
for this task). We will attempt to address these issues throughout this book and of-
fer practical methods to get the most value from existing tools wherever possible.
In Chapter 4, we examine the use of human genome browsers for genetic research.
Tools such as Ensembl and the UCSC human genome browser annotate important
genetic information on the human genome, including SNPs, microsatellites and, of
course, genes and regulatory regions. User-defined queries place genes and genetic
variants in their full genomic context, giving very detailed information on nearby
genes, promoters or regions conserved between species, including a number of verte-
brate species that now have complete genome sequences. Sometimes this bewildering
wealth of information might even be seen as a hindrance to the clear understanding
of gene function. Therefore, in Chapter 5, we discuss defining the boundaries and
full complexity of a gene from all available data so that genetic analysis can effectively
evaluate it.

It is hard to overstate the value of genomic information for genetics. For example,
cross-species genome comparison is invaluable for the analysis of function, as inter-
species sequence conservation is generally thought to be restricted to functionally
important gene or regulatory regions. This makes comparative genome analysis one
of the most powerful tools for identifying potential regulatory regions or undetected
genes. Chapter 6 deals with this whole area in detail, while several other chapters in
this book cover related tools and databases to support these approaches (see Chapters
12 and 16).

1.3.4 Genetic study design and analysis

Despite the recent improvements in the throughput of genetic and genomic tech-
niques, the genes that contribute to the most common human diseases are still elusive.
By contrast, the identification of genes mutated in rare single-gene disorders (so-
called Mendelian or monogenic disorders) is now relatively straightforward if suitable
kindreds are available. The identification of the genes responsible for a plethora of
monogenic disorders is one of the genetics success stories of the late 1980s and the
1990s; genes identified include, to name but a few, CFTR (cystic fibrosis; Riordan
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et al., 1989), Huntingtin (Huntington’s disease; Huntington’s Disease Collaborative
Research Group, 1993), Frataxin (Friedreich’s ataxia; Campuzano et al, 1996) and
BRCALI in breast and ovarian cancer (Miki ef al., 1994). Some evidence suggests
that an understanding of Mendelian phenotypes may also help to identify genes in-
volved in complex disease; for example, PPARYy variants have been implicated in both
monogenic and complex forms of type II diabetes (Altshuler et al., 2000b; Savage
et al., 2003). Therefore, Chapter 7 addresses some of the unique issues raised during
the process of identifying monogenic disease gene mutations.

Unfortunately, identification of genes with a role in complex (i.e. multigenic)
disease has been far less successful. Notable examples are the involvement of APOE
in late-onset Alzheimer’s disease (Saunders et al., 1993) and the role of NOD2 in
Crohn’s disease (Hugot et al., 2001). However, genes for most of the common complex
diseases remain elusive. Our ability to detect disease genes is often dependent on the
analysis method applied. Methods for the identification of disease genes can be
divided neatly into two broad categories, linkage and association. Although many
common principles apply to both of these study types, each approach has distinct
informatics demands, which are reviewed in detail in Chapter 8.

Unlike single-gene Mendelian diseases, complex genetic diseases are caused by the
combined effect of multiple polymorphisms in a number of genes, often coupled
with environmental factors. The successes of linkage analysis in the rapid identifi-
cation of Mendelian disease genes have spawned large-scale efforts to track down
genes involved in the more common complex disease phenotypes. Unfortunately,
these efforts have been largely unsuccessful to date, mainly because each gene with
phenotypic relevance is thought to make a relatively small contribution to disease
susceptibility. These small effects are likely to be below the threshold of detection by
linkage analysis in the absence of unfeasibly large sample sizes (Risch, 2000; Wang
et al., 2005; see Chapter 18).

Association studies have three main advantages over linkage studies for the anal-
ysis of complex disease: (i) case-control cohorts are generally easier to collect than
extended pedigrees; (ii) association studies have greater power to detect small ge-
netic effects than linkage studies, a clear example being the insulin gene, which shows
extremely strong association with type 2 diabetes, but very weak linkage (Spielman
et al., 1993); (iii) LD typically stretches over tens of kilobases rather than several
megabases (Reich et al., 2001), allowing focus on much smaller and more manageable
loci. Among other reasons (discussed in Chapter 8), this is because an association-
based approach exploits recombination in the context of the entire population, rather
than within the local confines of a family structure.

Of course, this last point is the other side of the double-edged sword of marker
density and resolution mentioned in the context of linkage analysis above. The trade-
off is reduced range over which each marker can detect an effect, resulting in a
need for increased marker density, scaling up to a genome-wide requirement of
hundreds of thousands of SNPs. In terms of technical requirements, the new ultra-
high-density, oligonucleotide-based SNP genotyping panels address these increased
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needs (Matsuzaki et al., 2004). But, unfortunately, there is another trade-off, which
is a dramatically increased level of testing, leading to a very high number of chance
associations (see Chapter 18 for detailed discussion of these issues).

The distinct issues that linkage and association studies of complex diseases each
raise can be addressed to varying degrees by bioinformatics analysis. In the case
of linkage studies, the very large regions identified call for rigorous prioritization
of genes and markers for further analysis based on biological rationale and disease
understanding. In the case of association analysis, the problems stemming from lack
of power and issues of multiple testing can also be ameliorated by filtering results
with different forms of rationale. Whichever method is employed, comprehensive
informatics input at each stage can contribute to the quality, efficiency and outcome of
a study. Chapters 8 and 10 review the elements of experimental design and statistical
analysis that can help to address intrinsically some of these issues, while Chapters
9 and 18 address in detail the bioinformatics approaches that can be used to define
a locus or series of genome-wide associations, allowing a logical and systematic
approach to marker and gene selection, prioritization, and subsequent genetic and
biological analysis. This can simultaneously reduce the cost and complexity of a
project and improve the chances of successfully discovering a phenotype-genotype
correlation.

1.3.5 Moving from candidate genes to disease alleles

Ultimately, the biologist requires evidence of a change in function to support a
hypothetical genetic association; bioinformatics has a role to play here, too. For
example, DNA variants that alter subsequent amino-acid sequences can be checked
for potential functional consequences by a range of software tools (Chapters 11
and 13). Similarly, a thorough bioinformatics characterization of putative regulatory
elements can give an indication of the possible impact of polymorphisms on splicing
and expression levels (Chapter 12). Finally, our understanding of the functional
elements of the genome is still expanding; the most startling example of this is our
knowledge of miRNA. This large class of small, non-coding RNAs was almost unheard
of when the first edition of this book appeared (July 2003). Now, however, miRNAs
are recognized as one of the major regulatory gene families in eukaryotic cells (Kim
and Nam, 2006). We hope Chapter 14 atones for the shocking omission of coverage
of this important domain of biology in the first edition!

1.3.6 Analysis at the genetic and genomic data interface

The final section of this book addresses some of the emerging issues that geneticists
face as the mature fields of genomics and genetics become increasingly closely inter-
faced, mainly through the complementary application of microarray technology to
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some of the most complex genetic problems. Chapter 15 presents a general overview
of the microarray as a genomics platform and some of the issues that may arise in
dealing with data from this technology. Chapter 16 addresses one of the most exciting
applications of microarray technology — analysis of gene expression as a quantitative
trait. Studies in mice are identifying genetic variants that influence a wide range of
gene-expression phenotypes; these are, in turn, identifying complex transcriptional
regulatory modules that may be megabases away from the gene(s) being regulated (Li
et al., 2006). Similar studies are also yielding results in man. For example, Stranger
et al. (2005) performed a genome-wide quantitative trait analysis of 630 genes in
the Caucasian HapMap cell lines. Using HapMap genotypes, they identified many
regions with statistically significant associations between specific SNPs and expres-
sion variation in the HapMap lymphoblastoid cell lines after correcting for multiple
tests. Their results suggest that regulatory polymorphism is widespread in the hu-
man genome, not necessarily in the immediate 5 region of genes. Such studies will
significantly enhance our ability to annotate the non-coding part of the genome and
interpret functional variation.

Another key application of oligonucleotide microarray technology is in the field
of oncology. Chapter 17 reviews some of the distinct bioinformatics challenges that
face geneticists studying cancer or, more appropriately, cancer genomes — each with
its own unique array of point mutations, copy-number alterations and gross chro-
mosomal changes.

Genome-wide association studies are perhaps the area of genetics where mi-
croarray technologies are making the biggest impact. The new generation of SNP-
genotyping arrays, which allow simultaneous testing of hundreds of thousands of
SNPs, is revolutionizing genome-scan analysis and the search for genes that influ-
ence common genetic traits. A number of major studies are now under way, and
many more are in planning, to perform association scans with LD to detect risk-
associated variants in large population-based sample collections (Thomas et al.,
2005; http://www.ncbi.nlm.nih.gov/WGA/). However, these studies are also creating
problems for geneticists on an unprecedented scale. The foremost among these issues
is probably type I error (false-positive association) due to multiple testing. More than
ever, effective bioinformatics is required to help to filter and prioritize the outputs
of these genome-wide scans. Chapter 18 examines these issues in detail and suggests
some potential bioinformatics solutions for this entire area of research.

In the final chapter of this book, Chapter 19, we address one of the key end points
of genetics research — the development of new drugs and therapeutics. This domain of
genetics research was inexplicably missing from the first edition of this book, despite
being so close to the heart of its editors and most of the contributors! The development
of new therapeutics is often cited as one of the primary objectives of a genetic study,
but, unfortunately, so far there have been very few published examples of genetic
associations being translated into drugs, although this may already be changing
(Roses et al., 2005). Aside from drug discovery, genetics is also being used to clarify
the basis of the observed interindividual variability in drug response, the nascent
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field of pharmacogenetics. We expect that the study of pharmacogenetics will expand
further, as it is seen increasingly as a requirement for drug development by regulatory
authorities, such as the US Food and Drug Administration (FDA) (Woodcock, 2005),
and as public-domain databases are established to collect pharmacogenetic data
(Gurwitz et al., 2006). Bioinformatics has a great deal to offer genetics focused either
on drug discovery or drug response. Both usually involve finite ‘universes’ of genes; in
the case of drug discovery, it is the druggable components of the genome (Hopkins
and Groom, 2002), and in the case of pharmacogenetics, it is genes known to be
involved in drug absorption, dissemination, metabolism or excretion (collectively
known as ADME genes).

1.4 Conclusions

On behalf of all the contributors, we sincerely hope this book will help geneticists to
design and carry out effective genetic analyses. Effective bioinformatics can have areal
impact on the success of laboratory research, but it is not intended as a replacement
for the laboratory process. Misconceptions regarding the power of bioinformatics
as a stand-alone science are perhaps among the biggest mistakes that bioinformatics
specialists can make and may even explain a degree of prejudice against bioinfor-
matics, which is perceived by some as an ‘in silico’ science with little basis in reality.
Taken to an extreme and without both a balanced understanding of the application
of software tools and a good appreciation of basic biological principles, this is exactly
what bioinformatics can be; but where bioinformatics proceeds as part of ‘wet” and
‘dry’ cycles of investigation, both processes are stronger as a result.

1.4.1 New opportunities for the geneticist

Another criticism of bioinformatics also reveals a possible strength. Bioinformatics
scientists often need to be generalists, covering a vast knowledge domain. This rarely
allows time for the development of in-depth expertise in more than a very limited
range of areas; however, it does offer great opportunities to spot potential synergies
between different research domains. Genetics has the potential to affect just about
every area of biology, so it might be worth highlighting a few of these for particular
attention.

Epigenetics — ‘It’s the Epigenome, stupid!’
Good advice to any geneticist. During the 1992 US presidential campaign, James

Carville, an adviser to Bill Clinton, decided that the push for the presidency needed
focus. Drawing on electoral research, he came up with a simple focus for the
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campaign. Atevery opportunity, James Carville wrote four words— ‘1T°S THE ECON-
OMY, STUPID!” — on a whiteboard for Bill Clinton to see every time he went out to
speak.

Clearly, this worked for Bill Clinton, so it might just work for genetics. Epigenetics
represents a secondary inheritance system that has so far been the subject of very lim-
ited investigation. Epigenetics is concerned with the study of heritable changes other
than those in the DNA sequence and encompasses two major modifications of DNA or
chromatin: DNA methylation and post-translational modification of histones (Cal-
linan and Feinberg, 2006). These modifications are critical regulatory cues, making
DNA more or less accessible to DNA-binding proteins. Preliminary evidence suggests
that epigenetics is something that geneticists must think about in their genetic analy-
sis. Flanagan et al. (2006) demonstrated evidence of significant epigenetic variability
in human sperm cells, suggesting that epigenetic patterns can be efficiently transmit-
ted across generations, possibly influencing phenotypic outcomes in health and dis-
ease. DNA methylation profiles are complex and dynamic, and can vary with develop-
mental stage, tissue type, age, the alleles’ parent-of-origin, and phenotype or disease
state. This fits very well with many of the observed characteristics of diseases such as a
defined or variable age of onset, variable penetrance, and variable tissue distribution.

In the absence of an entire chapter on this rapidly expanding area, Chapter 9 sug-
gests some approaches that might help to incorporate this information into genetic
analysis. A full chapter on epigenetics is a definite requirement for the third edition
of this book, by which time the Human Epigenome Project (Rakyan et al., 2004) will
be complete, and consideration of epigenetics may have become an integral part of
the way that geneticists work.

The HapMap — it’s more than LD

Apologies for the flippancy, but the data generated by the HapMap really are more
than LD. For example, it can clarify the demographic history and evidence of selection
in human populations (Voight et al., 2006) and of previously undetected regulatory
relationships and gene networks (Petkov et al, 2005). All of these properties make
the HapMap no less important as a resource than the human genome sequence
itself. Further investigations of these alternative applications are well under way, and
they can be effectively monitored by a simple PubMed search using ‘HapMap’ as a
keyword.

Let us not forget the ‘unknown unknown’ elements of the genome
Obviously, we will not find this category of genomic elements annotated any-

where in Ensembl or the UCSC genome browser, but they are undoubtedly im-
portant (http://en.wikipedia.org/wiki/Unknown_unknown). The potential value of
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these elements is informed by former members of this class, miRNAs being one
of the most notable. Ten years ago, we had no idea that miRNAs existed, but to-
day we know of more than 300 in man, and their role in global gene regulation
appears to be critical (see below). But how can we identify these elements? Com-
parison of genomes between species is one way to highlight evolutionarily con-
strained (putatively functional) but otherwise unknown elements in the genome (see
Chapter 6). But as miRNA are also illustrating, not all functional elements are con-
served; for example, miRNA target sites show limited conservation between mouse
and human genomes. This illustrates that, for example, the huge differences between
mice and man may be due to genomic elements of which we are still completely
ignorant.

miRNA!

We missed them the first time, but we are not going to let this happen again. MiRNAs
appear to be a critical element of gene regulation that genetics needs to account for.
Once the reader has finished Chapter 14, boring old 3" UTR SNP associations will
never seem the same again.

How much do we really know about gene regulation?

Just as our knowledge of the role of miRNA is revealing unknown mechanisms of
gene regulation, the identification of cis-acting expression quantitative trait loci is
starting to challenge the dogma of our knowledge of the promotion of gene expres-
sion (Chapter 16). Knowledge that regulatory control or promoter elements may be
located more than a megabase away from a gene obviously makes genetic analysis
potentially very difficult. This makes detailed bioinformatics characterization of ge-
netic association data all the more important. Tools such as GeneNetwork.org are
starting to address some of these issues, but this is still an area that all geneticists
should watch closely.

Carriage return

These are just a few of the issues that geneticists may have to address in the next few
years. In this introduction, we have briefly examined ways in which genetics can be
assisted by bioinformatics; we now invite the reader to more detailed coverage of
each of these areas in the remaining chapters of this book.
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2.1 Introduction

Geneticists must learn to program: for efficiency, to avoid introducing errors into
data, and to make simple what would otherwise be unfeasible. If a geneticist were
to learn just one programming language, Perl would be an excellent choice; it is
especially valuable for the manipulation of text files, which are the input and output
of most statistical genetic software.

Our ability to learn from data relies upon the accuracy and integrity of such data.
Thus, it is critical that data be stored and managed with great care. The continual
growth in the size and complexity of genetic data has led to an increasing need for a
formal approach to data management.

Many data are in the form of a rectangle: many individuals measured at many
variables. Genetic data, however, are generally of more complex form, including
pedigree information and genetic maps. Moreover, no standard data format has
emerged, nor does there exist a comprehensive statistical genetic software package.
Theanalysis of genetic data generally requires the use of multiple computer programs,
each having a unique data input format.

A fundamental task in statistical genetic analyses is thus the manipulation of
data files in order to conform to the variety of input formats required by the va-
riety of software tools that must be used. Such data manipulation is cumbersome,
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time-consuming, and error-prone, if not impossible, without the ability to program
in a language like Perl. Programming also provides the ability to automate analyses
and to perform computer simulations.

In this chapter, we describe the essential issues in the management and manip-
ulation of genetic data, focusing on the case of human linkage data, although the
basic principles apply to all types of data. Towards the end of the chapter, we provide
some sample snippets of Perl code, to give the reader a flavour of the language and to
emphasize certain features of Perl that are especially valuable for this type of work.
We include examples of code with some trepidation, as we fear that readers will run
in fright from learning to program. And so we hope that if the code frightens readers,
they will ignore it, initially, and focus on the essential ideas. But we also hope that
readers will be persuaded by our argument that geneticists must learn to program
(or hire a programmer).

2.2 Basic principles

We begin with a brief set of guiding principles for the manipulation of genetic data.
Our goals are, first, to maintain the integrity of the data; second, to be as efficient as
possible; and third, to ensure that results are reproducible.

2.2.1 Never modify data ‘by hand’

If certain genotypes are to be removed as likely to be in error, create a file of such, and
write a program that creates a new version of the data with those genotypes removed.
If the data must be reformatted for a particular software package, do not edit the
files directly; write a program to do so. Why? One then avoids the introduction of
errors, results can be easily reproduced, and the process can be automated so that, if
the primary data should change, essentially no further effort must be expended to
get back to the same point. Moreover, the computer program provides a record of
what was done.

We would like to emphasize the value of command-line programs over point-and-
click programs for this reason. Pointing and clicking can be useful for the occasional
user of software, or for preliminary, interactive analyses, but if automation is needed,
pointing and clicking is far too cumbersome, and if the analysis is to be repeated (and
itusuallyis), how much easier is the repeated run of a program than repeated pointing
and clicking!

2.2.2 Be organized; keep notes

When one leaves the laboratory and sits down in front of a computer, the importance
of a laboratory notebook should not be forgotten. The procedures in data analysis
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are not unlike those of a laboratory experiment: there are often many steps to be
taken and many choices to be made at each step. Careful account must be taken of
the particular steps and the particular choices, so that the results obtained may be
understood, trusted, and reproduced. Such organization requires the investment of
some effort, but this is made in order to minimize future effort.

Computer programs can serve as a useful record of one’s analyses. However, it
is often the case that multiple short programs are written, and that each includes
some flexibility (and, indeed, we will emphasize the importance of both of these
features subsequently). And so further notes on the particulars of one’s analyses will
be desired. If copious printouts are to be avoided, a short electronic notebook might
be recommended.

It is unfortunate that statisticians have not adopted the laboratory notebook tra-
dition, especially given the growth in the size and complexity of their computer
simulations. (Statisticians’ simulation results are notoriously irreproducible.) We
hope that they soon do.

2.2.3 Reuse code

Few tasks are performed just once in a career, and so in writing a computer program,
one should consider the possibility that it may be of some use in the future. Programs
should be written in a modular and reasonably general form, and explanations
(‘comments’) should be included in order to clarify any aspects of the program that
are not obvious.

One must balance current versus future effort. If a program is written that is quite
specific to the current task, it cannot be reused without modification. If the program
is made somewhat more general (so that, for example, file names and parameter
values are specified on the command line rather than within the program), there is a
greater chance that it will be reused without modification in the future. But to write
the program in more complete generality may require considerably more current
effort without any guarantee that the added features will ever be put to use.

Modularity of software can increase the chance that one’s programming effort will
be put to future use. All of one’s tasks might be solved by a single long, strung-out
program, but it is unlikely that the same long sequence will be required unchanged
in the future. If the long program is split into many small, independent modules, it
is much more likely that some individual module will be of future use, unchanged.

Documentation of software is critical, even for code that is intended only for
the programmer’s own use. Think of yourself 3 months or 3 years hence; will you
remember what you did and be able to modify or fix your code? That the program
is written with some clarity is as important as proper documentation. If extensive
explanations are required, perhaps it is best that the code be rewritten so that its
use is more transparent. It is important that the documentation describe not only
the operation of the program, but also the assumptions that the program makes about
the input data. It is all too easy to write a program, that relies on a particular feature
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of a data set (for example, that the records are sorted, or that the columns in the data
fileareinaparticular order). If the software is subsequently reused on new data that do
not have this feature, the results will be incorrect. Ideally, programs should perform
extensive checking of any input data, particularly if the programs are intended for
reuse, but further comparisons of input and output data are recommended to ensure
that the data have not become garbled due to some subtle change in data format.

2.2.4 There’s probably an easier way, but...

The first priority in programming should be to write code that works. There are
generally many approaches to any program; do not concern yourself initially (if at all)
with finding the optimal solution. Another trade-off arises here: time to construct the
program versus time to run the program. For tasks in data manipulation, efficiency
of computation is seldom of much importance. First solve the problem. If it is later
seen to be important to reduce computation time, seek a more optimal solution, but
retain your initial solution as a benchmark.

2.3 Data entry and storage

Data seldom begin their life within a computer; ideally, they are transmitted directly
from the measuring instrument to the computer. If data are to be entered into the
computer by hand, it is best done independently by at least two people, in order to
reduce the possibility of errors. Any discrepancies between the two data sets may be
checked against the original data.

Data sets of small or moderate size can reasonably be stored in an office spreadsheet
program, such as Microsoft Excel. It is best to insert a value in every cell, using a
standardized code (such as Na) in any cells for which the data are missing, rather
than leave some cells empty. Empty cells are ambiguous: was the value missing, or
was an error in data entry made? It is best not to use special fonts (such as boldface)
or colours to encode important information, as such codes will be difficult to extract
from the software. Consistency in the coding throughout the data will, of course,
simplify its later use.

We routinely receive data as Excel files, but convert them to comma- or tab-
delimited text files prior to their use, as such text files are easily manipulated via
computer programs and are generally needed for input into statistical genetic soft-
ware. For much of our work, it is sufficient to maintain the data in such text files.

The increasing size and complexity of genetic data argue for the abandonment
of Excel or other spreadsheets as a solution for data storage, especially as Excel is
limited in the number of columns (256) and rows (about 65 000) that are allowed.
We continue to use plain text files for storing extremely large data sets (e.g. genotype
data on 500K SNPs), but for complex data (particularly for the maintenance of
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multiple projects whose data may be pooled, or for a project with a large number
of individuals measured at many phenotypes longitudinally), a formal database may
be preferred. The choice of database software depends on the size and complexity
of the data (as well as the budget). For smaller projects, open-source solutions, such
as MySQL or PostgreSQL, can work very well. For very large collections of data,
however, it might be better to use one of the commercial offerings, such as Oracle or
Sybase. In any case, if data storage and handling requirements are such that a database
is required, it will generally be necessary either to hire a dedicated employee who is
proficient in the design, implementation, and maintenance of databases, or to buy a
complete solution where the database application has already been developed. The
advantage of the latter solution is that these packages generally come with support
from the supplier. The disadvantage is the cost, which in many cases can be substantial
(although the cost of hiring a database programmer for the first solution must not
be forgotten).

We hope it is unnecessary to emphasize that all data should be backed up regularly
(and automatically), with backups kept off site so that, should a catastrophe occur,
minimal data are lost.

2.4 Data manipulation

The analysis of genetic linkage data involves a sequence of tasks: verify and correct
relationships between individuals, identify and resolve genotyping errors, identify
and resolve errors in the phenotypes and any covariates, and perform the actual
analysis. Sometimes one may then conduct computer simulations to assess the per-
formance of the statistical methods or to obtain P values that properly account for
test multiplicity.

As the different tasks involve the use of different programs, and as each such
program may have its own data input format, the central problem concerns the
manipulation of the data files to conform to the necessary input formats. The program
Mega2 (Mukhopadhyay et al., 2005) can be useful in this regard: once the data are
put into Mega2, the program can be used to create files conforming to most, if not
all, statistical genetic software of interest. We, however, have not made use of Mega2,
but instead have written our own Perl programs to convert data between formats.

It is essential, for the manipulation of genetic data files, to define a single standard
format for one’s work. For almost every linkage project we are involved in, the primary
data arrive in a unique format. One might be tempted to write new Perl programs
to convert data from each such format into that needed for each analysis program of
interest. If we are involved in 20 projects and there are 12 analysis programs we wish
to use, we would then need to write 240 different Perl programs. A better approach
is to define our own standard format, and write Perl programs to convert data from
that format to each of the 12 analysis programs, and then for each project, we write
just one Perl program to convert the data to our standard form. With 20 projects
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and 12 analysis programs, we then have 32 Perl programs. And for each additional
project, we write just one new Perl program, rather than 12.

A second important use of Perl in genetics is the automation of analyses. A partic-
ularly important example of this concerns single-marker linkage analysis (so-called
two-point analysis), in which each of about 400 markers is investigated, one at a
time, for linkage to a putative disease gene. We are aware of cases in which an in-
vestigator created, ‘by hand’, 400 input files (one for each marker), and then ran a
linkage program 400 times, again ‘by hand’, writing down the one or two numbers
that characterize the results for each marker. The problem with this approach should
be obvious. More important than the enormous waste of effort is that the manual
manipulation of data files, and the transcription of the results, can be extremely
error-prone. With proficiency in Perl, it is a simple matter to write a program that
reads all of the genetic data, steps through the markers one at a time, creates the
required input files, runs the linkage program and extracts the essential pieces of
information, and finally produces a table of the results for all markers.

Finally, Perl is extremely valuable for performing computer simulations with other
genetic software, either to explore the performance of an analysis method or to
obtain P values that make proper adjustment for the multiplicity of tests performed.
This task is much like that of automating analyses: one simulates data (either with
Perl or someone else’s program), sends it through an analysis program, extracts
the interesting bits from the output, and repeats the entire process many times. The
greatest advantage of Perl for simulations is in the extraction and tabulation of the
one or two interesting numbers at each replicate from the copious output produced
by most analysis programs. This approach can be applied to essentially any statistical
genetic software.

2.5 Examples of code

In this section, we provide some examples of Perl code, in order to give the reader a
flavour of the language and to emphasize certain features of Perl that are especially
useful for our work. We are unsure of the value of this section for a reader with no
prior Perl programming experience; such readers may wish to skip this section.

Perl programs are generally run from a terminal window in Mac OS X or Unix,
or from a command shell in Windows. The Perl interpreter will be pre-installed in
Mac OS X and most Unix distributions. A Windows version of Perl may be obtained
from http://www.activestate.com/ActivePerl.

2.5.1 The traditional first example

A traditional first example, and closest to the simplest possible Perl program, is
displayed in Figure 2.1. This program simply prints ‘Hello, world!” to the screen. The
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#!/usr/bin/perl -w

print ("Hello, world!\n");

Figure 2.1 A simple but complete Perl program

first line is necessary for Unix and MacOS, and indicates where the Perl interpreter is
located. The -windicates that the Perl interpreter should provide warnings regarding
various constructions in Perl that, while being strictly legal, are more likely than not
to be errors.

The second line prints the desired phrase. Note that \n is the ‘newline’ character.
The semicolon indicates the end of the Perl statement.

One must create a text file containing the above code. To run the program in Unix
or MacOS, the file must be made ‘executable), by typing, from a terminal window,
chmod +x filename, where £ilename isthe name of the file. The program is then
run by typing the name of the file. In Windows, chmod is not needed. Instead, the
program file must be given a name of the form filename.pl. The program is
then run from a command shell by typing the name of that file or by typing per1l

filename.pl.

2.5.2 Combining marker data

A common issue in genetic data manipulation is the combination of genotype data
from multiple input files. In an extreme case, one may be confronted with a single file
for each genetic marker. In Figure 2.2, we present a Perl program for reading all files
in a directory in order to combine genotype data. We are imagining here that there
is a single directory containing one file for each marker, with each file having a name
like D10S1123 . txt, where D10S1123 is the marker. The files are in LINKAGE PRE
format, that is to say, each line contains the family identifier, individual identifier,
dad, mom, sex, and disease status and then the two alleles for that subject at that
marker. The aim of the first program is to read in all of the data, to store them in such
a way that we can easily work with them. This may not appear so useful in itself, but
we will show in subsequent examples how the program can be extended to perform
recoding of marker alleles, estimation of allele frequencies and generation of input
files for the LINKAGE programs.

The first line is the usual first line for a Perl program. The second and third lines
instruct Perl to be stricter in terms of what it accepts and to issue warnings for unsafe
code. This is highly recommended, as without these it is very easy to make errors
that can be very difficult to detect.

The main inconvenience of this is that it is now necessary to declare each variable
before use using the my command. For example, in line 5, my $dir declares that $dir
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers);
while(my S$file=readdir (DIR)) {
next unless S$file =~ /(.+)\.txtS$/;
10 my $mark = S1;
push @markers, S$mark;
my $idx = S#markers;
my $infile = "$dir/$file";
open IN, S$infile or die "Cannot open S$infile:S$!\n";
15 my $line = 0;
while (<IN>) {
Sline++;
my @v=split;
if(@v<8) {
20 print "Short line at $line!\n";
next;
}
my ($fam, $ind, Sfather, Smother, $sex, Sstatus, $gl, $g2)=@Qv;
my $id="S$fam\_S$ind";

25 Sped{s$ind} = [$fam, $ind, Sfather, Smother, $sex, Sstatus];
$gtypes{$ind} [$idx] = "$gl $g2";
}
close IN;

Figure 2.2 A Perl program to read data from all data files with a . txt extension

is a scalar variable, indicated by the dollar sign, which is here assigned the character
string data. The content will be just the bit between the double quotation marks.
The advantage of having Perl enforce pre-declaration of variables is that it is very easy
to mistype a variable name, and, by default, Perl will not complain but silently create
a new variable with the mistyped name. This can lead to some extremely subtle and
difficult to track down bugs in programs. For all but very short programs, therefore,
it is generally advised to follow the practice here of adding the use strict; and
use warnings; statements to the start of your programs.

In line 6, we open a directory using a ‘directory handle’ DIR. This allows us, from
line 8, to ‘loop’ through each file in the directory; within this while loop, we read one
file name at a time from the directory until there are no files remaining to be read.
Note that if the opendir command fails, the die statement will be executed, which
stops the program and prints the message Could not open directory $dir:
$1. The variable $dir is expanded in the message to give the value we assigned in
line 5. The odd-looking variable ¢! is a system variable, which gives the last error
message from a system command, in this case opendir.



2.5 EXAMPLES OF CODE 25

In line 9, we use pattern matching to check that the file name ends in .txt;
otherwise, that file is skipped. (This is important, because the directories “.” and *..’
will be included, but should be skipped.) The code for the pattern matching is a bit
complicated at first glance. The first thing to note is that a period (.) matches any
character and a plus sign (+) means one or more of the previous match. To match a
literal period, it is necessary to escape the period with a backslash. The dollar sign at
the end of the pattern matches the end of the string. If we ignore the brackets for the
moment, the code in line 9 will therefore match one or more characters terminated
by .txt. The brackets around the first part .+ direct Perl to store the part of the
input string which matched this part of the pattern, and store it in the variable $1,
which is assigned to the variable $mark in line 10.

Inline 11, the marker name is appended to the end of an array of all marker names,
@markers. The @ symbol indicates an array: an ordered list of values, indexed by 0,
1, 2, .... The index of the last item in an array is given by $#name_of_array, so line
12 sets $idx to the index of the last marker added, i.e., the current marker.

In line 13, $infile is assigned the full file name: the directory name followed by
a/ followed by the simple part of the file name. Note how we can use variables inside
a quoted string, and they will be expanded to give the resulting string. We then open
this file in line 14, producing a ‘file handle’, IN.

In line 15, we initialize the variable $1ine to zero; this will be used to track the
line number of the input file, so that errors can be reported.

From line 16, we loop through each line in the input file. In a similar way to the
while loop starting at line 8, this loop will exit when there are no more lines to be
read.

Inlines 17-18, we increment the line number and split the line into fields separated
by white space (any combination of non-printing characters such as spaces or tabs),
storing the results in the array @v. Lines 1922 then check that there are at least eight
columns of data; if there are fewer, we print an error message and skip to the next
line.

In line 23, we assign the contents of the array ev to the individual variables, $ fam,
$ind, etc.

In lines 24-26, we store the information on the individuals’ parents and sex, using
‘hashes’. (This is rather difficult for beginning Perl programmers, but hashes are
extremely valuable for this sort of work, as we will see in the next example.) A hash
is like an array, but the hash is keyed by an arbitrary character string rather than
indexed by numbers 0, 1, 2, .. .. Here we create a unique identifier for an individual
by concatenating the family and individual identifiers together with an underscore
character between them in line 24. Note here that we escape the underscore after
$fam because otherwise Perl would take it as part of the variable name. We then
store the pedigree information and genotype information in lines 25-26 keyed by his
unique identifier. Note that for the genotype, we also index with the variable $idx
(from line 8), which indicates which marker we are working on. We use braces {} for
the variable $id and square brackets [] for the marker index at line 26 to indicate
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to Perl that $id should be treated as a hash key and $idx should be treated as a
conventional numeric index. It is not important to understand the details of how the
data are stored in lines 25-26; the key point is that with the individuals’ identifiers,
we can access their pedigree information and genotype data.

We could avoid using hashes if we could assume that the same individuals appear
in each input file in the same order. We could then just index the data by the line
number. However, it is not always safe to make this assumption; in general, it is safer
to use hashes.

At line 28, the input file has all been read in, so we close the file, and continue with
the next file, if present.

2.5.3 Recoding alleles

The program in Figure 2.2 would be more useful if it could do some basic data ma-
nipulation. One such manipulation that is often required is allele recoding. Many
programs for genetic analysis expect marker alleles to be coded from 1 up to the
number of alleles present. The raw data, however, rarely come in this form. Mi-
crosatellite data come as allele sizes such as 180 or 225, and SNP data typically come
as a series of nucleic acid codes (A, C, G or T). It is simple to use hashes in Perl to
recode alleles, and this is a good illustration of the power of hashes. The strategy is to
use the original allele code as the key to the hash. We can use this to check whether
a numeric code has already been assigned to this allele and, if not, assign it the next
available code.

In Figure 2.3, we provide a modification of the program in Figure 2.2 which
will enable the program to recode the marker alleles into consecutive numeric codes
starting from 1. The key additions are from lines 26—37. We start at line 26 by checking
that the first allele is non-zero. (Zero typically indicates a missing value.) We then
check whether this allele has already been encountered for this marker by checking
the array @recode, which is indexed by the marker index $idx and the allele $g1.
If not, then at line 28 we assign the next available code for this marker (stored in
the array @n_alleles, and then at line 29 we change the original allele code to the
numeric code. The same procedure is then followed for the second allele $g2. Note
that doing this procedure without hashes would be a much more complex operation
involving sorting and searching through the list of marker alleles.

2.5.4 Estimating allele frequencies

Another useful function of the program is to estimate allele frequencies, as most
genetic analysis programs require these, and good estimates matched with the data set
are not always available. In this case we can obtain allele estimates by simply counting
the alleles in observed individuals. While marker allele frequencies are best estimated
on the basis of unrelated individuals, such as the founding individuals in a set of
pedigrees, genotypes of such founders are sometimes not available, and simple allele
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1 #!/usr/bin/perl
use strict;
use warnings;

5 my $dir = "data";
opendir DIR, $dir or die "Cannot open directory $dir:$!\n";
my (%ped, %gtypes, @markers, @n_alleles, @recode) ;
while(my $file=readdir (DIR)) {
next unless $file =~ /(.+)\.txt$/;
10 my Smark = $1;
push @markers, S$mark;
my $idx = S$#markers;
my Sinfile = "$dir/sfile";
open IN, Sinfile or die "Cannot open S$infile:$!\n";
15 my $line = 0;
while (<IN>) {
Sline++;
my @v=split;
if(@v<8) {
20 print "Short line at $line!\n";
next;
}
my ($fam, $ind, Sfather, Smother, $Ssex, Sstatus, $Sgl, $g2)=@v;
my S$id="S$fam\_S$ind";
25 sped{$ind} = [S$fam, $ind, Sfather, Smother, $Ssex, Sstatus];
if(sgl != 0) {
if (!$recode[$idx]{$gl}) {
Srecode[$idx]{$gl} = ++$n_alleles[$idx];
}
30 $gl = $recode[$idx]{$gl};
}
if($g2 = 0) {
if(!Srecode[$idx]{$g2}) {
Srecode[$idx] {$g2} = ++$n_alleles[$idx];
35 }
$g2 = $Srecode[$idx]{$g2};
}
$gtypes{s$ind} [$idx] = "$gl sg2";
}
40 close IN;

Figure 2.3 A Perl program to read data from all data files with a .txt extension and recode
marker alleles

counting provides unbiased estimates, without the great computational effort that
can be required to account for the relationships between individuals (Broman, 2001).

Since we have already recoded the alleles to consecutive numbers in the previous
example, it is simple to add a section to the program in Figure 2.3 to accumulate allele
count information and to estimate allele frequencies. Figure 2.4 contains a snippet of
Perl code which should go at the end of the previous program. It will estimate allele
frequencies, and store them in the double indexed @freq so that $freq[$i] [$7]
will have the estimated frequency of allele $5 of marker $i.
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1 my (@freqg, @Qcount);
for my $ind(keys %ped) {
my $gt = $gtypes{$ind};
for my $i(0..S#markers) {
5 my $g=$$gt($i] || "0 0";
my @all=split " ",S$g;
for my $3(0..2) {
if(sall[sjil) |
Sfreq[$i] [$all[$jl]++;
10 Scount [$i]++;

}
}

15 for my $i(0..S#markers) {
my @fg=@{s$freql[$il};
for my $j(1..$#fq) {

$fql[$j] /= Scount[$i];

}

20 }

Figure 2.4 A snippet of Perl for calculating marker allele frequencies

The first line of the snippet simply declares the arrays @freq and @count, where
the former was described in the previous paragraph, and the latter will keep a count
of the number of alleles observed for a given marker.

In line 2, we loop through all individuals for whom we have pedigree information,
that is, every individual we read in previously, and then in line 4 we loop through the
genotypes for each marker for this individual. If an individual did not appear in all
of the input files, some of the genotypes will be undefined, and attempting to work
with them will give a warning. We avoid this in line 5 by using the string ‘0 0’ for
any undefined genotype.

In line 6, we split the genotype on spaces to get the two alleles, and in lines 7-12
we loop through the two alleles, accumulating the counts for all non-zero alleles,
and a total count for the marker. After this, it is just necessary to loop through each
marker, and for each allele at each marker, and divide the allele counts by the total
number of counts for that marker. This is done in lines 15-20.

We can see that the logic of the frequency estimation is very simple, but it is so
simple because we have already recoded the alleles numerically, using hashes in the
previous example. If we had not done this, the operation would have been much
more complicated.

2.5.5 Automating single-marker analyses

Now that we have the alleles recoded and have obtained allele frequency estimates,
there are many things we could do. For example, we could print out the number
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1 my @lod;
for my $i(0..S#markers) {
my sSdatfile = "datafile.dat";
open OUT, ">$datfile" or die "Cannot open $datfile for writing: S$!\n";
5 print OUT "2 0 0 5\n0 0.0 0.0 O\n 1 2\n";
print OUT "1 2 # Trait locus (2 alleles)\n";
print OUT "0.999 0.001 # Disease allele frequency\n";
print OUT "1 # Liability class\n";
print OUT "0.0 0.0 1.0 # Recessive model\n";

10 print OUT "3 $n_alleles[$i] # Smarkers[$il\n";
my @fg=@{$freq(sil};
print OUT join (" ",@fqg[l..$#fqgl),"\n";

print OUT "0 0\nO.0\n";
print OUT "1 0.05 0.45 # Recombination varied, increment, last value\n";
15 close OUT;
my $pedfile = "pedfile.pre";
open OUT, ">$pedfile" or die "Cannot open $pedfile for writing: $!\n";
for my $ind(keys %ped) {
my $p = $ped{sind};
20 print OUT join ("\t",@S$p);
my $gt = $Sgtypes{$ind}[$i] || "0 0";
print OUT "\t$gt\n";
}
close OUT;
25 my S$results_file = "tempout.txt";
system("makeped $pedfile pedfile.dat n > S$results_file");
system("unknown >> $results_file");
system("mlink >> $results_file");
open IN, S$Sresults_file or die "Cannot open S$Sresults_file for input: $!\n";
30 my S$theta;
while (<IN>) {
if (/"THETAS\s+ (\S+)/) {

Stheta=$1;
} elsif (/LOD SCORE =\s+(\S+)/) {
35 $lod[$i] {Stheta} = $1;

print "S$markers([$i]\tS$theta\t$l\n";
}
}
close IN;
40 3

Figure 2.5 A snippet of Perl for running MLINK for each of many markers

of observations per marker, and obtain estimates of the success rate per marker.
We could equally well count the number of observations per individual, and check
whether a particular DNA sample appears to have worked less well than others. These
are all important steps in the quality control of the genotyping process. We are not
going to go into more details about these analyses, but instead we will finish with
a demonstration of how we could use the previous examples to automate single-
marker (i.e. two-point) linkage analysis with MLINK from the LINKAGE (Lathrop
et al., 1984) or FASTLINK (Cottingham et al., 1993) packages.

The snippet of Perl in Figure 2.5 should go at the end of the previous examples
in order to function properly. We first declare the array @1lod, which will store the
calculated LOD scores for each marker at each theta value. We loop over all possible
markers (line 2), and then write the necessary information to a locus data file (lines
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3-15),and a pedigree file (lines 16-24). In line 4, the greater-than signin ‘>$datfile’
is used to open the file for writing (as opposed to reading, as in Figure 2.2). In lines
13 and 20, join is used to write out each element of an array, in turn separated by a
space character at line 13, and a tab character at line 20.

In lines 26-28, system is used to request the operating system to execute the
specified commands; this is where the real work is done. Note that a greater-than
sign is used to have the program output sent to a file, and two greater-than signs
together indicate that the output should be appended to the file, rather than replace
the file.

In the remainder of this Perl snippet, we read through the output of MLINK,
pulling out the LOD score at each recombination fraction, and store this information
in a hash. Hence we can run MLINK for each marker, one at a time, and distil and
assemble the few essential numbers from its profuse output, which can then be
written to a file, or form a part of subsequent calculations, as, for example, in the
calculation of heterogeneity LOD scores.

We congratulate readers who have persevered through the sample Perl code and
our brief explanations. We hope that several of the techniques and idioms that we
have demonstrated in these examples can be adapted by readers for use in more
general situations. While the code looks quite complicated, the language is not as
difficult to learn as it may appear, and the great power that comes from knowledge
of Perl well justifies the effort that must be made to acquire it.

2.6 Resources

There are numerous books on Perl; we recommend those published by O’Reilly:
Learning Perl (Schwartz et al., 2005) for the novice, Programming Perl (Wall et al.,
2000) as a reference, and Perl Cookbook (Christiansen and Torkington, 2003) for
recipes encompassing many common tasks. These books, plus a couple of others,
may be purchased together on a CD at a very good price: the Perl CD Bookshelf.

There are numerous online tutorials on Perl; links to some are available at
http://www.biostat.jhsph.edu/~kbroman/perlintro. This web page also contains a
sample Perl program for genetic data manipulation, with line-by-line explanations.
The Cold Spring Harbor Laboratory (CSHL) held a bioinformatics course in au-
tumn 2004 that included a great deal on Perl programming; all of the lecture notes
are available online at http://stein.cshl.org/genome_informatics.

Enormous amounts of useful Perl code may be obtained from the Comprehen-
sive Perl Archive Network (CPAN) at http://cpan.perl.org. The CSHL lecture notes
(mentioned above) provide good explanations of how to find and install code from
CPAN. The reader may also be interested in Bioperl (http://www.bioperl.org): Perl
tools for bioinformatics and genomics research, mostly for sequence data. Readers
interested in the use of Perl for sequence data may wish to look at Tisdall (2001,
2003). Moorhouse and Barry (2004) will also be of interest.
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Mega2 (Mukhopadhyay et al., 2005), a program to facilitate the handling of genetic
linkage data, is available at http://watson.hgen.pitt.edu/register.

2.7 Summary

The ever-increasing size and complexity of genetic data has led to an increasing need
for geneticists to learn computer programming. As the most fundamental task for
the genetic data analysis involves the manipulation of data files, proficiency in a
computer language, such as Perl, with which such manipulation of text files is most
natural, is reccommended. For large, complex data sets, the use of a formal database,
such as MySQL, in place of spreadsheet software, such as Microsoft Excel, may be
important for the maintenance of data integrity and fidelity. Never modify data by
hand, be organized and keep notes, and plan for the future but get the job done.
Learn Perl!
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3.1 Introduction

Sinceitsinception in 2002, the International HapMap Project (International HapMap
Consortium, 2003; 2005) has generated a vast number of data describing patterns
of DNA sequence variation (linkage disequilibrium (LD)) in man. These data can
be used to assist researchers in the mapping of loci affecting disease, drug response
and other human traits. In addition, the data serve as a resource for research in other
more general aspects of population genetics, such as investigations of population
structure (Weir et al., 2005) or aiding the identification of regions that may have
been subject to evolutionary pressure in different populations (Nielsen et al., 2005),
and in molecular genetics, as in the identification of sequence elements associated
with regional variations in recombination rate (Smith et al., 2005). In this chapter, we
will review the approaches to downloading and viewing of these data and provide an
overview of factors affecting the choice of SNPs for genotyping in association studies.

3.1.1 Historical background

The unveiling of the first draft of the human genome in June 2000 (Yamey, 2000)
enabled a rapid acceleration in research aimed at identifying the genetic variation
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underlying human traits. The availability of a comprehensive reference sequence
and the concomitant annotation of the human transcriptome permitted researchers
engaged in mapping disease genes and other traits to identify more easily polymor-
phisms located within candidate genes or chromosomal regions identified through
linkage studies. The availability of the human genome sequence and the continuing
expansion of publicly available repositories of polymorphism data such as dbSNP
(Sherry et al., 2001), coupled with advances in chemistry and technology in rela-
tion to both sequencing and genotyping (and their associated cost reductions), have
allowed genetic studies to be performed more efficiently and enabled researchers
to tackle more complex problems. Nevertheless, until recently, the majority of hu-
man genetic variation was either unknown or poorly characterized, and an in-depth
study of a candidate gene or region typically required a considerable investment of
both time and financial resource in order to locate, characterize and select relevant
polymorphisms for genotyping.

During 2001, some key observations regarding the structure of the human genome
were published. Of these, two are particularly illustrative of the thinking in the period
immediately preceding the initiation of the International HapMap Project. Firstly,
within closely linked regions extending over tens to hundreds of kilobases (kb), the
diversity of haplotypes (the alleles present on a single chromosome at a number of
neighbouring polymorphicsites) was observed to be limited. It was hypothesized that
thelimited diversity within such ‘haplotype blocks’ was a result of a punctuation of the
genome by recombination hotspots (Daly et al., 2001). Secondly, it was observed that
within regions of limited haplotype diversity a reduced number of polymorphisms
(haplotype tag single-nucleotide polymorphisms (htSNPs)) were capable of defining
the genetic variation present (Daly et al., 2001; Johnson et al., 2001; Patil et al., 2001).
Together, these observations led to hopes that, by the application of marker selection
based upon haplotype patterns across the human genome, studies of association
between genetic variants and human traits might be made much more cost-efficient
than previously proposed. For limited regions, it was feasible to characterize genetic
variation by re-sequencing and then implement ‘tagging’ methodology. However, in
order to apply tagging in a cost-effective manner on a larger scale, a comprehensive
map of human genetic polymorphisms and the interrelationships between their
alleles (a haplotype map) would need to be generated. To this end, the International
HapMap Project was officially initiated in October 2002, with the aim of generating
a freely available haplotype map of the human genome (the HapMap), to provide a
resource for researchers attempting to identify genes involved in human phenotypic
variations such as complex diseases and responses to drugs and environmental factors
(International HapMap Consortium, 2003).

3.1.2 Subjects, SNP selection and genotyping

The volunteer subjects selected for HapMap genotyping comprised samples from
four populations, summarized in Table 3.1. It is important to note that the naming
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Table 3.1 Recommended population descriptors and abbreviations

Population descriptor Abbreviation Subjects

Han Chinese in Beijing, China (CHB) 45 unrelated individuals
Japanese in Tokyo, Japan (JPT) 45 unrelated individuals
Yoruba in Ibadan, Nigeria (YRI) 30 parent—offspring trios
CEPH* (Utah residents with ancestry (CEU) 30 parent—offspring trios

from northern and western Europe)

*Centre d’Etude du Polymorphisme Humain

convention chosen for the populations from which the samples were ascertained
was not idly conceived, and its underlying rationale is based on cultural, ethical
and scientific considerations. The International HapMap Consortium recommend
that, to avoid over generalization, the full population descriptor (Table 3.1) be sup-
plied in any article before any use of shorthand such as “Yoruba, ‘Japanese’ or the
three-letter abbreviations, and all authors who refer to HapMap data in their pub-
lications should adhere carefully to the latest guidelines and naming conventions
(http://www.hapmap.org/citinghapmap.html). Where the JPT and CHB samples are
analysed together, it is recommended that the term ‘analysis panel’ be used (Inter-
national HapMap Consortium, 2005).

The criteria used to assign membership to the populations are briefly described
on the project website as follows: ‘For the Yoruba, donors were required to have
four of four Yoruba grandparents. For the Han Chinese, donors were required to
have at least three of four Han Chinese grandparents. For the Japanese, donors
were simply told that the aim was to collect samples from persons whose ancestors
were from Japan. The criteria used to assign membership in the CEPH population
have not been specified, except that all donors were residents of Utah.” Additional
background information on the populations is available via the project website. For
researchers wishing to perform their own laboratory-based work on these panels,
DNA samples and cell cultures for all the subjects genotyped in the project are
available via the Human Genetic Cell Repository at the Coriell Institute for Medical
Research (http://ccr.coriell.org/nigms/products/hapmap.html).

In phase I of the project, the aim was to achieve genotyping of SNPs at an ap-
proximate spacing of 5 kb across the human genome. At the outset of the project,
the publicly available data describing the identity, validation status and frequency
of SNPs was insufficient for the construction of such a map, and an extensive SNP
discovery effort was undertaken. SNPs selected for genotyping in phase I were delib-
erately biased toward those with minor allele frequencies greater than 5 per cent, and
SNPs in coding regions were prioritized within each 5 kb bin (International HapMap
Consortium, 2005). In addition to the overall target of an average spacing of 5 kb,
the selection of SNPs in phase I was augmented in 10 of the 500-kb regions stud-
ied as part of the ENCODE ( ENCyclopedia _of DNA Elements) project (ENCODE
Project Consortium, 2004). These regions were re-sequenced in 48 unrelated subjects
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(16 YRI, 16 CEU, eight CHB and eight JPT), and genotyping was attempted for all
SNPs whether novel or publicly available in dbSNP.

The genotyping was conducted as a multicentre, international effort using a range
of technology platforms. The target of one SNP per 5 kb was reached in March 2005
(one SNP per 279 bp was achieved in the ENCODE regions), and a final phase I
data freeze made available in June 2005 (public release no. 16¢.1). These data have
been comprehensively described (International HapMap Consortium, 2005) and
comprise 1 007 329 SNPs that were both polymorphic in each of the three analysis
panels (YRI, CEU and CHB + JPT) and passed quality-control (QC) filters.

A second phase of the project, aimed at increasing the density of genotyped SNPs,
has subsequently been completed in a remarkably short period of time. The combined
phases I and IT data (public release no. 19, October 2005) comprised QC-filtered
genotypes for between 3 806 920 and 3 903 524 SNPs in each of the four populations. A
small proportion of SNPs (31 000) have subsequently been excluded in the remapping
to NCBI Build 35 coordinates (public release no. 20, January 2006). The latest data
releases represent an average density of approximately one SNP per kb and provides
greater coverage of rare SNPs (less than 5 per cent minor allele frequency) that were
biased against during the phase I SNP ascertainment.

3.2 Accessing the data

When the International HapMap Project was initiated, it was decided that data would
be released into the public domain as quickly as possible after their generation.
However, it was initially protected by a licence to prevent users from filing patents
that would restrict use of the data by others and, as an unavoidable consequence,
this prevented the incorporation of the data into other public databases and tools.
In December 2004, a decision was made to lift the licence restrictions, making the
data freely available to all users for any purpose (http://www.genome.gov/12514423).
Following this decision, HapMap data has become available via a number of different
sources. More information about the HapMap data release policy can be found at
http://www.hapmap.org/datareleasepolicy.html.

3.2.1 Downloading HapMap data

Genotype data, allele and genotype frequencies, LD data, phase information, SNP
assay details, protocol and sample documentation are available for download from
the primary sources: the HapMap website (http://www.hapmap.org) and its Japanese
mirror site (http://hapmap.jst.go.jp). Novel SNPs identified by the HapMap Project
have been submitted to the public domain variation databases dbSNP and JSNP,
and the data incorporated into Ensembl and the UCSC Generic Genome Browser
(Table 3.2).
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Table 3.2 Examples of publicly available databases incorporating HapMap data

Examples of HapMap
Database information available Reference URL
HapMap Primary data source (Thorisson et al., 2005) http://www.hapmap.org
mirrored at
http://hapmap.jst.go.jp
dbSNP Individual genotypes (Sherry et al., 2001) http://www.ncbi.nlm.
Allele and genotype nih.gov/SNP
frequencies
LD plots
JSNP Genotype frequencies (Hirakawa et al., 2002) http://snp.ims.u-tokyo.ac.jp
Ensembl Individual genotypes (Hubbard et al., 2005)  http://www.ensembl.org/
Allele and genotype index.html
frequencies
LD plots
Tag SNP identification
UCSC Genome Recombination rates (Kent et al., 2002) http://genome.ucsc.edu
Browser and hotspots hotspots

Sequencing coverage
and allele frequencies
in ENCODE regions

A user’s guide to the International HapMap Project website has recently been
published (Thorisson et al., 2005) and should be referred to for more details of the
data and tools incorporated. Here we provide a brief summary of the three main
routes for accessing individual genotype data from the HapMap website: bulk down-
load, the Generic Genome Browser and HapMart. All routes can be accessed from
http://www.hapmap.org/. All data downloaded from the HapMap site use refSNP
identifiers (reference SNP identifiers assigned to non-redundant clusters of varia-
tions within dbSNP).

Bulk download

Bulk download can be used either to obtain the complete HapMap data set or data
sets for specific chromosomes and populations. Three versions are available: non-
redundant, redundant-filtered and redundant-unfiltered. The non-redundant data
set eliminates duplicate genotypes (generated from sample duplicates within a plate
or where a SNP has been genotyped in the same population by more than one
centre) and records that fail QC filters. In the redundant-filtered data set, duplicate
genotypes are retained, but records that fail QC filters are removed. The redundant-
unfiltered data set is the unprocessed genotype data, in which records that fail QC
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filters are retained but flagged. All data are in a text format, arranged with one row per
SNP and one column per individual/genotype and item of supporting information
(chromosome, position, genome build, assay ID, strand, etc.).

The Generic Genome Browser (GBrowse)

The Generic Genome Browser (Stein et al., 2002) is incorporated into the website and
can be used to select a region of interest for download by searching for a chromosomal
position, gene or SNP. Individual genotype data, allele and genotype frequency data,
LD data and tag SNP data can be downloaded in text format. Downloaded genotype
data is in the same format as the bulk download data and can be opened directly in
a locally installed copy of HaploView (Barrett et al., 2005).

HapMart

HapMart has been developed by BioMart (Gilbert, 2003) and enables the retrieval of
genotype data, frequency data or assay details for HapMap SNPs. Filters allow data
to be retrieved by population, minor allele frequency, monomorphic status, gene
location, refSNP identifier, chromosomal region, gene name and ENCODE region.
Fields to be exported can be specified and, in addition to standard text formats,
Excel-formatted output is also supported.

3.2.2 Viewing HapMap LD data

As previously described, the Generic Genome Browser incorporated into the project
website can be used to select regions of interest for data download. The browser can
also be used to visualize LD plots of HapMap data with the integrated HaploView
software (Barrett et al., 2005), which can be configured to display I/, r2 or LOD score
values between markers. Data for multiple populations can be viewed simultaneously
(Figure 3.1). In addition to displaying LD plots, the browser can also be configured
to display haplotypes generated by the PHASE program (Stephens and Donnelly,
2003) or to run the Tagger software (de Bakker et al., 2005) for the selection of tag
SNPs (see Section 3.3.2). HapMap LD data can be viewed alongside a variety of other
features, including Entrez genes and RefSeq mRNAs. Additionally, it is possible to
upload one’s own annotations and share these with colleagues and collaborators.
The integration of the web-based Generic Genome Browser with software such
as HaploView, Tagger and PHASE offers a range of functionality that may satisfy
many small- or medium-scale project needs, without the necessity to implement
local databases and tools. If large-scale projects are contemplated, users may find
it advantageous to download the data and manipulate them locally (the Generic
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Figure 3.1 The Generic Genome Browser with incorporated HaploView LD plots and Entrez genes
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Table 3.3 Examples of software for viewing linkage disequilibrium

Software Reference URL

GOLD (Graphical overview  (Abecasis and Cookson, http://www.sph.umich.edu/csg/

of linkage disequilibrium) 2000) abecasis/GOLD
GOLDsurfer (Pettersson et al., 2004)  http://www.umbio.com (part of
Evince graphical software package)
HAPLOT (Gu et al., 2005) http://info.med.yale.edu/genetics/
kkidd/ programs.html (incorporates
HaploView)
HaploView (Barrett et al., 2005) http://www.broad.mit.edu/mpg/
haploview/index.php
JLIN (Java LINkage http://www.genepi.com.
disequilibrium plotter) au/projects/jlin
LDheatmap (R package) http://stat-db.stat.sfu.ca:8080/
statgen/research/LDheatmap
Marker (Forton et al., 2005) http://www.gmap.net/marker
PowerMarker (Liu and Muse, 2005) http://statgen.ncsu.edu/
powermarker/index.html
SNPAnalyzer (Yoo et al., 2005) http://www.istech.info/istech/

board/login_form.jsp

Genome Browser, HaploView, Tagger and PHASE are among the freely available
software applicable for this purpose). Of course, even for small-scale projects, if the
user has a specific preference or need for an alternate LD viewer (Table 3.3) or tag
SNP selection algorithm (Section 3.3), or wishes to perform other manipulations,
data will need to be obtained via one of the methods described in Section 3.2.1.

3.3 Application of HapMap data in association studies
3.3.1 Direct and indirect association studies

The key factors required in genetic association studies that are likely to identify
genuine loci contributing to complex traits include (i) sample collections that are
adequately powered to detect the likely effect size expected to be exhibited by an
individual genetic component; (ii) sample ascertainment that is relatively free from
biases (such as population substructure in case-control studies which can lead to false
associations); and (iii) availability of a well-ascertained and suitably powered sample
collection in which initial findings are replicable. Ideally, findings from genetic asso-
ciation studies should also be supported by functional data, demonstrating the role
of the genetic variant in question (Editorial, 1999; Cardon and Bell, 2001). However,
even in the presence of adequately powered sample collections (and assuming a
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genuine locus resides in the gene/region studied), the likelihood of detecting an
association can be heavily influenced by the choice of markers.

The choice of markers in association studies may be driven by the hypothesis that
the variant studied is, itself, likely to influence a trait through influence on protein
structure, expression levels or patterns, etc. (the direct approach), or by the hypoth-
esis that the variant studied may be in LD with a functional variant (the indirect
approach). Both approaches have certain advantages and disadvantages. In the direct
approach the bias toward variants with a likely functional consequence typically
results in a vastly reduced genotyping burden. However, the likely function of a given
variant is not always easily predicted. At this time, this is especially true for variants
affecting regulation of expression; as such, there is no guarantee of including all the
potentially relevant polymorphisms in a study, even in a well-characterized region.
In the indirect approach, no prior hypothesis is required in relation to the function
of variants. The objective is, instead, to capture as much of the common genetic
variation as possible. Although an informed selection of SNPs is used to keep geno-
typing costs within affordable limits, the more comprehensive nature of the indirect
approach typically results in a greater genotyping burden than the direct approach.

In reality, most association studies performed represent a combination of both ap-
proaches. For example, in studies in which the indirect approach dominates, marker
selection is often deliberately biased toward, or supplemented with, variants with
clear potential for functional effects. Conversely, from the results of an association
study motivated by the direct approach, it would not be possible without further
research to establish whether an observed association was due to the variant geno-
typed, or was the result of LD with some other variant that had not previously been
recognized as relevant.

There can be no doubt that the HapMap data are a valuable resource for the design
of association studies motivated by the direct approach. For researchers working
on the premise of the common disease/common variant hypothesis, coverage of
common variation is comprehensive. For less frequent variants, although coverage is
incomplete, genotyping was attempted for all SNPs annotated within dbSNP as non-
synonymous. Overall, the project has delivered data on a staggering number of novel
SNPs, many of which may be hypothesized to have a putative function and, therefore,
be eligible for selection in such a study. However, one of the primary drivers for the
HapMap Project was to inform, and make more efficient, the selection of SNPs on
the basis of LD in indirect association studies. Therefore, it is the use of the HapMap
data in the context of indirect association studies that will form the subject of the
remainder of this section.

3.3.2 The use of LD to inform SNP selection

Within the framework of an indirect approach, a key factor affecting the power
of an association study is the level of correlation between the markers selected for
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genotyping (tag SNPs) and un-genotyped markers. Correlation is often characterized
by the coefficient of determination, 2 (Hill and Robertson, 1968), which describes
the proportion of information at one variant that may be captured by another single
variant. If an individual variant is predicted by a group of variants, such as haplotypes
or genotype data at multiple SNPs in which haplotypes are not resolved (unphased
genotypes), the notation generally used is R* (Chapman et al., 2003; Clayton et al.,
2004), although, for convenience, r? is used in some publications to describe both
univariate and multivariate coefficients of determination. Both have the attractive
property of having a direct relationship with statistical power. For example, if (for
a given effect size, allele frequency and mode of inheritance) N individuals were
required to achieve 80 per cent power to detect an effect at a directly genotyped
causal SNP, then N/r? individuals would be required to achieve the same power viathe
indirect method, given the r? between the genotyped marker and the ungenotyped
causal variant (Pritchard and Przeworski, 2001).

Univariate (pairwise) correlations between SNPs are exploited by programs such
as ldSelect (Carlson et al., 2004) and CLUSTAG (Ao et al., 2005) to identify tag SNPs.
1dSelect evaluates pairwise r* and forms ‘bins’ of SNPs, each of which has an r* greater
than a user-specified threshold with one or more SNPs within that bin. Within each
bin, ldSelect distinguishes between tag SNPs (those which are, in isolation, capable
of capturing all the other SNPs in the bin at the specified level of r?) and ‘other’ SNPs
(those which may be captured by any of the tag SNPs in the bin, but are themselves
not capable of capturing all SNPs in the bin). Hence, from the 1dSelect output, one
tag SNP is sufficient to capture the known variation within each bin.

Initially, the selection of tag SNPs was based on multivariate relationships and
oriented toward the identification of SNPs that were, in combination, able to dis-
tinguish between the limited numbers of haplotypes observed within a region of
strong LD (Johnson ef al., 2001); hence, the term ‘haplotype tag SNP’ (htSNP) was
applied. In common with many other publications, we will use here the more general
term ‘tag SNP’ to describe any SNPs chosen to capture information at other SNPs,
regardless of whether the methodology is haplotype based or not. Originally, the
criterion optimized during selection was a measure termed ‘percentage of diversity
explained’ (PDE), which provided an estimate of the fraction of total haplotype
diversity captured if only the tag SNPs were genotyped (Johnson et al., 2001). If
later association analyses are to be primarily focused on haplotypes as the ‘unit of
inheritance’ which entails risk of a particular trait, this criterion is in many ways
adequate. However, the PDE measure did not fully describe the ability of a set of tag
SNPs to predict allele frequencies at individual ungenotyped loci. To facilitate the
association testing of ungenotyped variants on a marker-by-marker basis, many of
the subsequent developments of multivariate tagging methodology have focused on
selecting tag SNPs either by the optimization of R?>-based metrics (or other measures
of ‘informativeness’ which describe the accuracy of prediction), or by considering
power more directly (Chapman et al., 2003; Weale et al., 2003; Clayton et al., 2004;
Halldérsson et al., 2004a; de Bakker et al., 2005; Rinaldo et al., 2005).
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Within this group of methods, differences exist in the way the alleles at ungeno-
typed loci are predicted, which (in addition to utilizing pair-wise relationships) can
be via estimation of tag SNP haplotype frequencies or, more directly, obtained from
multiple tag SNP allele frequencies without the need to resolve phase. Although the
criteria used by these methods are oriented toward optimizing the prediction of alleles
at ungenotyped loci, the selection methods used do not necessarily preclude the eval-
uation of association of a region in global tests (here we define global tests as haplotype
analyses or multivariate tests of unphased genotypes that simultaneously evaluate
the association of a given region, as opposed to on a marker-by-marker or single
haplotype basis). It is important to note, however, that if global tests are to be per-
formed, an element of dependency on local LD (block) structure will be introduced
(see below under ‘Performance of HapMap-derived tags in other populations’).

In addition to R*-based multivariate tag SNP selection methods aimed at predict-
ing individual variants, R*-based metrics have also been applied in the prediction
of haplotypes, whereby the correlation between the haplotypes estimated from data
including all SNPs and those estimated from a restricted set of tag SNPs is evaluated
(Stram, 2004). Although primarily oriented toward the evaluation of haplotypes
as the inherited risk factor, as in the original description of haplotype tagging, the
use of R? values as criteria during selection makes evaluation of the likely power of
association testing easier to assess than that of measures such as PDE.

Spectral decomposition/principal components analysis has been proposed by
some authors as a means of tag SNP selection (Meng et al., 2003; Horne and Camp,
2004; Lin and Altman, 2004). Although correlation matrices underlie such proce-
dures, the choice of tag SNPs is based on the closeness of their relationship with a
subset of eigenvectors (mathematical abstractions formed from weighted contribu-
tions of SNPs) that best describe the data. Other methods include those in which the
haplotype diversity captured is evaluated on the basis of entropy (Nothnagel et al.,
2002; Ackerman et al., 2003; Hampe et al., 2003; Sebastiani et al., 2003). As noted
elsewhere (Halldérsson et al., 2004b), the power to detect association that is likely to
be achieved by entropy-based tag SNPs may be difficult to assess without additional
evaluations unless the termination criteria used during the search is one where all
information is retained.

The range of proposed methods for tag SNP selection is by no means limited
to those described above. The development and fine-tuning of algorithms by mul-
tiple research groups has resulted in the availability of numerous software imple-
mentations, a selection of which are represented in Table 3.4. Details of additional
software may be found in published reviews of tagging approaches, such as that of
Halldérsson ef al. (2004b). Despite the apparently bewildering choice of tag selec-
tion approaches, the majority can be characterized by one (or some combination)
of three broad categories: methods that are dependent on pair-wise, multivariate-
phased (haplotypic) or multivariate-unphased correlations. Multivariate approaches
(phased or unphased) may be further classified into those primarily oriented toward
global association tests (e.g., the criteria used assess the ability of tags to evaluate
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Table 3.4 Examples of available software for Tag SNP selection

Software Reference URL

BEST (Sebastiani et al., 2003) http://genomethods.org/best/

CLUSTAG (Ao et al., 2005) http://hkumath.hku.hk/web/link/
CLUSTAG/CLUSTAG.html

eigen2htSNP (Lin and Altman, 2004)  http://htsnp.stanford.edu/PCA/

ENTROPY (Ackerman et al., 2003) http://www.well.ox.ac.uk/~rmott/SNPS/

MLRtagging http://alla.cs.gsu.edu/~software/tagging/
tagging. html

HapBlock (Zhang et al., 2005) http://www.cmb.usc.edu/msms/HapBlock/
Also incorporated in HAPLOT (Table 3.3)

Haploblockfinder ~ (Zhang and Jin, 2003) http://cgi.uc.edu/cgi-bin/kzhang/haplo
BlockFinder.cgi

Hclust.R (Rinaldo et al., 2005) http://wpicr.wpic.pitt.edu/WPICCompGen/
hclust.htm

HtSNP2 (Chapman et al., 2003; http://www-gene.cimr.cam.ac.uk/clayton/

Clayton et al., 2004) software/stata/

htSNPer (Ding et al., 2005) http://www.chgb.org.cn/htSNPer/
htSNPer.html

1dSelect (Carlson et al., 2004) http://droog.gs.washington.edu/
ldSelect.html

SNPSpD (Nyholt, 2004) http://genepi.qimr.edu.au/general/daleN/
SNPSpD/

SNPtagger (Ke and Cardon, 2003) http://www.well.ox.ac.uk/~xiayi/haplotype/
index.html

STAMPA (Halperin et al., 2005) software on request from the authors

Tagger (de Bakker et al., 2005) http://www.broad.mit.edu/mpg/tagger/
Also implemented in HaploView (Table 3.3)

Tag'n'Tell http://snp.cgb.ki.se/tagntell/

TagIT (Weale et al., 2003) http://www.genome.duke.edu/resources/
computation/software

TagSNPs (Stram et al., 2003) http://www-rcf.usc.edu/~stram/

tagSNPs.html

simultaneously the diversity of a defined region in a single test) and those oriented
toward the inference of alleles at individual ungenotyped loci. Several of the available
software implementations enable more than one class of approach to be pursued.
For example, the prediction of ungenotyped SNPs (via either phased or unphased
multivariate data) or the maximization of haplotype diversity captured is possible
with htSNP2, whereas Tagger enables the capture of ungenotyped SNPs by either
pair-wise correlations or pair-wise correlations supplemented with haplotype-based
predictions for greater efficiency, and also includes various options for approaches
oriented toward capturing haplotypes for either specific or exhaustive testing.

It is beyond the scope of this chapter to review each of the available selection
strategies and software in detail. Informative overviews of tag selection algorithms
and some of their technical properties have been published (Hallddrsson et al., 2004b;
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Ke et al., 2005), and many of the papers in which approaches are originally described
provide comparisons with other methods. Despite differences in the identity of the
tag SNPs selected, the amount of genetic variation captured by different methods
may be similar provided sufficiently high thresholds for quality criteria are specified
(Ke et al., 2005). However, aside from another obvious consideration, namely, the
number of tag SNPs selected by a given approach, there are a number of theoretical
factors that may influence the choice of algorithm and the manner in which it is most
reliably applied in different scenarios.

Relevance of the statistical methods used to test for association

Association analyses of SNPs on a marker-by-marker basis have the advantage of
minimal degrees of freedom, whereas global haplotype analyses have a larger num-
ber of degrees of freedom, but may be advantageous at loci where more than one
variant in a region is contributing to the trait under study; for example, in the pres-
ence of strong haplotype-specific (cis) effects. Previously, haplotype analyses were
also partly motivated by the fact that the majority of genetic variation was unidenti-
fied. Where disease alleles have arisen on, and been maintained as part of, ancestral
haplotypes, these analyses were considered more likely to detect association at unob-
served variants, or observed variants with which the correlation with the genotyped
markers was unknown. With the rapidly increasing knowledge of common human
genetic variation and its correlation structure, and with an increase in the density of
markers typically genotyped, the rationale for global haplotype analyses may become
somewhat eroded with respect to the presence of unidentified or poorly characterized
common variation, although such tests may still be advantageous in the detection of
unobserved rare variants with strong genetic effects (de Bakker et al., 2005). How-
ever, the study of unobserved rare variants by haplotype analyses can be problematic;
many of the haplotypes identified may not capture rare variants, and the number
of degrees of freedom in global tests (or the number of tests if each haplotype is
evaluated individually) may be greatly increased. Although the better prediction of
rare alleles may sometimes offset the increase in degrees of freedom or number of
tests (and the power may be increased), these factors will often negatively affect the
power to detect common variants (de Bakker et al., 2005). Other potential prob-
lems relating to the study of rare variants are discussed below. Global analyses based
upon unphased genotype data (Chapman et al., 2003; Halperin et al., 2005) also
have greater degrees of freedom than single locus analyses, although typically less
than the corresponding haplotype-based tests. The loss in predictive ability which
would otherwise be gained by the resolution of haplotype phase should often be
compensated for by the reduced degrees of freedom, generally resulting in a more
powerful test of association (Chapman et al., 2003). Such analyses have the added ad-
vantage that dominance effects (deviation from the additive effects usually assumed
in haplotype analyses) may be easily allowed for (Chapman et al., 2003; Clayton
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et al., 2004). A further implication of exclusively pursuing either global haplotype
or unphased multivariate analyses is that the number of tests performed is fewer
than when considering SNPs on a marker-by-marker basis, influencing the extent to
which multiple testing corrections, if applied, will affect results.

Currently, there is some uncertainty in the field as to which approach to associ-
ation testing is likely to be the most powerful. The performance of each is likely to
vary depending on the characteristics of the locus to which they are applied, such as
allele frequency, strength of effect and presence or absence of interactions. The ap-
proach taken is, therefore, largely determined by the assumptions made by individual
research groups. Nevertheless, the type of association analyses intended is an impor-
tant prior consideration when choosing a method by which to choose tag SNPs, as
mismatching of selection and analysis strategies is likely to result in unintended loss
of information and, therefore, power.

Clearly, tag selection approaches oriented toward characterizing haplotype diver-
sity are primarily applicable to subsequent estimation and global testing of haplo-
types. Numerous tag selection approaches are applicable to subsequent marker-by-
marker testing, including pair-wise approaches and multivariate (either haplotype
or unphased genotype) approaches optimized for inferring alleles at ungenotyped
SNPs. Of course, multiple testing considerations aside, there is nothing preventing
the data from tag SNPs chosen with a view to marker-by-marker analyses being
used in additional global haplotype analyses. Similarly, tag SNPs chosen to describe
haplotype diversity are often also tested individually for association. Nevertheless, in
order to help extract maximum value from the genotyping performed, it is beneficial
to decide in advance what the primary analysis strategy will be, and to choose an
approach in which tag selection is made by appropriate criteria.

General limitations of tagging methodology

The general limitations of tagging methodology should be considered, and, in light of
this, researchers may, under certain circumstances, wish to modify the criteria applied
during tag SNP selection. One of the potential pitfalls of tagging methodology is the
possibility of differences in LD patterns between the samples in which the tags are
selected (the training set) and those in which the association study is conducted
(the study population). This potential problem may be characterized by two main
issues; inaccuracies in the estimates of LD within the training set itself and genuine
differences in LD patterns between the population from which the training set is
sampled and the study population. The latter is a key issue in the generalization of
HapMap LD to other populations, which several studies have tried to address (see
below under ‘Performance of HapMap-derived tags in other populations’).

The finite size of training sets means that LD measures have a degree of un-
certainty due to sampling error, and this increases with decreasing allele frequency.
Additionally, owing to indeterminate phase, haplotype frequencies are almost always
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inferred rather than observed directly from genotype data. From extended pedigree
data, or when applying an expectation-maximization (EM)-based algorithm to unre-
lated subjects within regions of little recombination, estimated haplotype frequencies
can be highly accurate (Stram, 2004). However, this will not always hold true in at-
tempting to estimate the frequency of rare haplotypes, such as may be encountered
in the presence of weak LD (which may occur simply as a consequence of consider-
ing numerous SNPs in an overextended region) or in the presence of missing data
(Forton et al., 2005). Furthermore, a bias in estimates of LD can occur under these
circumstances. Some, or many, rare haplotypes present in the population are likely
to remain unobserved in small training sets and, as a consequence, LD is more likely
to be overestimated than underestimated (Stram, 2004 ). This can result in situations
where the tag SNP selection appears to capture ungenotyped SNPs with a high degree
of accuracy in the training set, but weaker LD in the study population means that the
achieved power is less than intended. These errors and biases (and the likely absence
of an adequate surrogate if exclusively pair-wise methods are used) pose problems
for the tagging of observed rare variants (Weale et al., 2003; Carlson et al., 2004;
Schulze et al., 2004; Ahmadi et al., 2005).

Using the TagIT method (Weale et al., 2003) with a training set of 64 individu-
als (approximately equivalent to the number of independent subjects in either the
HapMap CEU or YRI trios), one study reports that approximately 90 per cent of
variants with allele frequencies of at least 20 per cent, and approximately 80 per cent
of variants with allele frequencies between 5 per cent and 20 per cent, are well repre-
sented by the tag SNPs chosen, but below the 5 per cent threshold the performance of
tags begins to decline more rapidly (Ahmadi et al., 2005). In the same study, a train-
ing set of 32 individuals (smaller than that available for either the HapMap CHB or
JPT samples) was also evaluated, and it performed almost as well. Thus, for common
variants, although studies based on HapMap data are likely to be reasonably robust
to training set sample size effects, researchers should be wary of the reliability of LD
estimates relating to rare SNPs.

Performance of HapMap-derived tags in other populations

Aside from inaccuracies during estimation, genuine differences in LD between the
training set and study population may exist. The transferability of tags selected from
HapMap to study populations has already been the subject of a number of investiga-
tions. For example, a study of eight European populations indicated that although
CEU-derived tag SNPs performed well in a number of genes across all populations,
this was not a universal phenomenon; in certain regions of the genome, differences in
LD between some populations may sometimes result in loss of information (Mueller
et al., 2005). A study in which the performance of YRI-derived tags was assessed
in African-Americans also suggests that tag SNPs are not likely to generalize well
between these two populations, this observation being consistent with the high level
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of genetic diversity expected to be present across Africa as a whole (Sawyer et al.,
2005). Other studies have indicated that CEU-derived tag SNPs do appear to perform
well in other Caucasian populations, as when applied to a Finnish sample (Willer
et al., 2006), an Estonian sample (Montpetit ef al., 2006) and Australians of mostly
northwest European ancestry (Stankovich et al., 2006). Other recent reports are also
encouraging regarding transferability to population isolates (Bonnen et al., 2006),
between the JPT and CHB analysis panel and Korean samples (Lim et al., 2006) and,
more generally, within continental groups (Gonzalez-Neira et al., 2006).

The number of different tagging strategies available, combined with the number
of populations between which it is possible to make comparisons and the fact that
differences in LD between any two given populations (potentially even those from
similar geographic regions (Liu et al, 2004) are likely to vary from one genomic
region to another, makes a comprehensive evaluation of the transferability of tag SNPs
selected by different methods a formidable task. Intuitively, we might expect that the
less efficient algorithms, which select more SNPs and therefore have more innate
redundancy, may identify more transferable sets of tags, whereas a highly aggressive
algorithm may select a very efficient set of tags that fit the training set perfectly
well but which may be sensitive to relatively minor differences in LD. However, the
situation is probably not so straightforward, as the performance of the tags is also
likely to depend on the underlying methods on which the means of prediction are
based. Owing to the scope and complexity of the issues, and the relatively recent
availability of comprehensive reference data such as those released in HapMap phase
II, we need a great deal of further study into the robustness of tag SNPs selected by
different tagging algorithms when transferring between populations.

The discrepancies that may occur between the LD observed in a training set and
that present in a study population will not always have a negative effect on the
power of an association study at all variants. It is, of course, possible that LD may
sometimes be underestimated in the training set due to sampling error, and, thus,
more information than anticipated is captured when tag SNPs are applied in the
study population. Similarly, it is possible that LD between certain sets of variants is
genuinely stronger in the study population than the training set. In general, the mean
proportion of information captured across a large number of variants is, however,
expected to be lower than the thresholds specified during tag SNP selection, partly
due to the upward bias of LD estimates in limited sample sizes and partly due to the
proximity of the thresholds generally applied to the upper bounding of (complete)
LD. Although the majority of studies indicate that if the training set and study
population are well matched, the level of information loss is likely to be acceptable,
researchers may, under certain circumstances, wish to increase the thresholds of
criteria applied during tag SNP selection. Such scenarios may include those where
doubts exist regarding the matching of the training set to the study population, or if
statistical power is perceived to be limited due to the study population sample size
but flexibility in genotyping capacity is available.
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Dependency of methods on haplotype block structure or physical distance

The dependency of the tag SNP selection method on either haplotype block defini-
tion or physical distance should also be considered. In general, the tag SNP selection
methods oriented toward global analyses of association require the presence of haplo-
type blocks to be taken into account. For instance, if a small genomic region selected
for study is divided by an LD breakpoint and there are three common haplotypes in
each of the resulting haplotype blocks, then there could be as many as nine haplotypes
across the region as a whole. The implications for global haplotype-based methods
are that association analyses are likely to lose power for the detection of common
variants, owing to the transition from two tests, each with two degrees of freedom,
to one test which may have as many as eight degrees of freedom. However, as dis-
cussed, there may be circumstances in which there are increases in power to detect
rare variants (de Bakker et al., 2005) or cis-interactions (see above under ‘Relevance
of the statistical methods used to test for association’). Indeed, it has been proposed
that long haplotypes may be used to search for rare variants and shorter haplotypes
be used for common variants (Lin et al., 2004). Although the likely distribution of
frequencies and risks conferred by variants relevant to human traits remains un-
certain (Wang et al., 2005), the popularity of the common disease/common variant
hypothesis and the difficulties involved in tagging rare variants has meant that a large
proportion of association studies are performed with common variants in mind. As
such, the definition of haplotype blocks and the subsequent choice and testing of tag
SNPs on a block-by-block basis is widely applied if global tests of association are to
be performed.

Notall multivariate methods have adependency on LD block structure. Algorithms
oriented toward the testing of ungenotyped SNPs on an individual basis (either by
carefully selected tests of specific haplotypes or unphased genotype combinations),
as opposed to global testing, can circumvent such dependency (Weale ef al., 2003;
Halldérsson et al., 2004a; de Bakker et al., 2005; Halperin et al., 2005), thus avoiding
the complex issue of how blocks should be delineated. Most boundaries of LD blocks
are not clearly defined and interblock LD, sometimes referred to as long-range LD, is
known to exist (Lawrence et al.,2005). As such, block definition isan imprecise science
and there are known dependencies on SNP density, sample sizes and ascertainment
biases in the frequencies of the SNPs (Schwartz et al., 2003; Wall and Pritchard,
2003). Many methods of block definition have been proposed, and results can vary
substantially even when applied to the same data (Schulze et al, 2004). Typically,
methods also allow the user to specify the thresholds of the parameters used in the
evaluation of block structure, creating yet more variability in the range of possible
results. The apparent lack of an optimal solution to block definition, and the fact that
block-independent tag selections may sometimes be more efficient owing to their
ability to exploit interblock correlation, make their use attractive, despite the potential
loss of some information that might otherwise only be captured in global analyses.
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Methods based solely on pair-wise correlations between SNPs are also considered to
be independent of prior block definition.

When applied in a limited region, such as a single candidate gene, block-
independent tag selection methods may often be applied with no regard to physical
distance. However, there is a potential pitfall when considering very large regions.
The finite number of possible arrangements of alleles in a training set of limited
size results in a situation in which it is possible to make observations of apparently
strong LD over very long physical distances which are, in fact, due entirely to chance.
For pair-wise methods, the probability of this event is relatively small except when
variants are rare. For multivariate methods, the chances of an algorithm identifying a
combination of SNPs that apparently have the ability to predict alleles at SNPs at any
position on a chromosome may be substantially increased, owing to the increased
number of possible arrangements of all alleles at different combinations of tag SNPs.
For this reason (aside from the previously outlined EM considerations and process-
ing burden when considering large regions), it is desirable to impose limits on the
physical distance over which block-independent (either pair-wise or multivariate)
tag selection algorithms operate. The tag selection algorithm incorporated into the
HapMap website (Tagger), which can exploit either pair-wise or multivariate corre-
lations, enables such a limitation on physical distance to be specified. An alternative
to specifying physical distance is to specify ‘neighbourhoods), either by defining dis-
tance in terms of LD units and limiting selection to regions over which useful levels
of correlation are likely to be present (Morton et al., 2001; Maniatis et al., 2002), or
by taking the union of multiple putative LD blocks (Halld6rsson ef al., 2004a).

Processing burden

For studies of a limited number of candidate genes, almost all available methods are
capable of selecting tags within an acceptable time frame. For studies of large regions,
such as linkage peaks, whole chromosomes or genome-wide studies, the processing
time of some algorithms (reviewed in Hallddrsson et al. (2004b)) can be a limiting
factor in their application, even when strict limits are imposed on the size of each
subset of data considered. In such situations, it may be more practicable to use
less intensive (possibly less efficient) algorithms or to make use of preselected tags
available via HapMart.

Summary of theoretical considerations

Given all of the factors discussed (including the variability in the frequency and mag-
nitude of effects of variants underlying human traits, variability in LD in different
regions and between different populations, and the fact that in some methods opti-
mizing performance for rare variants may reduce power to detect common variants
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and vice versa) and the interrelationships between them, there is currently no widely
recognized optimal solution to tag SNP selection that is universally applicable. As
such, judgements must be made on the part of individual research groups, which
will also be dependent on the exact size and characteristics of the study population
available and the assumptions made regarding the nature of the trait of interest. It is
probable that the Tagger program will be a popular choice, owing to its integration
with the HapMap data and a large degree of flexibility in the available modes of
tag selection, such as the prediction of either individual variants or haplotypes, the
choice of region delineation on the basis of physical distance or block boundaries,
and the ability to deal with data from related or unrelated individuals and to force
or exclude the selection of specified variants as tags.

Regardless of the software and options used, it is worth bearing in mind that the
level of information captured by different sets of tag SNPs is likely to converge as
the thresholds of evaluation criteria used during selection are increased (Ke et al.,
2005). Thus, choosing high values for thresholds may be more important than the
evaluation criterion itself (Halld6rsson et al., 2004b). Where the information cap-
tured is comparable, the differences in the genotyping burden of each approach may
appear to be the most relevant deciding factor. However, by (i) ensuring that the
selection strategy exploits correlations in a manner consistent with the downstream
association analyses, (ii) considering whether the manner in which correlations are
exploited are likely to be robust to potential differences in LD between the relevant
populations and (iii) taking due account of either block structure or physical distance
as required by the chosen algorithm, it should be possible to minimize some of the
avoidable losses of power that may otherwise be encountered.

3.3.3 The use of HapMap data to aid the design
of fine-mapping experiments

If an initial observation of a trait association is considered sufficiently convincing to
warrant further study, the HapMap data may assist in determining the physical extent
of the relevant region in which the aetiological variant is likely to reside. Owing to
multiple solutions to block partitioning (Schwartz et al., 2003; Schulze et al., 2004)
and the possibility of long-range interblock correlations (Lawrence et al., 2005), the
accurate delineation of such a region is not likely to be straightforward, nor is it likely
to rely solely on apparent block structure. Nevertheless, by examination of pair-wise
r? values between the observed associated variant and surrounding markers in the
HapMap data, or by consideration of measures such as LD units (Maniatis et al.,
2002), it should be possible to impose some informed limits on the next stage of
fine mapping, which may, for example, involve genotyping of known markers within
the region and reassessing both association and LD, before undertaking in-depth
resequencing to exclude the presence of or identify novel variants for genotyping or
functional study. Some of the practical steps in this process are reviewed in Chapter 9.
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3.4 Future perspectives

There is little doubt that the HapMap project data has already had a major and ben-
eficial impact in facilitating genetic association studies, as well as helping to address
general questions regarding the LD structure of the human genome and enabling
inferences regarding demographic history. Current research, aimed at clarifying is-
sues such as the extent of LD differences between populations, and the reliability
of different tag selection strategies when transferring between such populations,
should facilitate greater understanding of the likely power that may be achieved in
tag-based association studies. A third phase of HapMap is planned in which geno-
typing of additional populations will be undertaken, and the data generated should
be highly informative in this respect. In-depth investigation of these issues should,
in future, allow us to achieve the desired balance between statistical power and geno-
typing efficiency in a more informed manner than before and, ideally, improve both
simultaneously.

Ultimately, the success of association studies based on HapMap LD data will not be
solely determined by the characteristics of the HapMap data, such as the identity and
number of samples in the training sets, SNP frequencies and density. The HapMap is
a facilitating component, and only if it is used in conjunction with adequate sample
sizes, well-defined case phenotypes, appropriate controls, carefully implemented tag
selection, association analyses and interpretation is it likely to lead to acceleration in
the identification of complex trait loci. If these other components of a well-designed
association study are not in place, or if the assumptions regarding the nature of
the genetic contribution to underlying biological processes are flawed, then any
limitations that may be perceived to be present in the HapMap data become largely
irrelevant (Clark et al., 2005). With the massively increased potential for large-scale
or genome-wide association studies also comes the potential for spectacular and
hugely expensive failures. It is important, therefore, that such studies are designed
and executed carefully with an appropriate focus on all relevant aspects of study
design if the impressive resource of information made available via HapMap is to be
utilized effectively (Clark et al., 2005; Hirschhorn and Daly, 2005; Wang et al., 2005).
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4.1 Introduction

The miraculous birth of the draft human genome sequence took place against
the odds. It was only made possible by parallel revolutions in the technologies
used to produce, store and analyse the sequence data, and by the development of
new, large-scale consortia to organize and obtain funding for the work (Watson,
1990). The initial flood of human sequence has subsided as the sequencing cen-
tres have sequenced genomes from other mammalian orders and beyond. The
steady progress of the cloned fragments of more than 1000 genomes toward a fin-
ished state can be observed in the Genomes OnLine Database (Liolios et al., 2006;
http://www.genomesonline.org/), but although we can examine these sequences in
public databases, we have yet to interpret them comprehensively. There is a need to
relate the raw sequence data to what we already know about genetics and biology
in general — this is the process of genome annotation. Preliminary annotation of a
genome is usually a semi-automated process, with human curators interpreting the
results of various computer programs. In practical terms, preliminary annotation
currently consists of determining the position of known markers, known genes and
repetitive sequence in combination with efforts to delineate the structure of novel
genes. Eventually, we would like to know much more, including the multifarious
interactions of the genome’s contents with one another and the environment, their
expression in the biology of the cell and their physiological roles. These additional
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layers of annotation will come from the patient laboratory work of the next several
decades, buta prerequisite for this work is a complete (or nearly complete) genome se-
quence, and an accurate preliminary annotation that is available to the total scientific
community. This chapter will aim to describe the sources of freely available annota-
tion, their strengths, their shortcomings and some likely future developments.

4.2 Genomic sequence assembly

Any discussion of computational sequence annotation should begin with a consid-
eration of the sequence data itself. Genomic sequence data have traditionally come
from many sources: studies of transcribed sequences, studies of individual genes,
and genetic/physical markers from mapping studies. Over the past decade, we have
entered the era of large-scale efforts to sequence entire genomes, and the most abun-
dant sources of sequence have become the sequencing vectors from these efforts. In
practical terms, this has meant that we acquire many fragments, from a few hundred
bases to a few hundred kilobases in length, of a genome that must then be assem-
bled computationally to produce a continuous sequence. In the case of the human
genome, two unfinished ‘draft’ sequences were produced by different methods, one
by the International Human Genome Sequencing Consortium (IHGSC) and one by
Celera Genomics (CG).

The IHGSC began with a BAC (bacterial artificial chromosome) clone-based phys-
ical map of the genome (IHGSC, 2001). This map was constructed by digesting each
clone with restriction enzymes and deriving a characteristic pattern or fingerprint.
All of the fingerprints are then processed by a program called FPC (Soderlund et al.,
2000) that produces BAC clone contigs on the basis of the shared fragments in
their fingerprints (International Human Genome Mapping Consortium (IHGMC),
2001). A selection of clones from this map, covering the vast majority of the genome,
was then ‘shotgun sequenced’ (Sanger et al., 1982). The fragments of each clone were
then assembled into initial sequence contigs based upon overlaps between shotgun
sequencing reads. The collection of initial sequence contigs from a single clone makes
up the sequence data for a clone in GenBank. As more shotgun sequencing of the
clone is done, the initial sequence contigs are reassembled with the new sequences,
and the database sequence entry for the clone is updated accordingly. Gradually, the
initial sequence contigs increase in length and decrease in number, until the sequence
of the clone is finished and is represented by a single contig 100-200 kb in length. The
program used to assemble the initial sequence contigs is called Phrap (Green, unpub-
lished; http://bozeman.genome.washington.edu/index.html) and takes sequencing
quality estimates for each base into account. CG used the whole-genome shotgun
method where the entire genome is randomly fragmented and each of the cloned
fragments is sequenced (Venter et al., 2001). Sequences from these cloned fragments
are produced as mate-pairs: 150-800 bp sequencing reads from either end of the
clone with known relative orientation and approximate spacing. A mixture of clones
of different sizes was used: 2, 10, 50 and 100 kb. CG assembled their sequence data
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with that produced by the IHGSC and published an analysis of this early CG draft
genome assembly (Venter et al., 2001). In spite of the differences between the two
efforts to sequence the human genome, both groups had to address the fundamental
problem of assembling incomplete data. In both cases, the strategy was broadly to
merge overlapping sequences into contigs and then to order contigs relative to one
another using various types of mapping data.

The published IHGSC assembly was produced by the program GigAssembler
devised at the University of California at Santa Cruz (UCSC) (Kent and Haussler,
2001). GigAssembler began with initial sequence contigs from GenBank at a given
point (a ‘freeze’ data set). All sequences were repeat masked by the RepeatMasker
program (Smit and Green, unpublished; http://www.repeatmasker.org/) to highlight
known repetitive sequence. Within each IHGMC physical map contig (IHGMC,
2001), the initial sequence contigs from BAC clones belonging to it were assembled
into consensus ‘raft’ sequences using sequence overlaps between fragments. The first
joins were made between the best matching fragments. These rafts were ordered
and orientated relative to one another with bridging sequences from other sources
(mRNA, EST, plasmid and BAC end pairs) and FPC contig data. For instance, the 5’
end of a single mRNA may be found within one raft while the 3’ end matches another
raft. Repeated tracts of the letter ‘N’ were inserted between rafts to give a sequence
for each IHGMC map contig. The published version of the UCSC assembly and
all subsequent versions were made freely available online (http://genome.ucsc.edu/)
and helped to set the standard for public access to subsequent genome sequence data.

The CG draft genome assembly was carried out by a program described as a
‘compartmentalized shotgun assembler’ (CSA) (Huson et al., 2001), using both CG
sequence data and IHGSC initial sequence contigs from GenBank (as of 1 September
2000 for the published CG assembly) fragmented into smaller sequences a few hun-
dred base pairs long. The CSA began by comparing all CG mate-pair fragments with
all the initial sequence contig fragments and avoiding matches based upon repetitive
sequence. Repetitive sequence was identified by comparisons to a library of known
repeats (analogously to RepeatMasker) but also by additional procedures to detect
sequence likely to represent unknown repeat sequences. The mate-pair fragment
pairs matching more than one initial sequence contigs were then used as bridging
sequences to order and orientate the initial sequence contig fragments within and
between BAC clones. Essentially, the paired CG fragments are used as high-resolution
mapping data to reassemble both IHGSC BAC sequences and the broader genomic
regions they originate from. The result was a set of ‘scaffolds’ consisting of ordered,
oriented sequence contigs separated by gaps of estimated sizes. CG fragments not
matching THGSC initial sequence contigs were also assembled with a different al-
gorithm (Myers et al, 2000) to give additional scaffolds containing sequence not
represented in THGSC data. Scaffolds were then positioned relative to one another
based upon sequence overlaps and bridging mate-pair fragments. The derived order
of scaffolds was then manually curated to identify mistakes by examining sequence
alignments by eye and confirming or rejecting orders based on external physical
mapping data such as those from the IHGMC. Although originally there was only
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restricted access to this assembly, it was eventually deposited in the public sequence
databases.

A third assembly method, using repeat masked data from the IHGSC, was pro-
duced by the National Centre for Biotechnology Information (NCBI), usinga compu-
tational protocol (NCBI, unpublished; http://www.ncbi.nlm.nih.gov/genome/guide/
build.html) based upon the BLAST algorithm (Altschul et al., 1997). The NCBI ap-
proach also began by finding an order for adjacent BACs, but in this case it was
derived from BAC sequence overlaps (detected with a variant of BLAST), fluores-
cence in situ hybridization (FISH) chromosome assignment, and STS content. The
sequence fragments from these overlapping BACs were then merged into consensus
‘meld’ sequences. As with the UCSC method, these melds were then ordered and
orientated, on the basis of ESTs, mRNAs and paired plasmid reads, before being
combined into a single NCBI genomic sequence contig with melds separated by runs
of the letter ‘N”. NCBI contigs were ordered and oriented relative to one another
according to matches to mapped STS markers and paired BAC end sequences.

Since the assembly protocols used by UCSC, CG and NCBI differed in terms of
the number and variety of input data and the algorithms used, it would have been
surprising if they gave identical assemblies as output. Of particular interest are the
relative rates of misassembly (sequences assembled in the wrong order and/or orien-
tation) and the relative coverage achieved by the three protocols. Unfortunately, the
UCSC group were alone in having published assessments of the rate of misassembly
in the contigs they produced. Using artificial data sets, they found that, on aver-
age, ~10 per cent of assembled fragments were assigned the wrong orientation and
~15 per cent of fragments were placed in the wrong order by their protocol (Kent
and Haussler, 2001). Two independent assessments of UCSC assemblies have come
to similar conclusions. Katsanis et al. (2001) examined various UCSC consecutive
draft genome assembly releases and reported that 10—15 per cent of EST sequences
identified within them appeared to be on wrongly assembled genomic sequences.
In agreement with this, Semple et al. (2002) observed 19 per cent and 11 per cent
of erroneously ordered marker sequences in two consecutive UCSC assemblies for
a ~5.8 Mb region of chromosome 4. The latter study also found wide variation in
coverage (23-59 per cent of the available IHGSC sequence data included) and rates
of misassembly (2.08—4.74 misassemblies per Mb) between consecutive UCSC and
NCBI assemblies and the published CG assembly for the same region. These analyses
indicated that the lowest rate of misassembly was produced by the CG protocol,
followed by the UCSC and lastly the NCBI protocols. However, the CG protocol also
produced the lowest coverage, including only around half of the sequence data re-
cruited into the UCSC and NCBI assemblies. Olivier et al. (2001) compared orders of
TNG radiation hybrid map STSs produced by UCSC and CG protocols. They found
widespread differences, such that 36 per cent of TNG STS pairs were present in orders
that differed between UCSC and CG assemblies. The TNG order was consistent with
the CG assembly order slightly more often than with the UCSC assembly order. The
UCSC website provided a variety of comparisons of its assemblies to genetic, physical
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and cytogenetic mapping data, and these comparisons represented a useful resource
for users to assess the likely degree of misassembly in a region of interest. However,
subsequent genomes from other species have generally appeared without detailed
assessments of the quality of draft assemblies.

Unsurprisingly, it has been shown that differences between assemblies do indeed
result in differences in annotation. Semple et al. (2002) found variable amounts of
tandemly duplicated and interspersed repeat sequence between UCSC, NCBI and
CG assemblies and more striking differences in annotation were also identified by
Hogenesch et al (2001) between CG and UCSC assemblies. Hogenesch et al. (2001)
found large differences between the genes found in CG and UCSC assemblies, such
that more than a third of the genes identified in one assembly were not found in the
other. Thus, genomic sequence annotation can be only as good as the underlying
genomic sequence assembly, and, as we have seen, accurate assembly of draft sequence
fragments is far from error free. Genome assembly continues to be an important issue
for bioinformatics, since in spite of the availability of generally reliable assembly
algorithms (e.g., Batzoglou et al., 2002) nature has continued to surprise us. Certain
species have turned out to be unexpectedly polymorphic and can confound the most
sophisticated attempts to assemble them, as the sequencing of the sea squirt Ciona
savignyi has shown (Vinson et al., 2005).

After the publication of the publicly available human genome draft in 2001, the
IHGSC undertook the arduous task of ‘“finishing’: producing a genome sequence
covering 99 per cent of the euchromatic regions sequenced to an accuracy of 99.99
per cent. On 14 April 2003, the IHGSC announced that this target had been reached;
leaving less than 400 persistent gaps where highly repetitive sequences evaded cur-
rent sequencing technology. A steady trickle of papers in the journal Nature has
marked the emergence of each finished human chromosome sequence, along with
the annotation describing its notable features. It now seems that a significant fraction
of the genome (perhaps 5 per cent) consists of large (>10 kb) duplicated segments
that share 90-98 per cent sequence identity. Regions containing such duplicated seg-
ments are notoriously difficult to assemble accurately and are found not only in
pericentromeric and subtelomeric regions but also across the rest of the genome,
including the gene-rich regions that sequence annotators are primarily interested
in (Eichler, 2001). A comparison of the completed sequence of chromosome 20
with the preceding public CG and UCSC draft assemblies of the same chromosome
identified ‘major discrepancies’ (Hattori and Taylor, 2001). These authors concluded
that the draft assemblies were probably confounded by large duplicated regions.
Such problems do not entirely disappear with ‘“finished” sequence, as the recent pub-
lication of human chromosome 8 has shown. This chromosome contains a large
region with an unexpectedly high mutation rate, and rich in segmental duplica-
tions, flanking a persistent assembly gap (Nusbaum et al., 2006). In the time be-
tween the publication of the draft human genome in 2001 and the present finished
chromosomes, we have entered the era of shallow genome sequencing. Although
the human and mouse genome projects sequenced each base at least seven times
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(7 x coverage), Craig Venter’s poodle warranted only 1.5x coverage (Kirkness et al.,
2003), and now more than 20 other mammals are being sequenced at 2x coverage
(http://www.genomesonline.org/). These data are intended only for comparative ge-
nomics, to shed light on novel functional regions conserved across mammals, and
would not be a good basis on their own for the detailed laboratory work required to
investigate gene function.

4.3 Annotation from a distance: the generalities

If some troublesome regions of the genome are set to continue as problems for
cloning, sequencing and assembling, this is a minor concern in comparison to the
comprehensive annotation of genomic sequence. At almost every level, computa-
tional annotation of genomic sequence is error prone and incomplete. Of course, the
aim of computational annotation, in common with much of bioinformatics, is to
provide a preliminary set of predictions that must then be tested by ‘wet’ laboratory
work. The aim is a rapid first-pass or ‘baseline’ annotation, as the most popular
genomic annotation resource Ensembl (Hubbard et al., 2002) puts it. From the com-
putational point of view, this enterprise is hugely successful: merely by considering
the statistical qualities of the raw sequence data, we can detect the presence of most
protein-coding human genes. We can then identify the presence of known, structural
domains within the conceptually translated products of these predicted genes and
make informed guesses about functional roles and subcellular localization. Looking
at a raw BAC sequence entry from GenBank, we may easily appreciate the scale of
these achievements, but the view from the wet laboratory bench can be different.
The broad success of computational gene prediction is little consolation to the bench
geneticist who has to sift through numerous artefactual exon predictions only to find
later that his gene of interest was not detected by any of the algorithms used. What is
broadly impressive to the bioinformaticist can be just plain wrong to those dealing
with specifics. In an excellent introduction to genomic sequence annotation, Lincoln
Stein has defined three hierarchical levels of annotation: (i) the most fundamental
nucleotide level; (ii) protein level; (iii) process level (Stein, 2001).

4.3.1 Nucleotide level

Nucleotide level is the point at which the raw genomic sequence is analysed and
forms the basis for subsequent levels of interpretation. The first step is to iden-
tify as many known genomic landmarks as possible; these are generally mark-
ers from previous mapping studies, repeats and known genes already in pub-
lic databases. This can be done quickly and accurately by a variety of programs.
Markers from previous genetic, physical and cytogenetic maps are placed upon
the genomic sequence by algorithms designed to find short, almost exact sequence
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matches, such as the ePCR program (Schuler, 1997; http://www.ncbi.nlm.nih.gov/
sutils/e-pcr/), BLASTN (Altschul et al, 1990), SSAHA (Ning et al, 2001;
http://www.sanger.ac.uk/Software/analysis/SSAHA/) and BLAT (Kent, 2002;
http://genome.ucsc.edu/cgi-bin/hgBlat?command=start). Identifying these mark-
ers is essential to allow the genomic sequence to be seen in relation to the pre-
vious, pre-genome sequence literature, such as that on human disease genet-
ics. The newest type of markers, single-nucleotide polymorphisms (SNPs), are
also identified in the sequence to facilitate the next generation of disease gene-
mapping studies. Similar algorithms, extended to incorporate information on gene
structure, are used to identify the positions of known mRNAs within the ge-
nomic sequence; examples of these are as follows: Spidey (Wheelan et al, 2001;
http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/), SIM4 (Florea et al.,
1998; http://bio.cse.psu.edu/) and est2genome, which is available from the EMBOSS
package (Rice et al., 2000; http://emboss.sourceforge.net/). Just as the efforts to
assemble genomic sequence take measures to identify and exclude repetitive se-
quence, an important part of annotation is to identify interspersed and simple
repeats. The most widely used program for this task is RepeatMasker (http://
www.repeatmasker.org/).

The central problem of nucleotide level annotation is the prediction of gene struc-
ture. Ideally, we would like to delineate correctly every exon of every gene, but in large,
repeat-rich eukaryotic genomes, liberally scattered with long genes with many exons,
this task has turned out to be more difficult than expected. Ab initio gene predic-
tion algorithms (that rely only on the statistical qualities of genomic sequence data)
identify most protein-coding genes reliably in prokaryotic genomes, but the task
is more complex in eukaryotic genomes (Burge and Karlin, 1998). Fundamentally,
the problem is gene density; whereas in prokaryotic genomes and yeast more than
two-thirds of the genome is protein-coding sequence, only a low percentage of the
human genome fits this description. Additional problems are added by overlapping
genes, alternatively spliced exons and the paucity of differences between intergenic
sequence and introns. The gene prediction literature is full of metaphors involving
needles and haystacks, and with good cause. The 13-Mb S. cerevisiae yeast genome
provides a sobering example; completed in 1996 and initially thought to contain
6274 genes, the sequence has provided a steady trickle of additional genes that had
been overlooked. Since publication of the yeast genome, a further 202 genes have
been discovered; most appear to have been missed because they are relatively short
or overlap a previously annotated gene on the opposite strand (Kumar et al., 2002).
At the same time, later analyses of these yeast sequences by a variety of statistical
analyses and comparative genomics approaches have suggested that several hundred
of the originally annotated genes may be spurious (Malpertuy et al., 2000; Zhang
and Wang, 2000).

This brings us to the use of sequence similarity in gene prediction. In practice,
genome annotators use a combination of information to make predictions of gene
structures: ab initio exon predictions (predictions of coding sequence made by a
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program on the basis of statistical measures of features such as codon usage, initia-
tion signals, polyA signals and splice sites), repetitive sequence content, and similarity
to expressed sequences and proteins. These different strands of evidence are usually
combined and evaluated by human annotators who use graphical interfaces, such as
those provided by ACEDB (Eeckman and Durbin, 1995; http://www.acedb.org/)
or Otter (Searle et al, 2004), to view all the evidence simultaneously. A recent
trend in gene prediction is the design of programs that automatically incorpo-
rate evidence based on sequence similarity into their predictions. Among the best
and most widely used ab initio algorithm is GENSCAN (Burge and Karlin, 1997;
http://genes.mit.edu/ GENSCAN.html). Guigo et al. (2000) tested its success in ar-
tificially produced sequence data designed to mimic human BAC sequences. At the
same time, they tested algorithms that use sequence similarity to make their predic-
tions, such as GENEWISE (Birney et al., 2004; http://www.ebi.ac.uk/Wise2/). The
results showed a clear advantage to including evidence from sequence similarity
where the similarity was strong. In such cases, GENEWISE could correctly identify
98 per cent of coding bases present, while generating a comparatively low level of
artefactual exons (2 per cent) and missing 6 per cent of real exons. Where levels
of similarity were more modest, however, the performance of algorithms such as
GENEWISE declined to below that of GENSCAN. GENSCAN was found to identify
89 per cent of coding bases at the cost of a rather high level of artefactual exons
(41 per cent) and 14 per cent of real exons missed. Guigo et al.(2000) suggest that
the success of all the programs tested is expected to be lower in real genomic se-
quence. Another comparison of gene-prediction programs using D. melanogaster
genomic sequence identified similar levels of performance for the programs tested
and also indicated an advantage to algorithms including similarity-based evidence
in predictions (Reese ef al., 2000). Shortcuts to the structures of many genes have
come from large collections of full-length mouse (Carninci et al., 2006) and human
c¢DNA sequences (Kikuno et al., 2002), which have grown rapidly over the last few
years. However, these collections are time-consuming and costly to produce; thus,
for most organisms, we must still wrestle with the problems of computational gene
prediction.

As we amass genomic sequence data from many organisms, the reach of compu-
tational annotation based upon sequence similarity is increasing. Methods aimed
at the prediction of non-coding features in the genome, such as regulatory regions
and non-coding RNAs (ncRNAs), are evolving rapidly. Whereas protein-coding ex-
ons have a distinctive statistical fingerprint, ncRNAs do not, or at least they do not
appear to from our present, limited knowledge of them (Eddy, 2001). For better un-
derstood classes of ncRNAs, such as tRNAs, prediction methods involving secondary
structure prediction have been successful (Lowe and Eddy, 1997), but for novel ncR-
NAs the only effective methods are based on comparative genomics (Rivas et al.,
2001). The great recent success story in ncRNA prediction has been for microRNAs
that inhibit translation of target genes by binding to their mRNAs (Bentwich, 2005),
but the majority of the RNA universe undoubtedly remains hidden. The same is true
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for novel regulatory sequences, where only a fraction of transcription factor-binding
sites have been identified to date (Wingender et al., 2001). Even incomplete, frag-
mentary sequence data from other organisms have been used with some success to
predict putative regulatory regions (Chen et al., 2001).

4.3.2 Protein level

Once we have a gene prediction that we believe, the next step is to assign a possible
function to the encoded protein; this is the central task of protein level annotation.
Most computationally assigned functions are derived from sequence similarity. A
pair of proteins that align along 60 per cent or more of their lengths with significant
similarity (e.g., E < 0.01 in a BLASTP search of a large public database) are very
likely to be homologous — that is, derived from a common ancestor. Such a pair of
sister proteins may be paralogues, derived from a duplication event, or orthologues,
which exist as a result of a speciation event. For every homologous pair identified in
this way, additional searches may verify that each member of the pair identifies the
other member as the best match within the organism of interest. This makes it likely
that the pairs identified are likely to be orthologues (Huynen and Bork, 1998), as is
desirable, since orthologues are likely to share the same function (Jordan et al., 2001)
whereas functional diversification between paralogues is thought to be common (Li,
1997). In most cases, this strategy of reciprocal sequence similarity searches to iden-
tify orthologues is successful (Chervitz et al., 1998) and is the rationale that underlies
the construction of the Clusters of Orthologous Groups of proteins (COGs) database
(Tatusov et al., 2000; http://www.ncbi.nlm.nih.gov/COG/). However, caution is nec-
essary when dealing with the results of such analyses. For example, a novel human
gene may be directly descended from a common ancestor of a yeast gene (in which
case the two genes are orthologues and are likely to share the same function), or it
may be descended from a duplicated sister yeast gene (and the two genes are really
paralogues) with a different function. Without a complete picture of the related fam-
ily of proteins we are dealing with, it can be difficult to decide. Definitive evidence
of orthology versus paralogy can come from comprehensive phylogenetic analysis,
but even then, with larger families and/or incomplete data, it can be difficult. As a
result, it is not uncommon to find mistaken computational predictions of function
that are not supported by further experiment (Iyer et al., 2001).

In the absence of any detailed knowledge about the evolutionary pedigree of
the protein under study, similarity may sometimes still imply functional simi-
larity. For example, two proteins only 30 per cent identical may share much of
their biochemistry but have different substrates (Todd et al, 2001). In spite of
their divergence, they may share a common functional domain. There are a vari-
ety of protein domain databases, and they are widely used in genome annotation.
For example, version 19 of the Pfam database contains 8183 domains that match
75 per cent of proteins in public sequence databases, with domains represented
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by alignments between regions of proteins containing them (Finn et al., 2006;
http://www.sanger.ac.uk/Software/Pfam/). Statistical models of these alignments
are constructed and searched against new protein sequences using the elegant
HMMER software package (Eddy, 1998; http://hmmer.wustl.edu/). The Interpro
database (Mulder et al., 2005; http://www.ebi.ac.uk/interpro/), which amalgamates
several databases (including Pfam) covering protein domains, families and func-
tional sites, is now a standard annotation source for each new draft genome se-
quence that appears. Interpro entries provide links to additional information in-
cluding functional descriptions, references to the literature and structural data.
Since the THGSC draft genome publication, the EBI (European Bioinformatics
Institute; http://www.ebi.ac.uk/proteome/) has maintained and updated annota-
tion for the set of known and predicted proteins with Interpro, and their most
recent analyses match around 77 per cent of the proteins in public databases.
Thus, even our most strenuous efforts to gain clues to protein function, often
based upon rather distant homology, tell us nothing about a quarter of known
proteins.

4.3.3 Process level

Ultimately, the goal of genetics is to understand the relationship between genotype
and phenotype. There is a large gap between annotation at the nucleotide or protein
level and an understanding of how a given protein influences phenotype. Even in the
best case, with a known gene coding for a protein containing well-studied domains,
there are always questions that remain to be asked. How does the protein interact or
complex with other proteins? Where does it localize within the cell? Which cellular
processes and organelles is it involved with? In which tissues and at which devel-
opmental stages does it act? The answers to these questions provide process level
annotation. The most important applications of our knowledge about the human
genome are in medicine, to discover the variations and aberrations that underlie
disease. Process level annotation provides a rational way to select the best candi-
date genes for involvement in disease. For example, when it was first submitted to
GenBank in 1997, a certain gene (accession no. U80741) was annotated as ‘Homo
sapiens CAGH44 mRNA’ and ‘polyglutamine rich’ Due to the painstaking work of
Lai et al (2001) on a region associated with speech disorders, we now know this gene
as FOXP2, the first gene found to be involved in human language-acquisition disor-
ders. Before their work, FOXP2 appeared to be one of many transcription factors,
expressed in many tissues and best studied in D. melanogaster. With better process
level annotation, FOXP2 may have been identified earlier as a good candidate for
involvement in disease.

The main source of process level annotation is the scientific literature, but, even
with modern access through the Web, this literature is a twentieth-century re-
source unsuited to twenty-first-century needs. What we have is a dizzying array
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of terms for a single gene, function or process, and no accepted way of organising
this information. Added to this are all the vagaries and idiosyncrasies of human
language. What is needed is a structured resource with a limited number of terms
for genes and descriptions of their functions, organized so that it is easily pro-
cessed automatically by computer programs. An important initiative, the Gene On-
tology (GO) project, has provided a framework to achieve this (Gene Ontology
Consortium, 2001; http://www.geneontology.org/). GO consists of a hierarchical
set of structured vocabularies to describe the molecular functions, biological pro-
cesses, and cellular components associated with gene products. With the known
and predicted genes in a genome annotated by GO, we can retrieve quickly, for
example, all genes encoding transmembrane receptors, all genes involved in apop-
tosis, or all genes encoding products localized to the cytoskeleton. The hierarchi-
cal nature of GO means that subsets of these categories can also be retrieved,
such as all G-protein-coupled receptors within the transmembrane receptor cate-
gory. GO annotation was quickly adopted by databases for several model organ-
ism genomes, including the Saccharomyces Genome Database (Dwight ef al., 2002;
http://genome-www.stanford.edu/Saccharomyces/), FlyBase (FlyBase Consortium,
2002; http://flybase.org/) and the Mouse Genome Database (Blake er al., 2002;
http://www.informatics.jax.org/). Often GO annotations are added to genes in these
databases manually by trained biologist curators browsing the scientific literature.
However, with the rapidly increasing number of completed genomes, this process
has become increasingly automated. Efforts continue to develop better software for
automatic extraction of information from the literature to be incorporated into the
GO annotation of a gene (Blaschke et al., 2005).

The scale of the problem of providing process-level annotation for every human
gene is prompting the development of large-scale technologies to generate data on
many genes at once. Large-scale parallel measurement of gene expression for entire
genomes is now possible and should give good data on the developmental timing
and tissue specificity of many human genes, from which it is possible to infer process
level annotation (Noordewier and Warren, 2001). An important step on the way
to designating the processes a protein is involved in is to define the proteins with
which it interacts, and work is well under way to elaborate the web of interacting
proteins and complexes that define the proteome in organisms from S. cerevisiae
(Gavin et al,, 2002; Ho et al., 2002) to man (Rual et al., 2005). However, these high-
throughput methods are known to generate false-positives and false-negatives; that
is, they identify some artefactual interactions and miss some genuine interactions.
Thus, high-throughput technologies may eventually provide useful process-level an-
notation for many, if not most, human genes, but there will always be an indispensable
role for conventional, detailed laboratory studies of smaller scale. New databases and
analyses will be necessary to make sense of the network of genetic interactions that
underlie the phenotype. A good example is the Mouse Atlas and Gene Expression
Database Project (Baldock et al., 2001; http://genex.hgu.mrc.ac.uk/), which aims to
describe the patterns of gene expression responsible for the emergence of anatomical
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structure during mouse development. It will enable gene expression data to be viewed
in the context of three-dimensional embryo sections.

4.4 Annotation up close and personal: the specifics

Despite the difficulties and shortcomings in computational annotation discussed
above, several well-resourced groups have undertaken the task of compiling, main-
taining and updating freely accessible annotation for the entire human genome.
There are now three well-designed websites (Table 4.1) offering users the chance to
browse annotation of the draft human genome. All three sites offer a graphical inter-
face to display the results of various analyses, such as gene predictions and similarity
searches, for draft and finished genomic sequence. These interfaces are indispens-
able for rapid, intuitive comparisons between the features predicted by different
programs. For instance, one can see at once where an exon prediction overlaps with
interspersed repeats or a SNP. But the four sites are not equivalent; there are impor-
tant distinctions between them in terms of the data analysed, the analyses carried
out and the way the results are displayed.

4.4.1 Ensembl

Ensemblis a joint project between the EBI (http://www.ebi.ac.uk/) and the Wellcome
Trust Sanger Institute (http://www.sanger.ac.uk/). The Ensembl database (Hubbard
et al., 2002; http://www.ensembl.org/), launched in 1999, was the first to provide a
window on the draft genome, curating the results of a series of computational anal-
yses. Until January 2002 (Release 3.26.1), Ensembl used the UCSC draft sequence
assemblies as its starting point, but it is now based upon NCBI assemblies. The
Ensembl analysis pipeline consists of a rule-based system designed to mimic deci-
sions made by a human annotator. The idea is to identify ‘confirmed’ genes that are
computationally predicted (by the GENSCAN gene prediction program) and also
supported by a significant BLAST match to one or more expressed sequences or
proteins. Ensembl also identifies the positions of known human genes from public
sequence database entries, usually using GENEWISE to predict their exon structures.
The total set of Ensembl genes should therefore be a much more accurate reflection
of reality than ab initio predictions alone, but it is clear that some novel genes are
missed (Hogenesch et al., 2001). Of the many novel genes that are detected, some are
expected to be incomplete for two main reasons. Firstly, as we have seen, while GEN-
SCAN can detect the presence of most genes in a genomic sequence, it is substantially
less successful in predicting their correct exonic structures (as with other ab initio
gene predictions). Secondly, any prediction is entirely dependent upon the quality of
the genomic sequence, and where the sequence is gapped or wrongly assembled, the
missing exons may not be present for the software to find. However, in the finished
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Table 4.1 The websites referred to in the text

Site description

URL

Genomic sequence assemblies
NCBI Human Genome Assemblies
UCSC Human Genome Assemblies

Annotation browsers

Ensembl at EBI/Sanger Institute
Human Genome Browser at UCSC
Map Viewer at NCBI

Data sources

ArrayExpress at EBI

COGs database at NCBI

dbSNP at NCBI

DOTS at University of Pennsylvania
Entrez Gene at NCBI

FlyBase

Genomes OnLine Database

GEO at NCBI

IHGMC FPC map at Washington
University in St Louis

InterPro at EBI

Mouse Genome Database at
Jackson Laboratory

Mouse Atlas Database at MRC
Human Genetics Unit

OMIM at NCBI

Pfam at Sanger Institute

Proteome Analysis at EBI

RefSeq at NCBI

Saccharomyces Genome Database at
Stanford University

UniGene at NCBI

Software
ACEDB at Sanger Institute
Acembly at NCBI

Apollo at Ensembl
BioMart

BLAST at NCBI
BLAT at UCSC

DAS at Cold Spring Harbor Laboratory
EMBOSS at EMBnet

ePCR at NCBI

GBrowse

Gene Ontology Consortium
GENEWISE at EBI

http://www.ncbi.nlm.nih.gov/Genomes/
http://genome.ucsc.edu/

http://www.ensembl.org/
http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/mapview/

http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/SNP/index.html
http://www.allgenes.org/
http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene
http://flybase.org/
http://www.genomesonline.org/
http://www.ncbi.nlm.nih.gov/geo/
http://genomeold.wustl.edu/cgi-bin/ace/
GSCMAPS.cgi?
http://www.ebi.ac.uk/interpro/
http://www.informatics.jax.org/

http://genex.hgu.mrc.ac.uk/

http://www.ncbi.nlm.nih.gov/Omim/
http://www.sanger.ac.uk/Software/Pfam/
http://www.ebi.ac.uk/proteome/
http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
http://genome-www.stanford.edu/Saccharomyces/

http://www.ncbi.nlm.nih.gov/UniGene/

http://www.acedb.org/
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/
index.html
http://www.fruitfly.org/annot/apollo/
http://www.biomart.org/
http://www.ncbi.nlm.nih.gov/BLAST/
http://genome.ucsc.edu/cgi-bin/hgBlat?
command=start)
http://biodas.org/
http://emboss.sourceforge.net/
http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi
http://www.gmod.org/
http://www.geneontology.org/
http://www.ebi.ac.uk/Wise2/
Continues overleaf
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Table 4.1 (continued)

Site description URL
GENSCAN at MIT http://genes.mit.edu/ GENSCAN.html
HMMER at Washington University http://hmmer.wustl.edu/
in St Louis
Phrap at University of Washington http://bozeman.genome.washington.edu/index.html
RepeatMasker http://www.repeatmasker.org/
SIM4 at Pennsylvania State University http://bio.cse.psu.edu/
Spidey at NCBI http://www.ncbi.nlm.nih.gov/IEB/Research/
Ostell/Spidey/
SSAHA at Sanger Institute http://www.sanger.ac.uk/Software/analysis/SSAHA/

human and mouse genomes, where there are large full-length cDNA collections to
guide the hunt for genes, Ensembl should be very reliable.

From the beginning, many genomic features other than predicted genes were
included in Ensembl: different repeat classes, cytological bands, CpG island predic-
tions, tRNA gene predictions, expressed sequence clusters from the UniGene database
(Wheeler et al., 2002; http://www.ncbi.nlm.nih.gov/UniGene/), SNPs from the db-
SNP database (Sherry et al., 2001; http://www.ncbi.nlm.nih.gov/SNP/index.html),
disease genes found in the draft genome from the OMIM database (Online
Mendelian Inheritance in Man database; Wheeler et al., 2002; http://www.ncbi.nlm.
nih.gov/Omim/) and regions of homology to other draft genomic sequences. More
recent innovations have seen the annotation of a large range of non-coding RNAs
(ncRNAs) from the Rfam database (Griffiths-Jones et al., 2005) and predicted regu-
latory sites from the cisRED database (Robertson et al., 2006). There is much to do
in both of these emerging areas but even preliminary data have already given new
insights into mammalian biology: it seems there is high lineage specific expansion of
some ncRNA classes relative to protein-coding genes (Birney et al., 2006). Another
growing area of activity is in cataloguing the genetic variation present in human
populations as Ensembl reflects the progress of the International Haplotype Map
Project (Thorisson et al., 2005).

More speculative data, such as GENSCAN-predicted exons that have not been
incorporated into Ensembl-confirmed genes, may also be viewed. This means that
the display can be used as a workbench for the user to develop personalized an-
notation. For example, one may discover novel exons by finding GENSCAN exon
predictions which coincide with good matches to a fragment of the draft mouse
genome, or novel promoters by finding matches to the draft mouse genome that
occur upstream of the 5 end of a gene. Once we have identified a gene of inter-
est, we can link to a wealth of information at external sites such as the Interpro
protein domains it encodes and its expression profile according to the SAGEmap
repository (Lash et al., 2000). Eventually, Ensembl aims to become a platform for
studies in comparative genomics, and already it is possible, while browsing the
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human genome, to jump to a homologous region of another organism’s genome
via a match to a genomic sequence fragment. Substantial thought and effort have
evidently gone into the Ensembl site design. The result is certainly a user-friendly ex-
perience, and not just by the standards of computational biology. The Web interface
to the database achieves the laudable aim of providing seamless access to the human
genome. The user can sink down through cytogenetic ideograms of whole chromo-
somes, to large sequence contigs many megabases long and then to the single base pair
level. Along the way, a graphical display shows the relative positions of genes and other
features.

Figure 4.1 shows the Ensembl display for the genomic region around the FOXP2
gene mentioned earlier. The region is shown at three levels of resolution. The upper
panel shows the position of the region as a small red box on a cytogenetic ideogram
of chromosome 7. The middle panel shows an exploded view of this box, including
the structure of the draft genome assembly; the extent of synteny (conserved gene
order) with other organisms; the relative positions of various markers; and a simple
overview of the gene content. The bottom panel gives a detailed view of a subsection
(indicated again by a red box) of the middle panel. This detailed view is the business
end of the browser and is easily customized, via pull-down menus, to display any
desired combination of the available features. In Figure 4.1, the combination chosen
shows the positions of similarity to a variety of other vertebrate genomes (Rn is rat,
Pt is chimpanzee, Mm is mouse, Gg is chicken and Cf is dog) in relation to predicted
exons and similarities to protein and cDNA sequences, allowing a user to define non-
coding conserved regions that may be of regulatory importance. Using this display,
one could also select SNPs that have been shown to be genuine (‘genotyped SNPs’)
and that also lie outside repetitive sequences; both are important considerations for
PCR-based SNP assays.

Data retrieval is extremely well catered for in Ensembl, with text searches of all
database entries, BLAST searches ofall sequences archived, and the availability of bulk
downloads of all Ensembl data and even software source code. Ensembl annotation
can also be viewed interactively on one’s local machine with the Apollo viewer (Lewis
et al., 2002; http://www.fruitfly.org/annot/apollo/).

4.4.2 The UCSC Human Genome Browser

The UCSC Human Genome Browser (UCSC) bears many similarities to Ensembl;
it, too, provides annotation of the NCBI assemblies, and it displays a similar array of
features, including confirmed genes from Ensembl. The range of features displayed
in UCSC (and Ensembl) often changes between releases, but usually there are addi-
tional features of UCSC that are not found in Ensembl, and vice versa. For example,
at the time of writing, UCSC includes predictions from a wider range of ab initio
gene-prediction programs. This could help the user to identify false-positives (i.e.,
artefactual exons) from particular programs, and concentrate on exons predicted by
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Figure 4.1 The genomic region around the FOXP2 gene according to Ensembl
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Figure 4.2 The genomic region around the FOXP2 gene according to the UCSC Human Genome
Browser. Generated using the UCSC Human Genome Browser, http://genome.ucsc.edu

more than one program that are most likely to be real. UCSC also currently indicates
regions with significant homology to the various vertebrate genomes as in Ensembl,
but it displays the data quite differently, using summary tracks to indicate over-
all conservation across several genomes (‘Conservation’ and ‘Most Conserved’ in
Figure 4.2). These UCSC-specific features can provide useful information when one
is dealing with gene predictions that are not well supported by similarity to expressed
sequence. Another useful feature of UCSC is the detailed description of the genomic
sequence assemblies. Graphical representations of the fragments making up a region
of draft genome can be displayed, showing the relative size and overlaps of each frag-
ment and also whether any gaps between fragments are bridged by mRNAs or paired
BAC end sequences. This means one can get an idea of the likely degree of misassem-
bly in a draft region. There are now a large number of data available from large-scale
gene expression studies, and public repositories have emerged for their curation,
such as the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
and ArrayExpress at the EBI (http://www.ebi.ac.uk/arrayexpress/). At the moment,
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the UCSC is the browser which incorporates the largest number of this data.
Even recent developments such as transcriptome tiling data, derived from high-
resolution attempts to assay the level of transcription across chromosomes (Cheng
et al., 2005), are represented (‘Affy Txn Phase2’ in Figure 4.2). As in Ensembl,
efforts have been made to provide information on the putative regulatory ele-
ments of genes, and tracks can be displayed that indicate the ‘regulatory poten-
tial” (King et al., 2005) and conserved transcription factor-binding sites across a
region.

In Figure 4.2, the genomic neighbourhood of the FOXP2 gene according to UCSC
is displayed. This provides the kinds of information available from the analogous
Ensembl display and some interesting additional data. At the top of the display,
there are indications of the size and cytogenetic band corresponding to the region.
Further down, one can compare the known FOXP2 transcripts with the patterns of
transcription seen in tiling array experiments. Notice that the known transcripts
do not map perfectly to the regions found to exhibit significant transcriptional
activity (the blue peaks in the ‘Affy Txn Phase2’ track). This may provide clues
to the relative abundance of certain transcripts from the FOXP2 gene. Moreover,
significant activity outside known exons may indicate undiscovered exons or other
regulatory RNA species. It is also notable that the number of cDNA sequences for
FOXP2 differs between Ensembl (Figure 4.1) and UCSC (Figure 4.2). This illustrates
another common problem: different annotation sources may be based upon different
sequence data, depending on what is available at the time and how the data are filtered.
As with Ensembl, the UCSC display of the region shows regions of homology to a
similar range of vertebrate genomes, but the conservation data are also summarized in
an intuitive graph (‘Conservation’). More importantly, a statistically valid indication
of the best conserved regions (‘Most Conserved’) is provided, using output from the
PhastCons program (Siepel et al., 2005). The relative scores of these regions (which
can also be displayed) would be a reasonable criterion to rank non-coding regions
for further study as regulatory elements.

Data retrieval at UCSC is facilitated by text and BLAT (Kent, 2002; a BLAST-like
algorithm) searches and bulk downloads of annotation or sequence data. Other com-
plementary tools at UCSC have extended the functionality of UCSC. For instance,
the Proteome Browser graphically displays protein properties such as hydropho-
bicity, charge and structural features across any publicly available protein sequence
(Hinrichs et al., 2006). As with Ensembl, the UCSC website has been well designed
and is sympathetic to the naive user, but the UCSC graphical interface is more Spar-
tan. If Ensembl is Disney, then UCSC is South Park. The positive side of this is that
UCSC will usually display a region on your local web browser more quickly than
Ensembl can. Both the Ensembl and UCSC interfaces offer users the ability to jump
between their respective views of a region, and so, when they are both annotating the
same version of the same NCBI assembly, they can easily be used as complementary
resources.
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4.4.3 NCBI Map Viewer

As a wider range of organisms are subject to genome sequencing, the problems of
dealing with draft sequence data have remained, but an additional task has arisen:
curation of the finished sequences representing each complete chromosome. This
task is undertaken at the NCBI in the form of Entrez Genome, the section of the
NCBI sequence retrieval system concerned with genomes and individual genome
assembly versions, and the sequences of individual whole genome shotgun reads are
also available.

As the name suggests, the NCBI Map Viewer (NMV; http://www.ncbi.nlm.nih.
gov/mapview/) evolved to allow graphical depictions of, and comparisons between,
a wide range of genetic and physical maps in parallel with NCBI draft and fin-
ished sequence contigs. The locations of genes, markers, and SNPs are indicated
on the assembled sequences. As with Ensembl, there is a NCBI analysis protocol
which aims to predict gene structures based upon EST and mRNA alignments with
the draft genome. This is carried out by a program called Acembly (unpublished;
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html), which aims to
derive gene structure from these alignments alone. The program also attempts
to give alternative splice variants of genes where its alignments suggest them.
These gene structures and transcripts end up as records in the NCBI RefSeq
database, which aims to compile a non-redundant, curated data set representing
current knowledge of known genes (Wheeler et al., 2002; http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=gene). Like the Ensembl protocol, many Acembly-
predicted structures (the NCBI estimate 42 per cent) are incomplete. These struc-
tures can be displayed alongside ab initio gene models, Ensembl-predicted genes,
and matching UniGene clusters to allow users to make their own conclusions about
the likeliest gene structure.

Figure 4.3 shows the FOXP2 gene as it appears in the NMV, which shows features
on a vertical rather than horizontal display. The familiar chromosome ideogram is
shown in the leftmost frame, followed by BLAST matches to four UniGene-expressed
sequence clusters (in the ‘HsUniG’ column). This gene is typical in having more
than one UniGene cluster representing it, particularly at the 3’ end, as ESTs are more
commonly sequenced from the 3’ ends of mRNAs. The next columns depict various
human ¢DNA sequence matches. SNPs from the NCBI dbSNP database are also
displayed (in the ‘Variation’ column) with susceptibility loci for various disorders
(the ‘Pheno’ column) from the NCBI OMIM database. In the right-most column, the
FOXP2 gene structure is displayed according to the NCBI RefSeq database model. In
contrast to the Ensembl and UCSC displays, it is not possible to depict comparative
genomics data or putative regulatory regions.

The NMV offers tabulated downloads of data, and it is possible to BLAST-
search genome assemblies (via the NCBI BLAST site: http://www.ncbi.nlm.nih.
gov/BLAST/) and view the matching regions with the NMV. All annotated genes
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Figure 4.3 The genomic region around the FOXP2 gene according to the NCBI Map Viewer

are connected to NCBI Entrez Gene, which provides links to associated information
such as related sequence accession numbers, expression data, known phenotypes and
SNPs.

4.5 Annotation: the next generation

In spite of difficulties with the quality of genomic sequence assemblies and the errors
and omissions of computational annotation, the browsers discussed above remain
extremely useful tools for the cautious biologist. They undoubtedly indicate the
presence of most coding sequence in a given fragment of genomic sequence and
indicate their location in the genome based on the best genomic sequence available.
In addition, they attempt to predict gene structures for novel genes and should
be accurate if the gene in question is known or has a close homologue which is
known. Most aspects of the analysis carried out are the subjects of active research,
and improvements in performance due to the inclusion of new sequence data and
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annotation software will continue. The downside of these developments is that all
annotation of genomic sequence is potentially in flux, and one should not assume
that the representation of a region will remain the same between different software
or data releases.

Although the finished human genome sequence is now the subject of curation
rather than successive draft sequence assemblies, annotation of these sequences is
still atarelatively early stage. Even at nucleotide level, there is much to be done, partic-
ularly in fully exploiting the data available from other genome-sequencing projects.
The cutting edge of nucleotide level annotation is in defining regulatory regions: tran-
scription start sites (TSSs), transcription factor-binding sites and promoter modules
(Werner, 2001). Here again, comparative genomics is already a rich source of infor-
mation, simply using local alignment programs’ output, as in Ensembl and UCSC.
At a higher level, gene expression is also regulated by the large-scale topology of
chromosomes, and annotation may eventually indicate features such as chromatin
structure, chromosome domains (genomic regions that bind histone modifying pro-
teins) and matrix attachment sites (regions that facilitate the organization of DNA
within a chromosome into loops). However, defining the genes whose transcription
is regulated from such features may be an insoluble problem computationally, since
they may regulate transcription from a given TSS, or from several different TSSs of
the same gene or multiple genes in a region.

At the protein and process levels of annotation, there is also progress, as, for
instance, in our ability to detect more remote homologies and gain clues about
function. Homologous proteins, sharing a common three-dimensional structure
and function, need not share detectable, sequence similarity. There is therefore in-
creasing interest in annotation by similarity at the level of protein structure (Gough
and Chothia, 2002). The genome sequence has already changed the way we study
biology as we start to fill in the gaps between genetics, cellular function and devel-
opment. Rather than studying a particular gene or protein, we are increasingly able
to study all elements in a system of interest, a group of proteins that participate in
a complex, for example. We might start with a single protein and identify others
in the proteome that potentially interact with it, on the basis of the presence of
domains known to interact. In the process, we may discover previously unknown
connections with other complexes or biochemical pathways that can be included
in the annotation of the relevant sequences. Studies on this scale are prompting
the development of multidisciplinary groups that study the behaviour and pertur-
bation of entire biological systems: the new field of systems biology (Ideker et al.,
2001). Recent studies in computational systems biology seek to extend the reach of
our predictions beyond the human genome to the interactions with systems within
other organisms such as pathogens (Uetz et al., 2006). Over the next decade or two,
these efforts should provide a genome sequence with rich annotation that can be
browsed at the level of a gene’s genomic neighbourhood but also at the level of the
interactions, complexes and processes that it participates in and the phenotypes it
influences.
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This review has provided only a brief introduction to the fields of computational
draft genome assembly and annotation, but it should be evident that what has already
been achieved has involved innovations as great as those in the biotechnology that
led to the production of the sequence data itself. At the same time, problems remain
atevery level and are the subjects of active research. As a result, many different groups
around the world are working on interpreting the data avalanche that is modern ge-
netics, and communication and comparison of results are often difficult. In response,
prominent members of the bioinformatics community (such as those behind En-
sembl and the UCSC) have steadily developed freely available generic tools to allow
the organization, display and exchange of annotation. The Distributed Annotation
System (DAS) (Dowell et al., 2001; http://biodas.org/) aims to provide a framework
for people to exchange data easily over the Web. Two other notable developments are
BioMart and GBrowse. The BioMart project (http://www.biomart.org/), originally a
spin-off from Ensembl, offers a generic data management system that allows complex
searches of biological data such as sequence annotation. The GBrowse project (Stein
et al., 2002; http://www.gmod.org/) has produced a generic genome browser that can
be customized to organize, display and query a new genome scale data set. These
tools promise a future without the current confusion of incompatible interfaces and
data formats, and an increase in the open exchange of data and ideas.
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5.1 Introduction

This chapter will describe ways to interrogate the human genome with the results of
genetic experiments in order to locate and delineate known genes. It will also describe
the assessment of evidence for genes that do not yet have experimental support and
some analytical choices that may reveal more about them. In addition to some general
aspects of gene detection, some specific examples will be worked through in some
detail. This illustrates technical subtleties that are not easy to capture at the overview
level. A caveat needs to be added here that many roads lead to Rome. Some particular
ways of hacking through the genome jungle are implicitly recommended by being
used for the examples in this chapter. They will also be restricted to public databases
and Web tools. These are the personal choices of the authors based on an assessment
of their availability and utility. Other experts may propose alternative routes to the
same information, using different public resources, locally downloaded datasets,
Unix-based tools, commercial software or subscription databases.

Genetic investigations are concerned with discerning the complex relationships
between genotype and phenotype. The statement that phenotype is determined by the
biochemical consequences of gene expression is equally obvious. However, the reason
for making this explicit is to recommend that those performing and interpreting
genetic experiments may find it more useful to conceptualize the gene as a cascade
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of evidence that connects DNA to a protein product rather than abstract ideas about
what might constitute a gene locus. The idea of focusing on gene products also makes
iteasier to design experiments to verify predicted transcripts and proteins. It must also
be remembered that many gene products are non-message RNA molecules, but they
will not be covered in this chapter (see Chapter 14 for a detailed review of this area).
Before describing the evidence used to classify gene products, we must define some
of the terminology encountered in the literature and database descriptions. These
are variously classified as known, unknown, hypothetical, model, predicted, virtual,
or novel. There are no widely accepted definitions of these terms, but their usage in
this chapter will be as follows. A known gene product is experimentally supported
and would be expected to give close to a 100 per cent identity match to a unique
genome location. The term ‘unknown’ is typically applied to gene products that
are supported experimentally, but lack any detectable homology or experimentally
determined function. The term ‘predicted; also referred to as ‘model’ or ‘hypothetical’
by the NCBI, will be reserved for an mRNA or protein open reading frame (ORF)
predicted from genomic DNA. Virtual mRNAs will refer to constructs assembled
from overlapping expressed sequence tags (ESTs) that exceed the length of any single
component. The term ‘novel” has diminishing utility and will simply refer to a protein
with no extended identity hits in the major protein databases.

5.2 Why learn to predict and analyse genes in the
complete genome era?

Might we question at the outset of this chapter the need for the geneticist to learn
the art of gene prediction and analysis? The answer to this question might sound a
little equivocal. There are certainly plenty of public resources available which offer
high-quality annotation and analysis of the gene complement of the human genome
(Table 5.1). Where possible, it is worth using these resources, because the results are
generally of high quality. However, there are caveats:

1. Most gene models are automated and therefore many are incomplete. By necessity,
data on human genes are generated by automated analysis methods based on gene
prediction and the combined evidence of existing mRNA, cDNA and EST data.
Going a step further to curate a gene taking in all the evidence can reveal extra in-
formation, including weaker evidence that automated processes necessarily miss.

2. Automating curation of splice variants is technically difficult. Information on splice
variants is particularly difficult to capture by automated efforts, especially if the
splice variant is evidenced only by ESTs.

3. Genes may be expressed only under very specific conditions. Genes with tight
regulatory mechanisms may be expressed transiently in very specific tissue
locations, developmental stages or cellular conditions, causing their expression
to be undetectable by standard methods.
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Table 5.1 Useful resources for gene finding and analysis

Site description

URL

Genome-focused tools
Ensembl

UCSC genome browser

Map Viewer at NCBI

DAS — distributed annotation

Gene/transcript-focused tools
Entrez Gene

Unigene EST clusters

CCDS project

RefSeq at NCBI

TIGR Gene Index

Protein-focused tools
Proteome analysis at EBI
Uniprot

InterPro at EBI

International Protein Index
SWISS-2DPAGE database
Gene-prediction tools
GENEWISE at Sanger Institute
GENSCAN at MIT

Fgenesh at Sanger Institute

Homology searching and analysis

BLAST at NCBI
BLAT at UCSC
SSAHA at Sanger Institute

Miscellaneous gene analysis
Expasy translation tool

Derwent sequence patent databases

MatchMiner (gene aliases)
Google literature search portal

http://www.ensembl.org/

http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map_search
http://biodas.org/

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

http://www.ncbi.nlm.nih.gov/UniGene/

http://www.ncbi.nlm.nih.gov/projects/CCDS/

http://www.ncbi.nlm.nih.gov/RefSeq/

(http://www.tigr.org/tigr-scripts/tgi/T _index.
cgi?species=human

http://www.ebi.ac.uk/proteome/
http://www.uniprot.org
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/IPI/IPThelp.html
http://ca.expasy.org/ch2d/

http://www.sanger.ac.uk/Software/Wise2/
http://genes.mit.edu/GENSCAN.html
http://genomic.sanger.ac.uk/gf/Help/fgenesh.html

http://www.ncbi.nlm.nih.gov/BLAST/
http://genome.ucsc.edu/cgi-bin/hgBlat?’command=start)
http://www.sanger.ac.uk/Software/analysis/SSAHA/

http://ca.expasy.org/tools/dna.html
http://www.derwent.com/geneseq/index.html
http://discover.nci.nih.gov/matchminer
http://scholar.google.com/

4. Genes might be expressed at vanishingly low levels. For example, many G-protein-
coupled receptors (GPCRs) are completely absent from EST data and cDNA
libraries. Most GPCRs have been identified by the combination of gene prediction
and homology-based searches. Genes with no known homologues and very low
expression are likely to be absent from the current complement of human genes.

The importance of possessing a correct, complete gene model is entirely dependent
on the use case of this information. It may be important for setting up a screen
for variation in the gene to ensure that all exons are screened, including untrans-
lated exons and alternatively spliced exons. This also follows through to selection of
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variants if genotyping of all potentially functional variants is considered important.
Understanding the full complexity of a gene is also important for functional analysis
of genetically associated variants; for example, there may be evidence to support the
assertion thata SNP annotated in dbSNP as intronic might turn out to be exonic (and
functional) if there is evidence to support an alternatively spliced exon. However, just
to put this into perspective, in the vast majority of cases, this kind of gene analysis
may not be important. For example, if a genetic experiment employs a haplotype
tag-based approach to capture variation across a gene, the precise boundaries of the
gene may not be important, unless unknown exons are outside the scope of the tag
SNPs.

5.3 The evidence cascade for gene products

So what kinds of evidence need to be considered before we assess the likelihood of
a stretch of genomic DNA giving rise to a gene product and what kinds of numbers
can be assigned to these evidence levels? In the following section, we review these
sources of information and give figures for these evidence levels, based on queries
completed in June 2006.

The NCBI Entrez Gene database is probably the most comprehensive non-
redundant source of known gene loci. There are currently 32 014 (excluding pseudo-
genes) human genes in Entrez Gene (www.ncbi.nlm.nih. gov/projects/Gene/gentrez_
stats.cgi?SNGLTAX=9606) (Maglott et al., 2005). These loci include protein-coding
loci and also non-coding loci, such as micro-RNAs (see Chapter 14). Ifa gene locus is
unknown or further evaluation of a known gene is needed to ensure that the gene and
transcript model are as accurate as possible (e.g., to assess the impact of functional
variation in the gene), the entire cascade of evidence for a gene and its products may
need to be reviewed. We review each of these steps in the following sections.

5.3.1 Experimentally determined protein sequence

The most solid evidence of a gene is the experimental verification of the protein prod-
uct by mass spectrometry and/or Edman sequencing. Although these techniques are
commonly used to analyse proteins produced by heterologous expression in vitro,
surprisingly few genes from in vivo or cell-line sources have been verified at this level.
From the entire SP/TR collection of human proteins, only 420 are cross-referenced
as having at least a fragment of their primary structure identified directly from a
2DPAGE experiment (http://ca.expasy.org/ch2d/) (Hoogland et al., 2004). Numer-
ous mass spectrometry-based identifications and peptide sequences from human
proteins are reported in the literature, but few of these data have been formally
submitted to the public databases, and therefore they have not been captured by
SwissProt or other secondary databases (see Webster and Oxley, 2005, for a review of
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these methods). However, even this most direct of gene product verifications is rarely
sufficient to confirm the entire ORF. For example, secreted proteins are characterized
by the removal of signal peptides and frequent C-terminal processing. This precludes
defining the N and C translation termini by protein chemical means.

5.3.2 Messenger RNA (mRNA) databases

The next level down in the evidence cascade is, of course, an extended mRNA.
There are a bewildering range of sources of mRNA sequences, ranging from ex-
perimentally verified sequences to in silico predicted mRNA with no other sup-
porting evidence. Most of these sources can be viewed in the three main genome
browsers. Figure 5.1 displays some of the sources discussed below across the
BACEL!L gene in the UCSC genome browser. Starting at the top of the mRNA
evidence cascade, the consensus CDS (CCDS) project (www.ncbi.nlm.nih.gov/
projects/CCDS/CcdsBrowse.cgi) contains the most stable group of transcripts, which
are now completely stabilized between the NCBI, UCSC and Ensembl genome view-
ers (Figure 5.1). In June 2006, there were 14 795 transcripts in the CCDS database.
The NCBI RefSeq collection is probably the next most reliable link in the cascade
(www.ncbi.nlm.nih.gov/RefSeq/). Refseq currently lists 49 565 human transcripts,
including transcript variants (Pruitt et al., 2005). Although this collection attempts
to provide a non-redundant snapshot of gene transcription, it must be remembered
that they are not all full-length transcripts, nor do they represent all known splice
variants. If the databases do not contain an extended mRNA, the assembly of overlap-
ping and/or clone-end clustered ESTs can be considered as a virtual mRNA (Schuler,
1997). The ESTs have the additional utility that many of them can be ordered as
clones. Alternatively, the virtual consensus sequence, backed up by comparisons to
the genomic DNA, can be used for PCR cloning. ESTs are one of the most prolific
sources of evidence of mRNA, which makes them one of the commonest sources
of supporting evidence for a transcript, especially if they include a plausible splice
junction and are derived from multiple clones from different tissue cDNA libraries.
There are a few sources of pre-assembled EST clusters; the NCBI Unigene database
(www.ncbi.nlm.nih.gov/UniGene/) currently contains 86 806 human EST clusters.
Another resource, the TIGR human gene index, contains over 200 000 tentative hu-
man consensus sequences (THCs). These are a useful source of pre-assembled virtual
mRNA (www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=human) (Quackenbush
et al., 2001). Both Unigene and the TIGR Gene Index can also be viewed as UCSC
genome browser tracks. The use of unspliced ESTs as evidence for a transcribed
gene is generally unreliable, as they can arise from genomic contamination of cDNA
libraries. However, human EST-to-genome matches for exon detection can be fur-
ther supported where orthologous ESTs from other vertebrates, such as mouse or
rat, match uniquely in the same section of the genome. If an assembly of mouse
ESTs is consistent with a human gene model, the existence of an orthologous human
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transcript is strongly suggested. Support can also be provided by evidence of con-
servation across vertebrate genomes; this can be assessed quite rapidly with the
‘conservation’ track in the UCSC genome browser.

5.3.3 Protein databases

The protein databases occupy the centre of the evidence cascade for gene prod-
ucts. Those mRNAs or full-length ¢cDNAs that contain a large ORF tend to be
viewed as potential gene transcripts even if they are not full length and/or there
is ambiguity about the choice of potential initiating methionines. However, the
fact that the protein databases have now expanded to include human ORFs de-
rived solely from genomic predictions (described in the next section) means that
the evidence supporting them as gene products becomes circular. The highest cura-
tion level is provided by SwissProt sequences, a manually curated dataset from the
Human Proteomics Initiative (HPI) (http://ca.expasy.org/sprot/hpi/hpi_stat.html).
The June 2006 SwissProt release comprised 14 094 unique gene products and
7707 isoforms arising from alternative promoter use or alternative splicing
(O’Donovan et al., 2001). The next highest curation level is provided by UniProt
(SP/TR), an automated dataset combined with the manually curated SwissProt.
The total for human proteins in June 2006 was 38382, including splice vari-
ants (http://www.ebi.ac.uk/integr8/OrganismStatsAction.do?orgProteomeld=25).
The International Protein Index (IPI) maintains a database of cross-references be-
tween the data sources UniProt, RefSeq and Ensembl (Kersey et al., 2004). This pro-
vides a minimally redundant yet maximally complete set of human proteins with one
sequence per transcript (http://www.ebi.ac.uk/IPI/[PThuman.html). The June 2006
release contains 60 090 protein sequences, but this includes a number of predicted
OREFs from transcript models which are not supported by mRNAs.

5.3.4 Ab initio gene prediction

The next level of evidence can be classified as genomic prediction; that is, where
a cDNA, a translated ORF and a plausible gene splice pattern can be predicted
from a stretch of genomic DNA (Burge and Karlin, 1997). This is done after fil-
tration of repeats, which can be considered as another link in the evidence chain.
A very high local repeat density certainly suggests where exons are unlikely, but
the converse is not true; that is, the absence of repeats does not prove the pres-
ence of genes. The shortcomings of ab initio gene prediction have been pointed
out, but the geneticist should at least be aware of possible false-positives and false-
negatives (Guigo ef al, 2000). The Ensembl statistics of the ratio of genes pre-
dicted by Genscan to genes with a high evidence-supported threshold is currently
3.2:1 (http://www.ensembl.org/Homo_sapiens/index.html). Although this clearly
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represents over-prediction, some may be ‘genes-in-waiting’ that more accumulated
evidence may verify, as by the cloning of an extended mRNA. Looking for a con-
sensus or at least common exons from a number of gene prediction programs with
different underlying gene model assumptions can strengthen this type of evidence,
but this can become a circular argument where the programs are both trained and
benchmarked with known genes. The most effective way of filtering down genomic
predictions without experimental evidence is homology support; that is, the pre-
dicted protein shows extended similarity with other proteins. This is described in
detail in the Ensembl documentation, but, in essence, all possible protein similarity
sections from translated DNA are identified and used to build homology-supported
gene predictions by Genewise (Birney and Durbin, 2000). The advantage of gene
detection by homology is that the entirety of protein sequence space can be used.
The caveat is that predicted gene products with low similarity to extant proteins
would be discarded in this filter, although the entire set of Genscan predictions are
preserved for searching in Ensembl and can also be displayed at UCSC.

5.3.5 Comparative genomics

The next link in the evidence chain is a special case of the similarity principle, but
in this case utilizing comparisons between the genomes of other vertebrates, many
of which are now complete or close to completion such as dog, mouse, chicken, frog
and fish. The Ensembl and UCSC sites now display at least 16 vertebrate genome
assemblies; these can either be viewed directly or aligned against the human genome.
Cross-species data can be assessed at several levels. Comparison of DNA similar-
ity between (vertebrate) genomes is termed ‘phylogenetic footprinting” (Susens and
Borgmeyer, 2001; see Chapter 6 for a detailed review of this approach). This is a
valuable technique for the detection of vertebrate genes and conserved regulatory
regions, but the problem for gene product detection is that this is too sensitive; that
is, mouse/human syntenic regions have many conserved similarity ‘patches’ outside
the boundaries of known exons. Conserved regions are likely to be important for
functions not yet understood, but it is difficult to discriminate superficially between
potential coding and potential regulatory regions. Often these regions need to be
identified in a relatively high throughput manner to allow primer design or SNP
selection. The ECR browser (Ovcharenko et al., 2004) has been specifically designed
for visualizing and accessing evolutionarily conserved region (ECR) data from com-
parisons of multiple vertebrate genomes, and it suits the needs of geneticists very
well (Figure 5.2). The ECR browser annotates ECRs across a query region, using a
user-configurable set of alignment conditions. ECR and known exon-annotated DNA
sequences corresponding to the entire genomic region can be displayed. In Figure 5.2,
there appear to be several mouse ECRs in intron 1 of BACE1. These might correspond
to alternative exons or regulatory regions. There is a strong argument to support in-
vestigations across these regions, such as SNP selection for genotyping or screening
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for polymorphisms. The ECR browser expedites this process, by providing access to
the sequences of ECRs detected and a list of their positions in the displayed region.
A detailed ECR description page contains ECR sequences from both species in any
pairwise comparison, and a display of the underlying DNA sequence alignment. In
addition, sequence characteristics are combined with pipelined links to primer design
tools and the rVista program for transcription factor-binding site (TFBS) analysis.

5.3.6 Transcriptional regulatory region analysis

The last link in the evidence chain, the i silico recognition of transcriptional control
regions, is circumstantial but is likely to increase in utility (Kel-Margoulis et al,
2002). These could include potential start sites in proximity to CpG islands, promoter
elements, transcription factor-binding sites, and potential polyadenylation acceptor
sites in 3’ UTR. When considered in isolation, these signals have poor specificity, but
taken in combination with a consensus gene prediction and conservation of these
putative control regions between human and mouse, they can become a useful part
of the evidence chain. Chapter 12 considers this area of bioinformatics analysis in
detail, so we will not offer any further coverage of this here.

5.3.7 Conclusions on the evidence cascade for genes

In summary, there is currently direct experimental support for ~15000 protein-
coding genes and strong evidence for a basal (unspliced) lower limit of around
25 000 (Southan, 2004). In Figure 5.3 we review the public data resources that
provide the data for this evidence cascade. The confirmation rates for the types of
evidence listed above have not been calibrated experimentally, so we cannot give
any kind of scoring function to rank gene likelihood. Going to the extremities of
the evidence cascade, for example, with the 60 090 proteins from the IPI or the
86 806 UniGene clusters containing at least two ESTs, would result in a higher upper
limit. This uncertainty becomes a key issue for genetic experiments. Let us suppose,
for example, that a linkage study has defined a trait within the genomic region
bounded by two microsatellite markers. If the lower limit gene number is true, the
investigator merely needs to check the annotations from any of the three gene portals
to produce a list of gene products between the positioned markers from which to
choose candidates for further work. If the upper limitis true, thisapproach hasamajor
limitation because many of the genes between the markers will not be annotated.
However, the different levels of gene evidence described above can be visualized in the
display tracks of the genome viewers. Consideration of the evidence will enable the
geneticist to decide what experiments need to be designed to confirm potential novel
gene products. An example of working through this evidence is given in the examples
below.
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Figure 5.3 The evidence cascade for genes, transcripts and proteins

5.4 Dealing with the complexities of gene models

One of the conclusions that is clear from the analysis of the human genome sequence
is that gene models are not a simple cascade of a defined gene locus — a single mRNA
species — a single protein. This rarely describes the complex relationship between
the genome and its products. Attempts to fit transcript data into this kind of view
highlight a number of inconvenient ‘grey’ areas that just might mean the difference
between success and failure in a genetic experiment.

5.4.1 Delineating the 5’ and 3’ extent of an mRNA transcript

The first of these grey areas is the delineation of the extreme 5" and 3’ ends of the
mRNA transcripts (Pesole et al., 2002; Suzuki ef al., 2002). The fact that many mRNAs
are labelled as partial is testimony to the difficulty of finding library inserts that are
complete at the 5" end. In many cases, the mRNAs are considered finished when a
plausible ORF has been delineated. However, very few cDNAs are full-length in that
they have been ‘walked out’ to determine the true 5'-most initiation of transcription
in the 5 UTR. The same problem applies to the UTR at the 3’ end. There may be
substantial stretches of 3’ UTR extending downstream of the first polyadenylation
position at which further cloning attempts have ceased. If we overlook this UTR
sequence in a genetics experiment, we might be overlooking functionally important
micro-RNA-binding sites with a key role in gene regulation (see Chapter 14). The
problem is compounded by the poor performance of gene-prediction programmes
for 5’ and 3’ ends. The first step toward resolving the uncertainty about the extremities
of a transcript is to survey the coverage of all available cDNA sequences, whether
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nominally full-length or partial, ESTs and patent sequences. These can often extend
the UTR sections.

5.4.2 Dealing with pseudogenes

The second grey area concerns pseudogenes. Processed pseudogenes in particular are
common (Shemesh et al., 2006). These are reverse-transcribed mRNA copies that
have integrated into the genome, but which do not code for a functional protein. In
some cases, genomic sequence is so severely degraded that transcription is unlikely;
however, in many other cases, transcription still occurs. Entrez Gene contains 7202
human pseudogene loci, although this count may be far from complete. The UCSC
presents several tracks with pseudogene information; one track, ‘retroposed genes,
shows 16 731 processed mRNAs that have been inserted back into the genome since
the mouse/human split. These can be either functional genes that have acquired a
promoter from a neighbouring gene, non-functional pseudogenes or transcribed
pseudogenes.

5.4.3 Dealing with gene-product heterogeneity

The third grey area is gene-product heterogeneity. In some cases, there may be
alternative upstream initiation methionines or alternatively spliced exons in the 5
UTR. The causes of 3’ heterogeneity include variations in the pattern of intron
splicing from a pre-mRNA, as well as alternative polyadenylation positions inside the
3’ UTR. Potential for such gene-product heterogeneity can often be rapidly evaluated
with genome viewers, and evidence of alternatively spliced exons or alternative first
exons may be identified in spliced EST data or after comparison with other vertebrate
mRNAs or genomic regions. Unfortunately, getting beyond this potential evidence to
arobust gene model can be one of the most complex and confounding bioinformatics
analysis tasks, so again it is important to determine what level of detail is required for
the task in hand. For example, a complete transcript model may not be required to
evaluate the impact of a SNP — in this case, the exon and its immediately preceding
exon are all that are needed to determine a possible coding change.

5.4.4 Dealing with overlapping and embedded genes

The fourth grey area concerns overlapping genes. As genomic annotation proceeds,
we can find more examples of this from both gene products reading from opposite
strands and same-strand genes in close proximity (see Makalowska et al., 2005, for a
review). Embedded genes are another consideration. These are small, often intronless
expressed genes (possibly with similar origins to pseudogenes) that are located in the
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intronic regions of ‘host’ genes. Transcription of embedded genes may often be driven
by the promoter of the host gene, so this can make the determination of function
(e.g., expression) of an embedded gene and its host very difficult to separate. A good
example of an embedded gene is CHML in intron 1 of the OPN3 gene (Halford
et al., 2001).

5.5 Locating known genes in the human genome

Genes can be located by one of the following; a section of raw sequence data, a
primary accession number, a secondary accession number, a similarity search, a gene
product name, or a set of genome coordinates. Each of these has advantages and
disadvantages, and, although the main genome portals are generally consistent, they
may not give the same answers in every case. Bearing in mind that only the first two of
these gene location methods are based on stable (almost) unambiguous information,
itis better to use at least two ways to define and store the results: for example, a section
of raw sequence and a gene name, or a primary accession number and a set of genome
coordinates. The BACEI gene will be used as an example of a known gene to locate.
The potential complexity of this task is illustrated if we view the Ensembl gene report
for BACE1, which is often agood place to start to get a feel for the data relating to a gene
(http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000186318).

5.5.1 Using raw sequence data to locate genes

The availability of the human genome sequence means that most features can now
be unambiguously located in the genome with as little as 100 bp of sequence. This
means that storing a sequence string, preferably with a longer sequence context of
200-1000 bp, is a useful, future-proofed, method oflocking-on to a genomiclocation.
Sequences are more or less immune to the vagaries of shifting secondary accession
numbers, naming ambiguities or GP sequence finishing that can change the genomic
coordinates. Performing nucleotide searches against the genome using tools such as
BLAT (UCSC), SAHA (Ensembl), or BLAST (NCBI) means that sequence matches
can be quickly located. The disadvantage for raw sequence is that it has to be stored
in its entirety, it may contain errors, it needs the operation of a similarity search to
be located, and similarity matches across repeat-containing sections or duplicated
regions of the genome need close inspection to sort out. This can be a particular
problem for sequence-tagged sites (STSs) and SNPs if the GP match is in the region
of 98 per cent to 95 per cent identity. Within this range, it is difficult to discriminate
technical sequencing errors from multiple genomic locations, assembly duplication
errors or even copy number polymorphisms. The genome portals capture mRNA
entries for most gene products; however, because of the thin annotation, they do not
capture sequences from the patent divisions of GenBank. An NCBI BLAST search of
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the gbPAT database with any BACE1 mRNA returns hundreds of high-identity DNA
matches (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi). These are clearly mRNAs
that could be usefully compared with all other mRNA sequences for polymorphisms,
splice variants or UTR differences. However, users should be aware that not only are
some of these entries identical versions of the same sequence derived from multiple
claims in the patent documents but also they may be identical to a public accession
number if the authors and inventors are from the same institution. Another possible
reason for using raw sequence data for gene-product checking is that all secondary
databases suffer from the snapshot effect whereby updates lag behind the content of
the primary databases. For example, the SNP or EST assignments made for BACE
in the secondary databases (see below) could be checked by BLAST searches against
the updates of dbSNP or dbEST (the latest EST data need to be searched in ‘month’
as well as dbEST).

5.5.2 Using primary accession numbers

A primary accession number (or primary database record) is assigned to a DNA or
protein sequence or other genomic entity when it is first entered in a database. This
accession should be related to a specific experiment, and it should contain contact
details for the investigator that carried out the experiment. Primary sequences should
be treated with some care, especially if they are particularly old, as they may often
contain sequencingerrors or possibly polymorphisms. These are usually corrected (or
annotated as polymorphic) based on a consensus alignment of all primary accessions
in the secondary sequence record, such as RefSeq. In the case of BACE1, AF204943 is
one of the primary accessions for this gene. Because these uniquely define stretches
of sequence, they are stable except where genomic DNA, and occasionally mRNAs,
undergo version changes. They can be used in any of the major genome query portals
to go directly to a genomic location. The disadvantage is redundancy for mRNAs,
short sequence context for some STSs, and both redundancy and large multigene
sequence tracts for genomic DNA, and very recent accessions may not be indexed
in genome builds. If the query fails to connect to a genome feature, the sequences
can be searched as raw sequence. In the BACEI example, interrogating the UCSC
browser with BACE1 retrieves three primary Genbank IDs. Users need to be aware
that although an mRNA accession number can provide a specific route into the
genome, the variable number of links to the genome portals is related to their update
frequency.

5.5.3 Using secondary accession numbers

Secondary database records do not directly relate to a specific sequence submis-
sion; instead, they usually represent a consensus view of the primary data to capture
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representative versions of each splice variant or alternative initiation. This may in-
clude extending the sequence based on an alignment of all primary sequences. Some
examples of secondary databases are RefSeq, SwissProt and RefSNP. If we view BACE1
in Ensembl or the UCSC, there are several secondary accession numbers that desig-
nate BACE1 mRNAs and proteins. Although secondary accession records have the
advantage of capturing a consensus across all the available information, they do have
some problems in use for gene localization. Firstly, the sequence linked to a sec-
ondary accession number may not be stable, as new information arises, and these
can be merged, split or retired. Recent improvements mean that retired IDs are now
linked to new IDs and version change histories but this can be confusing. However,
SwissProt and RefSeqNP protein IDs can be considered stable even if there can be
minor changes in the linked sequence.

5.5.4 Using gene names and symbols

The whole area of gene symbols and aliasing can be fraught with confusion, and it is
probably fair to say that this is one of the commonest sources of error in bioinformat-
ics searches. If we take BACEI as an example again, there are four synonyms or aliases
(BACE, ASP2, HSPC104 and KIAA1149). Using ASP2 as a search query for the UCSC
browser, we retrieve BACE1 but also ASP2 (aspartate aminotransferase 2), a com-
pletely unrelated human gene. This illustrates the problem when gene products are
given different names by different authors. A good tool for checking gene aliases either
individually or in batches is MatchMiner (http://discover.nci.nih.gov/matchminer/).
In an attempt to avoid this confusion, the Human Gene Nomenclature Committee is
trying to establish official HUGO gene symbols for all human genes. Where possible,
these should always be used when referring to a gene, and many journals now require
the use of these symbols for publications. It is possible to check HUGO gene symbols
at the organization website (http://www.gene.ucl.ac.uk/nomenclature/). The com-
plexity of the aliases for just one gene product makes it clear that any gene name lists,
such as candidate genes to be screened for mutations, should be backed up by acces-
sion numbers, raw sequence or chromosome locations. It also illustrates the need to
cross-check aliases and their spellings when attempting a comprehensive literature
search on a particular gene product. The formal sequence-literature links that can be
followed in Entrez Gene or SwissProt are not comprehensive because they are depen-
dent on the journal-author-database system that usually only makes these links ex-
plicit for a new accession number. Much important literature remains outside this sys-
tem. Review articles, for example, do not typically include primaryaccession numbers
when describing genes, so the specificity of literature searches remains dependent on
the name links. Information trawling with gene names can also be done with the stan-
dard Internet search portal. Putting the term ‘beta-site app cleaving enzyme’ into the
Google Scholar literature mining engine gave 408 hits (http://scholar.google.com/).
The listing included duplicates but very few false positives.
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5.5.5 Using genome coordinates

Since the adoption of defined releases of human genome assemblies, this method
of genomic location has become more reliable, but users are strongly advised to
check the version of the genome assembly that their coordinates are derived from.
At the time of writing (June 2006), the May 2004 (NCBI35) human genome as-
sembly was still in most frequent use by the majority of applications. A March
2006 (NCBI36) release is just beginning to be incorporated into the UCSC and pre-
Ensembl servers. This creates a potential problem, of which the user must always be
aware. When genomic coordinates of different data types are compared, it is critical
to ensure that they are both based on the same NCBI genome build. Considering
this, it is good practice to record the genome build with any data set containing
genomic coordinates. Data mapped against different assemblies can be compared
by the UCSC Batch coordinate conversion tool(http://genome.ucsc.edu/cgi-bin/
hgLiftOver).

5.6 Genome portal inspection

From the descriptions above, it should be possible to locate any known gene or
genetic marker such as an STS or a SNP. Descriptions of the genome viewer features
for Ensembl, UCSC and NCBI are covered in detail in Chapter 4. However, we give
one specific example below (Figure 5.4) because it effectively illustrates some of the
issues in gene analysis. The UCSC genome browser view of the 3’ portion of the
BACE1 gene (Figure 5.4) shows that there are significant differences in the lengths
of the 3’ ends of some of the primary mRNA records. Clearly, AF201468 (5878 bp)
and AB032975 (5814 bp) are the longest reads, but, in fact, AB032975 is labelled as a
partial coding sequence because of what may be a sequencing error at the 5’ end. A
detailed analysis of the 3" ends by EST and mRNA distribution profiles indicates that
the different UTR lengths in this case arise not from incomplete cloning but from
three alternative polyadenylation positions (Southan, 2001). Further heterogeneity
is illustrated by three splice variants affecting exons 3 and 4 (the furthest exons on
the right of Figure 5.4). The representative mRNAs are AB050436, AB050437 and
AB050438. There is also an alternative protein reading frame from AF161367, a
partial mRNA cloned from CD34" stem cells. Opening the spliced EST tracks in
the viewer shows individual ESTs corresponding to these splice forms and others
that correspond to potentially novel exons. This suggests the possibility of further
BACE]1 splice forms, but to provide further evidence to support this, the EST to
genome alignment would need to be inspected for the presence of a canonical splice
site (see Chapter 11). Beyond this, experimental verification of this variant would be
recommended.
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Figure 5.4 Reviewing the evidence cascade in the UTR region of BACE1

5.7 Analysing novel genes

In many cases, experimental results will locate a genomic region where there are no
annotated genes. Inspection of all three genome browsers might indicate possible
novel gene products with a variety of supporting evidence. This evidence might
extend from ab initio gene predictions through evidence of genomic conservation to
EST evidence. Building up a robust package of evidence around an unannotated gene
in genomic sequence can be a bit of an art, and we discuss this further in Chapter 9.
Again it is worth considering what level of detail is required for genetic analysis. For
genotyping across a gene, a well-selected set of tag SNPs should suffice. Even if an
association is localized to a SNP in a possible novel gene, it may not be necessary
to build a full gene model. If there is clear evidence of exons, it may be possible to
obtain a multiframe translation across several exons to evaluate the impact of the



102 CH 5 FINDING, DELINEATING AND ANALYSING GENES

SNP. The options are limitless and it is really a question of how far we need to take
the analysis for the purpose in hand.

Once we have identified a putative novel protein i silico, there are a number of an-
alytical approaches to investigate the function of the protein. Firstly, it is worth check-
ing the Ensembl and UCSC browsers to see whether any of the work has been done
already in the form of predicted gene models. Both browsers offer highly informative
protein views. Without the benefit of this information, you really are out on your own,
so the first step isto cross-check for reading frame consistency and species orthologues
by performing a TBLASTN search against vertebrate EST and mRNA databases.
TBLASTN is a sensitive protein similarity query used against DNA databases trans-
lated in all six reading frames (http://www.ncbi.nlm.nih.gov/BLAST/). The results
can rapidly help to highlight ORFs and possible splice variants in a predicted protein.
Clearly, the analysis of what, for example, might be a candidate disease-associated
gene has to move on from the identification of an ORF to the assignment of function
that is both mechanistically plausible and experimentally testable. The subject of as-
signing functions to new proteins is outside the scope of this chapter. However, one
of the first steps should be a comprehensive motif analysis. This can be completed
with tools such as InterPro Scan (see Southan, 2000; Kriventseva et al., 2001, for a
review of this area).

5.8 Conclusions and prospects

The geneticist is in the fortunate position of having access to secondary databases
and genomic viewers of increasing quality, content and utility. This is making the
process of finding and analysing gene products easier. However, the examples used in
this chapter also show that there are many subtle details in genomic annotation, and
the implications of these will take some time to unravel. This requires comprehen-
sive inspection and may ultimately need experimental verification. The expansion
of Web-linked interoperativity and interrogation tools means that new options will
already be available by the time this book is in print. One consequence of these ad-
vances could be the perception of a diminished necessity to perform bioinformatic
analysis. Although thisis true in the sense that secondary database include an increas-
ing amount of ‘precooked’ bioinformatic data, there is a paradox in that the more
sophisticated the public annotation becomes, the more important it is to understand
the underlying principles. For example, it is important to be able to distinguish
between gene products defined by in vitro data or only by in silico prediction.

So what of the future? There are a few developments worth highlighting, all of
which are covered in detail in later chapters. The first is that the combination of
increasing transcript coverage and the availability of multiple complete vertebrate
genomes will further diminish the uncertainty limits of gene numbers. Secondly, with
the HapMap in hand and the ability to carry out genome-wide genetic association
scans across a comprehensive set of gene products, we should be in a better position
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than ever to determine which genes are associated with common diseases. It is fair to
say that we still have no idea what many thousands of genes in the human genome
actually do. This presents us with a prospect that is both exciting and daunting —
do these genes play a role in human diseases, and, if so, what is this role? Answers
to these questions may take a while longer in coming than the initial associations,
but the end result might well be the illumination of entire new pathways with direct
relevance to human disease.
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Comparative Genomics
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6.1 Introduction

The geneticist is typically concerned with the investigation of genetic variation be-
tween individuals of a population. In contrast, much of comparative genomics is
based on the differences that have accumulated between species. More specifically,
comparative genomics uses the signal of past selection as a highly sensitive assay for
function in genome sequences. Unlike experimental approaches, it does not require a
prior hypothesis of that function. The realization that comparative sequence analysis
is crucial to understanding the functions encoded in the human and other genomes is
driving a major comparative sequencing effort. The fruits of this labour are a rapidly
expanding number of whole-genome sequences and new computational methods to
analyse these data in efficient and meaningful ways.

For the geneticist, one of the great attractions of comparative genomics is the
potential to focus in on functional polymorphisms from a list of tens or possibly
hundreds of candidates based on genetic evidence alone. Comparative genomics can
also provide clues to the function of a polymorphic site and can lead to the genera-
tion of experimentally testable hypotheses for the investigation of that function. By
including DNA sequence from genetically tractable model organisms in comparative
analyses, this approach can also provide a route into model organism studies through
the identification of orthologous sites in the target genome.

In this chapter, we introduce the concepts and techniques of comparative ge-
nomics; in doing so, we also venture into the topics of sequence alignment and
phylogenetics. In general terms, the approaches we describe can be applied to se-
quence data from any collection of organisms, but our emphasis here is primarily on
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questions of relevance to human genetics. We begin, in Section 6.2 by presenting an
overview of genome structure and content, providing a context for the subsequent
discussions. We then introduce the concepts of natural selection, the neutral theory of
evolution, homology and phylogenetic distance that underlie comparative genomic
analyses. In Section 6.4, we consider the types of questions that can be addressed
and the strategies that can be employed to address them. We also consider the avail-
ability and accuracy of genomic sequence data. With Section 6.5, we introduce the
three main technical challenges of comparative genomic sequence analysis: genomic
sequence alignment, the visualization of sequence relationships and detecting the
signal of selection. We review the methods employed to meet these challenges and
discuss the most popular and the most promising new tools. In Section 6.6, we illus-
trate the utility of comparative genomic studies with recent applications that have
given new insights into human biology. Finally, in Section 6.7, we highlight some
resources that are likely to have a profound impact on future comparative genomic
studies and identify future research challenges.

6.2 The Genomic landscape

The human genome is approximately 3 200 000 000 (3.2 gigabases (Gb)) nucleotides
long (Lander et al., 2001; Venter et al., 2001). At first sight, a monotonous repetition
of A, T, C and G representing the four nucleotides of DNA, it is, in fact, a diverse
and still in many ways mysterious landscape. Of the total 3.2 Gb, 2.85 Gb has been
sequenced to high accuracy (IHGSC, 2004); the remainder has not, largely because
of heterochromatic regions (centromeres and telomeres) that are highly repetitive
and refractory to current sequencing technology.

6.2.1 Gene content

The definition of a gene depends upon the context of its use. To a classical geneticist, it
isaunit of inheritance; to many biologists, it isa DNA sequence that encodes a protein;
and to the popular media, it is something, which causes a disease! For the purposes
of genomic annotation, it is often practical to think in terms of a transcription unit:
a set of overlapping transcripts from the same template DNA strand. Chapter 11
(Figure 11.2) outlines the typical genomic structure of a eukaryotic transcription
unit, including the presence of a core promoter region immediately upstream of
the transcription unit, and more distantly located cis-regulatory elements mediating
transcriptional control and punctuation of the transcribed region by introns which
are spliced from the transcript during RNA maturation. Even though introns are
removed and degraded, in higher eukaryotes such as mammals, the length of introns
often far exceeds that of exons.

Proteins are often thought of as the principal functional product of a genome. Con-
sequently, protein-coding sequences are the first place screened for disease-associated
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mutations and functionally significant polymorphisms. The human genome encodes
approximately 22 000 protein-coding genes (http://www.ensembl.org), although the
total diversity of proteins produced is likely to be several times this thanks to alter-
nate transcript initiation and processing (Maniatis and Tasic, 2002; Carninci et al.,
2005). However, it appears that this protein-coding sequence accounts for less than
1.5 per cent of the human genome sequence (Lander et al., 2001). The situation is
similar to that in rodents (Waterston et al., 2002; Gibbs et al., 2004 ), other mammals
(Lindblad-Toh et al., 2005) and, to varying degrees, other vertebrates (Aparicio et al.,
2002; Hillier et al., 2004). These estimates of coding sequence content appear to be
robust, as they are supported by multiple lines of evidence, including the integration
of comparative data (Roest Crollius et al., 2000) with transcript evidence (Potter
et al., 2004), and they are also consistent with extrapolation from targeted regions
investigated in considerable detail (Miller et al., 2004). This finding does, of course,
raise the question, what is the function of the remainder of the genome?

It is clear that protein-coding genes are not the complete story. There are also
many transcription units with specific functions other than the encoding of a protein,
ribosomal and transfer RNAs being classic examples. More recently, the abundance
and importance of micro-RNAs that act to regulate the expression of other genes
have come to the fore (Lim et al., 2005; see Chapter 14). In addition to these known
‘functional RNAS) there is considerable evidence for the existence of many RNA
transcripts that have no known function (Carninci et al, 2005).

6.2.2 Repetitive elements

A major component of the human and many other higher eukaryotic genomes is
sequence derived from interspersed repetitive elements (IRE) such as endogenous
retroviruses, retrotransposons and DNA transposons. At least 45 per cent of the
human genome is identifiably derived from IREs (Lander ef al, 2001), although
this almost certainly underestimates their true contribution, as older, more diver-
gent repeat-derived sequences are unlikely to be identified. These elements are often
considered junk’ DNA, and rarely have organism-level biological functions been
attributed to them, although a small number of exceptions are known (Kowalski
et al., 1999; Kapitonov and Jurka, 2005). It is interesting to note that some vertebrate
lineages, most notably that of the pufferfish, are almost devoid of such IRE-derived
sequence and have a genome approximately eightfold smaller than the human de-
spite encoding a similar, or slightly greater number of protein-coding genes (Aparicio
et al., 2002).

An interesting consequence of a genome rich in repetitive elements, particularly
those that replicate through the process of reverse transcription (duplication via
an RNA intermediate), is the abundance of processed pseudogenes. Occasionally,
rather than the enzyme responsible for reverse transcription (reverse transcriptase)
driving the replication of an IRE, this enzyme will reverse-transcribe the mRNA of
a gene. This leads to the integration of a processed duplicate of the gene into the
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genome. The result is a processed pseudogene, the copy of an mRNA integrated into
the genome, which bears the hallmarks of transcript processing, such as the removal
of introns and 3’ polyadenylation (Zhang et al., 2004). Processed pseudogenes are
often incomplete at the 5" end, a consequence of reverse-transcriptase reading the 3’
end of the mRNA first. Some genes, such as those encoding the ribosomal proteins,
are particularly susceptible to generating new processed pseudogenes (Zhang et al.,
2004), probably reflecting in part the level germ-line transcript of the gene.

6.2.3 A varied landscape

In probably every measure that has been made of the human genome sequence, it has
been found to be far from homogeneous. We have already touched on the distinction
between heterochromatic regions that perform roles in the packaging and segregation
of chromosomes, from the remaining (euchromatic) regions. Throughout the rest of
the euchromatic genome, there is considerable variation in gene density (the number
of genes per unit sequence), IRE content, nucleotide and dinucleotide frequency, and
the observed rates of genetic recombination, nucleotide substitution, insertions and
deletions. Many of these attributes have been found to co-vary across the genome
(Hardison et al., 2003; Gibbs et al., 2004; Singh et al., 2005), but currently the basis of
their interrelationships is not well understood. Of particular relevance to comparative
genomic studies is the fluctuation of substitution, insertion and deletion rates across
the genome (Wolfe et al., 1989), which suggest there may be regional variation in
the rate at which mutations occur. At least in rodents, the scale of this variation is of
the order of 1 Mb, so that the substitution rates for two neutrally evolving regions of
sequence are generally well correlated if they lie within this distance of each other,
but the correlation decreases rapidly with increasing genomic distance (Gaffney and
Keightley, 2005).

The rate of sequence mutation is dependent not only on the large-scale region of a
genome, but also on the sequence and composition of neighbouring sites (Hardison
et al., 2003; Taylor et al, 2004). For example, tandemly repeated sequences and
mononucleotide tracts are prone to insertion and deletion mutation (Taylor et al.,
2004). The epigenetic methylation of cytosine nucleotides, when they are located di-
rectly upstream of a guanine (CG), is a common occurrence in mammalian genomes
and to a lesser extent in other metazoans (Bird, 2002). This nucleotide modification
has had a major influence in shaping mammalian genomes. Thanks to a quirk of
biochemistry, a methylated C can mutate to T at a much higher frequency than all
other nucleotide substitutions occur. As a result, CG dinucleotides are grossly under-
represented across the majority of the human genome, relative to chance expectation
given the frequency of C and G nucleotides (approximately 20 per cent of the expected
frequency (Sved and Bird, 1990; Lander et al., 2001)), and CG mutation rates tend to
be substantially higher than those of other dinucleotides. However, within specific is-
lands of sequence (commonly known as CpG or CG islands), CGs are not methylated,
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at least in the germ line (Bird et al, 1985), and so are not under-represented. CG
islands are often associated with the 5" end and promoters of some genes (Bird et al.,
1985), and so represent sequences that are often of particular interest in genetic and
functional studies.

6.2.4 Segmental duplication

Segmental duplications are a genomic feature that can often cause problems for
sequence assembly such that they are frequently overlooked. These are large (typ-
ically 5 kb is taken as an arbitrary, minimum threshold in their definition) tracts
of sequence that occur multiple times in a genome, often as tandem repeats. The
duplicated regions can encompass whole genes or even multiple genes. Recent seg-
mental duplications will share a high degree of nucleotide identity and are likely to be
polymorphic in the population. The mechanism of segmental duplication provides
a rapid means of divergence between species (Law et al., 1992; Nguyen et al., 2006).

6.3 Concepts

The replication of DNA is imperfect; new mutations are continually arising with
each generation. In the absence of selection (neutrality), the eventual fate of a new
mutation will be determined by genetic drift, chance fluctuations in frequency that
result from sampling a finite population. For most mutations, this will result in
their loss from the population, but some will drift to fixation. As this is a random
process, any observed sequence changes can be considered an unbiased sample of all
mutations that occurred. However, natural selection disrupts this unbiased sampling
of mutations.

If we assume that a region of an organism’s DNA has a biological function that
contributes to the survival of that organism, it is probable that a random mutation
in this region will disrupt that function. This is analogous to someone randomly
connecting a pair of wires in a computer — it may make the computer work better,
but most likely it will have a detrimental effect on function. Consequently, the ma-
jority of mutational changes within functional elements are likely to be detrimental
and removed by the process of selection, whereas there is no such driving force to
eliminate mutations within non-functional elements. As a result, functionally im-
portant sequences are expected, in general, to accumulate fewer mutational changes
than neutrally evolving DNA. This is the same as saying that two functional regions
of sequence diverged from a common ancestor are expected to be more similar than
a pair of non-functional regions that diverged at the same time. Local regions of
sequence similarity resulting from selective constraint are often referred to as a phy-
logenetic footprint (Tagle ef al., 1988). This selective constraint is often referred to
as negative or purifying selection.



110 CH 6 COMPARATIVE GENOMICS

However, it is clear that species adapt and evolve (Darwin, 1859). Especially in
response to changing environmental conditions, there is a selective pressure driving
change rather than conservation. If the function of a DNA sequence is subject to
such adaptive pressure, it may be expected to accumulate changes at a faster rate
than expected for neutrally evolving sequences. This is often referred to as positive or
diversifying selection. There are instances, such as sexual selection and host-pathogen
arms races, of sustained selective pressure for diversification (Nielsen et al., 2005),
but in the majority of cases, a period of diversification will be both preceded and
succeeded by longer periods of purifying selection. As such, diversifying selection
can be difficult to identify unambiguously, and the majority of comparative studies
outside protein-coding sequences currently focus on the identification of purifying
selection. For an in-depth discussion of genetic drift, selection and the influence of
population size, see Lynch (2006).

Both purifying and diversifying selection result in a departure from the neutral rate
of sequence evolution; this departure is diagnostic and can be considered the signa-
ture of selection. Natural selection can act only on genetic variation that manifests as
phenotypic differences between individual organisms of a population. Itis a stringent
filter: even a 0.001 per cent reduction in fitness will result in a polymorphism being
efficiently removed from most mammalian populations (Ohta, 1976; Piganeau and
Eyre-Walker, 2003). Therefore, the signature of selection defines a sequence as signifi-
cantly contributing to the biology of the organism. As we have discussed (Section 6.2),
vertebrate and many other higher eukaryotic genomes are dominated by sequences
that appear to have no biological function. This means that although the human
genome is approximately 3.2 Gb in size (Lander et al., 2001; Venter et al., 2001), most
of the biological functions and, consequently, disease-associated polymorphisms and
biological insight are concentrated into as little as 0.16 Gb of sequence (Gibbs et al.,
2004; Lunter et al, 2006) (Section 6.6.1). Comparative genomics provides a means
of identifying that rich vein of functional sequence, and, unlike laboratory-based
approaches, it does so without requiring prior assumptions of what that function
may be.

6.3.1 Homologues, orthologues and paralogues

The rate of sequence evolution is measured from an alignment between sequences
that have diverged from a common ancestor; that is, they are homologous. If the point
of divergence for two homologous sequences was a speciation event, they are referred
to as orthologues. Otherwise, they are paralogues of one another. The distinction
between orthology and paralogy is important for two reasons. Orthologues are more
likely than paralogues to have conserved the same function since divergence, because
the processes giving rise to paralogues, such as intragenome duplication and hori-
zontal gene transfer, provide an opportunity for functional diversification through
the relaxation of selective constraint (Gogarten and Olendzenski, 1999). Secondly,
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when we compare loci of multiple orthologues between the same range of organisms,
a common phylogenetic relationship and divergence times can be assumed for all
of the loci, enabling direct comparison between loci. No such assumptions can be
made for comparisons of paralogous loci. For these reasons, the majority of studies
are based on alignments of orthologue sequences.

‘Phylogenetic scope), a term introduced by Cooper et al. (2003), defines the range
of organisms being considered in an analysis, denoted by their most recent common
ancestor. For example, a study involving sequences from zebrafish, chicken, frog,
mouse and man is vertebrate in scope, whereas one looking at man, chimpanzee and
macaque is primate in scope. The phylogenetic scope of a study must be matched
to the biological questions being asked. In general, more closely related species are
more likely to have similar biology than distantly related species. The Sonic hedgehog
gene discussed later (Section 6.6.3) provides a good example of the potential pitfalls
of an inappropriate phylogenetic scope.

The number of expected differences between sequences has important implica-
tions for the utility of a particular sequence in a comparative analysis, and how the
analysis should be performed. It is useful then to have some standard measure of
the expected degree of sequence divergence. For orthologous sequences, a widely
used measure has been divergence time in millions of years, estimated through the
integration of fossil records and molecular data. The greater the divergence time,
the greater the number of changes that are likely to have accumulated. However,
these date estimates vary wildly with the methods used and assumptions made; for
example, the divergence between rodent and primate lineages has been estimated
as occurring between 75 and 121 MYA (Waterston et al., 2002; Gibbs ef al., 2004;
Glazko et al., 2005).

A more useful measure for comparative genomics analysis is that of branch length,
sometimes simply referred to as distance. This measure denotes the number of mu-
tational changes per unit of sequence, such as substitutions per nucleotide, deletions
per amino acid or inversions per kilobase. The most useful and widely used measure
when considering comparative genomics is that of substitutions per nucleotide, asitis
readily calculated and is reasonably robust to alignment methodology. As a measure,
italso relates directly to the amount of information present in aligned sequences and
also how accurate an alignment between those sequences is likely to be (see below).
In the phylogenetic tree shown in Figure 6.1, the total branch length between man
and mouse is D = 0.63 substitutions per site in a neutrally evolving sequence, cal-
culated by summing branch lengths between the human and mouse terminal nodes
(0.025 + 0.12 + 0.399 + 0.083). It should be noted that branch length is often not
the same as the sum of sequence differences, as the methods used to calculate sub-
stitution rates typically take into account the likelihood of multiple changes at the
same site.

In theory, the power of a study to distinguish non-neutral from neutral evolution
is proportional to the total divergence (branch length) of the analysis; in the case
of Figure 6.1, this would be the sum of each value shown on the tree (total: 0.989).
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Figure 6.1 Phylogenetic tree showing branch lengths. An unrooted tree with branch lengths
derived from nucleotide substitution rates of anonymous aligned sequence in the greater CFTR
region. Individual branch lengths are shown on each branch segment

Under the simplest scenario of identifying selective constraint, one is evaluating the
likelihood that a segment of nucleotides has remained unchanged by chance, given
an expected neutral rate of evolution D. For small values of D, we can use the Poisson
distribution (e~ ) to approximate the probability that a neutrally evolving site will
be unchanged (Cooper et al., 2003; Eddy, 2005). For a man:mouse alignment with
D = 0.63, there is a 53 per cent likelihood that a neutral site will be unchanged by
chance.

In practice, a pairwise alignment between orthologous sequences cannot distin-
guish selective constraint from neutral evolution for a single nucleotide position.
Rather, a region of consecutive nucleotides is evaluated collectively. The size of a
region necessary to identify selective constraint scales inversely with the value of D
for the analysis (Eddy, 2005). A simple way to increase the sensitivity of an analysis,
to detect shorter or less conserved sequences, is to compare more distantly related
sequences. Unfortunately, there are two important caveats to this strategy. First, the
more diverged sequences are, the less accurate the alignments are between them
(Pollard et al., 2004), so constrained sequences may be missed at the alignment stage
rather than in the analysis of the alignment. Second, is the issue of phylogenetic
scope; diverged species are less likely to share biological functions or be subject to
similar constraints.

An alternative approach for increasing total D of an analysis is to include
more sequences through multiple alignment. Based on the branch-length values
in Figure 6.1, a comparison of man and mouse has D = 0.63, but adding rat as a
third species increases total D to 0.72. When calculating total D for an analysis, each
unique section of branch is counted only once, so rat adds only D = 0.086 to the
total analysis; considerably more power could be added by using dog instead of, or in
addition to rat, as it would contribute D = 0.244 of unique branch length. A further
advantage to increasing comparisons from pairwise to multiple sequences is that it
allows the direction of mutational changes to be resolved, such as the discrimination
of insertion from deletion and the ability to assign changes to a specific lineage.

Alignment of closely related pairs of sequences, such as man-chimpanzee or man-
macaque orthologous regions (D = 0.009 and D = 0.052 respectively (Margulies
et al., 2003)), is of little use for phylogenetic footprinting studies (Section 6.3;
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Figure 6.2). However, extending the approach described above to the alignment of
many such similar sequences can in theory provide sufficient total D for useful de-
tection of selective constraint (Cooper et al., 2003; Eddy, 2005). As the sequences are
closely related, their alignment should be highly accurate, covering most nucleotides
(Pollard et al., 2004), and the phylogenetic scope is narrow, so relatively little func-
tional divergence is expected. This paradigm, known as phylogenetic shadowing
(Boffelli et al., 2003), represents an ideal combination of attributes for comparative
genomic studies. Using phylogenetic shadowing, Boffelli et al. (2003) were able to
demonstrate the identification of constrained sequences specific to primates, and
showed that as few as four to eight well-chosen genomes could capture much of
the information present in deeper alignments of up to 17 primate sequences. The
principal limitation is the need for multiple closely related, orthologous sequences
(Section 6.3).

6.4 Practicalities
6.4.1 Available genomic sequences

At the turn of the millennium, comparative genomic projects in vertebrates involved
the laboratory-based identification of homologous regions and their sequencing
(Davidson et al., 2000), prior to any comparative analysis. This situation has changed
markedly, with an extremely high-quality reference human genome sequence in hand
(IHGSC, 2004) and high-quality draft sequences from mouse and rat (Waterston
et al., 2002; Gibbs et al., 2004). The target for all three of these genomes is ‘finished’
sequence, highly accurate and completely contiguous. Finished sequence is the refer-
ence standard and the ideal for comparative analysis. Unfortunately, the production
of finished vertebrate sequence currently demands considerable time and skill, and is
correspondingly expensive. In contrast, a well-designed, whole-genome shotgun se-
quencing and assembly project (Weber and Myers, 1997) can be largely automated at
every stage. As a result of these economics, most eukaryotic whole-genome sequenc-
ing projects now being undertaken have adopted a purely whole-genome shotgun
strategy (Chapter 5), producing ‘draft’ assemblies with no finishing step planned for
the foreseeable future.

Draft assemblies have been produced from multiple other vertebrates including
chicken (Gallus gallus (Hillier et al., 2004)), dog (Canis familiaris (Lindblad-Toh
et al., 2005)), zebrafish (Danio rerio), frog (Xenopus tropicalis), macaque (Macaca
mulatta), chimpanzee (Pan troglodytes; Muzny), tiger pufferfish (Takifugu rubripes
(Aparicio et al., 2002)), domestic cattle (Bos taurus), rabbit (Oryctolagus cuniculus),
armadillo (Dasypus novemcinctus), African elephant (Loxodonta africana), opos-
sum (Monodelphis domestica), medaka (Oryzias latipes) and freshwater pufferfish
(Tetraodon nigroviridis (Jaillon et al., 2004)). This list is expanding at an accelerating
rate, driven largely by the realization that sequence comparisons between multiple
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Figure 6.2 Visualization of genomic sequence alignments. The WNT2 locus was aligned between
human and orthologous loci from nine other vertebrates for which at least a draft whole-genome
shotgun sequence is available. Orthologous regions and extents were defined by the UCSC Nets.
In each case, coordinates and annotation are shown for the human sequence and nucleotide
identity from pairwise alignment. (A) Summary view from MultiPipMaker (Schwartz et al., 2000)
based on BlastZ alignments. The extent of the WNT2 transcript is shown above the alignment,
protein-coding exons shaded in grey. Regions of local alignment are shown in light grey or dark

(continued on following page)
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vertebrate genomes is crucial to understanding the structural and functional com-
ponents encoded in the human genome (Collins et al., 2003).

Whole-genome assemblies, rather than individual clone sequences, now provide
the primary resource of genomic sequence for most comparative analyses in the ver-
tebrate scope, and there is a similar situation for biologists focusing on prokaryotes,
viruses, fungi, plants, nematodes and insects, with at least draft status sequence avail-
able for over 1000 genomes. However, the quality and completeness of sequences
should be considered when undertaking an analysis. For a finished sequence, the
accuracy is expected to be high; with less than one nucleotide error per 100 000 nu-
cleotides and fewer than one insertion/deletion error per 200 000 nucleotides, the vast
majority of which are located in tandemly repetitive sequence (IHGSC, 2004), and
there should be no gaps in sequence coverage. The quality of draft sequences depends
to a large degree on the depth of coverage. With eightfold (8 x) coverage (every base
sequenced on average eight times), a whole genome shotgun sequencing project can
produce a high-quality sequence with good long-range ordering of sequences (Mul-
likin and Ning, 2003). As coverage is reduced, the rate of all types of error increase; in
particular, there is a rapid reduction in sequence contiguity (Wendl and Yang, 2004).

Even in high-quality and ‘“finished’ genomic sequences, there is still a chance of
misassembly, especially in regions rich in repetitive elements. However, a more com-
mon issue is that of segmental duplication (Section 6.2), where very recently dupli-
cated regions, which may encompass several genes, cannot be reliably discriminated
during normal assembly procedures, resulting in the collapse of multiple duplica-
tions into a single sequence (She et al., 2004). Efforts are currently being made to
identify and resolve these problematic regions (Sharp et al., 2005); however, it has
become apparent that the copy number of high-identity (>97 per cent) segmen-
tal duplications is often polymorphic in the human population, diverges rapidly
between species (Cheng et al., 2005) and may be associated with disease susceptibil-
ity (Eichler, 2006). A further consideration is that the small number of differences
between segmental duplicates will appear as polymorphisms in almost all assays,

Figure 6.2 (Continued) grey if a combined length and identity threshold is achieved (green or
red respectively when viewed in colour). The region highlighted is shown in detail in panels B
and C. (B) Detailed view of MultiPipMaker output, a percentage identity plot. Exons are denoted
by black boxes above the plot and projected as grey shaded regions across it. Other features
above the plot correspond to annotated repetitive elements (triangles and predicted CpG islands
(grey and white boxes). (C) VISTA plot (Mayor et al., 2000) summarizing mLagan (Brudno et al.,
2003b) global alignments of the sequences. Higher curves show greater conservation; regions
meeting a threshold level of conservation are shaded (darker shading for protein-coding exons).
Exons 2 and 3 are readily aligned in all cases, whereas the relatively short and poorly conserved
exon 1 is not always aligned (panel C, frog and pufferfish). An additional complication when
using draft sequences is the presence of assembly gaps; the apparent failure to detect exon 1
in chicken in this case coincides with a gap in the chicken assembly. (Figure generated by the
authors using software from Mayor et al. and Brudno et al. Permission not required)
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having potentially disruptive effects on genetic studies. Therefore, it is often prudent
to check for indications of segmental duplication such as the ‘WSSD’ and ‘Segmental
Dups’ tracks from the UCSC Genome Browser prior to investigating a new region.

Considerations of sequence quality and coverage are set to become more impor-
tant, as the emphasis of genome sequencing continues its shift from high-accuracy
sequencing to sampling more genomes but with lower individual coverage. As we
have discussed above (Section 6.3), an optimal strategy for the identification of con-
strained sites is to analyse sequence from many closely related genomes to achieve a
large total branch length. The cost of sequencing one genome to 8 x is almost the same
as eight genomes at 1 x; there is, then, a trade-off between high-quality sequence and
maximizing the number and diversity of sequenced genomes. Margulies et al. (2005)
have explored this trade-off with both real and simulated data, demonstrating that as
little as 2 x shotgun, although insufficient to produce a good-quality assembly, can
be useful in the identification of constrained sequences by directly aligning reads to
more completely sequenced genomes.

The National Human Genome Research Institute (NHGRI; http://www.genome.
gov/) has adopted this strategy of many genomes at low coverage and is currently
coordinating the low-coverage sequencing of 16 additional mammalian genomes,
selected to maximize total branch length for comparative analysis. The full list
of organisms, target sequence coverage and progress in sequencing can be moni-
tored online (http://www.genome.gov/10002154). Based on the equations of Eddy
(2005) and simulations of Margulies et al. (2005), these genome sequences should
provide resolution of selective constraint down to a segment length of eight nu-
cleotides, approaching the same scale as individual transcription factor-binding
sites. If successful, this strategy is likely to be applied to an even greater number
of mammalian and other genomes (a fruitfly-based project is also currently under
way; http://rana.lbl.gov/drosophila/multipleflies.html), the most exciting of which
from the perspective of human biology is the proposal to sequence multiple primate
genomes (http://www.genome.gov/12511814).

6.4.2 Defining and obtaining genomic sequences

When undertaking a comparative genomic study, it is necessary to delineate a locus
or loci of interest and to obtain corresponding homologous, often orthologous, se-
quences. Typically, an approximate locus will be defined by either arbitrary distances
from an identified feature of interest, the confidence intervals of a preceding genetic
study, or the extent of a sequenced genomic fragment. It can be useful to extend a
region of analysis slightly beyond the minimal extent so that the region is bounded
by features that are well conserved between species, such as protein-coding exons,
that serve as anchors for the analysis. A pair of well-conserved anchors provides
confidence that the full extent of a locus has been isolated from each species under
analysis.
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Preassembled genomes are the most accessible source of defined genomic seg-
ments, as the problems of stitching together overlapping sequence fragments
have already been tackled and the assemblies will have been subject to some
degree of validation and quality control. Complete assemblies can be obtained
from a number of disparate sites depending on the organism and assembly
method. However, the UCSC Genome Browser (http://genome.ucsc.edu/), Ensembl
(http://ensembl.org/) and the National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/) all provide portals to the most current, and
archived public assemblies. These sites also provide means of searching the assem-
blies, such as BLAST (Altschul et al., 1997), BLAT (Kent, 2002) and SSAHA (Ning
et al., 2001) as well as precomputed annotation for the genome assemblies that can
be readily incorporated into comparative genomic analyses.

There are several routes to identifying homologous loci in target genome se-
quences. An obvious approach is based on sequence similarity searches, but care must
be taken to distinguish orthologous from paralogous loci. Processed pseudogenes,
in particular, are common (Shemesh et al., 2006); these are the reverse-transcribed
copy of an mRNA that has integrated into the genome, but which does not code
for a functional protein (Section 6.2). As processed pseudogenes lack introns, they
can score better than an orthologous locus in a similarity search. Genome-wide,
reciprocal best matches (Tatusov et al., 2003) can be used to increase confidence that
two loci are orthologous. Ensembl also provides precomputed assignments of gene
orthology, currently based on reciprocal best matches for several genomes in the
‘geneview’ pages and from the EnsMart data repository. Conservation of the order
and orientation of genes in and neighbouring the locus can also provide additional
support of the orthology of two loci.

Probably the simplest currently available route to identifying orthologous loci is
with the Net alignments at UCSC. These genome-to-genome pairwise alignments
show genome-wide best matches and local rearrangements within them. They pro-
vide a direct means of jumping between an orthologous location in two genomes
and can be used directly to delineate an orthologous locus in a target genome. For
example, with the genome browser showing a complete locus of interest in a human
assembly, clicking on the human to dog Net will provide an option to open the dog
genome browser in a corresponding window, from which the canine sequence and
associated annotation can be obtained. An extension of this method is to use the ge-
nomic alignments to transfer annotation from one perhaps well-annotated genome
to another that may have been recently assembled. The LiftOver tool at the UCSC
Genome Browser (http://genome.ucsc.edu/cgi-bin/hgLiftOver) provides this facil-
ity for a limited set of genome pairs. This can provide a rapid way to get a baseline
annotation, which can then be filtered and refined. The Net alignments are generally
good quality, but problems do arise, in particular where segmental duplications and
assembly gaps are involved.

If there is uncertainty in the assignment of paralogy or orthology between mul-
tiple sequences, it can often be resolved through rigorous phylogenetic analysis, of
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either whole genomic alignments or more discrete regions, such as protein-coding
sequences, within them. This is often a problem with comparisons involving teleosts
such as pufferfish and zebrafish, which may have been subject to a past whole-genome
duplication (Hoegg et al., 2004) with the subsequent loss of many genes.

6.5 Technology

There are three general challenges that are common to most comparative genome
analysis: (i) the production of an alignment; (ii) visualization of the alignment;
and (iii) detection of departures from neutral sequence evolution in the alignment.
As alignments form the foundation of the comparative analysis, we spend some
time discussing the different options available and the consequences for interpreting
results. There are also several options available for the visualization of large-scale
genomic alignments. We have already discussed the principles and general approaches
taken for the detection of departures from neutrality (Section 6.4), in Section 6.5.3,
we present the tools that are currently available to apply these methods.

6.5.1 Alignments

The starting point for the majority of comparative genomic analyses is an alignment
between homologous sequences. Precomputed alignments are available between sev-
eral whole genomes as well as tools (Table 6.1) for producing such alignments. To
a large extent, the genomic alignment tools and precomputed alignments can be
treated as ‘black boxes’ It is not necessary to understand in fine detail the process of
producing the alignment to address a biological question with it. However, knowing
in general terms how an alignment was generated, and the parameters used, can
be crucial to its meaningful interpretation, especially when considering the appar-
ent absence of conservation. In this section, we present an overview of the genomic
alignment problem, highlighting the limitations of available methods as well as recent
advances in the field.

There are two general approaches to sequence alignment: local and global. When
performing a local alignment, one is asking to be shown every similarity, scoring
above a predefined threshold, between two sequences. The aligned subsequences
(alignment segments) need not be in the same order or orientation in the parent
sequences, and many-to-many matches are permitted. In contrast, in a global align-
ment, the entire length of one sequence is aligned with the entire length of the other
through the insertion of gaps in both sequences. There is a maximum one-to-one
correspondence between nucleotides and their order is constrained such that dupli-
cations, inversions and other rearrangements cannot be detected. Rather than com-
peting and redundant, these approaches should be considered complementary, as
they provide different insights into the relationship between two or more sequences.



Table 6.1 Summary of widely used and recommended genomic alignment tools. *G
indicates global and L local alignment methods. **2 denotes pairwise and M multiple
alignment tools. Note that several visualization tools, such as MultiPipMaker, emulate
multiple alignment by stacking the percentage identity plots of multiple pairwise
alignments without actually producing a character-based multiple alignment
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(Bray et al.,, 2003)

(Schwartz et al., 2000, 2003)

(Kent, 2002)

(Brudno et al., 2003a)

(Morgenstern, 2004)

(Batzoglou et al., 2000)
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(Brudno et al., 2003b)

(Blanchette et al., 2004)

(Brudno et al., 2003c)
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http://genome.lbl.gov/vista/
http://genome.lbl.gov/vista/

The most widely used local genomic alignment
tool http://pipmaker.bx.psu.edu/pipmaker/

Efficient use of memory and rapid execution
make this a good choice for defining
approximate regions to align with more
sensitive methods

By itself lacks the heuristic refinements of
BlastZ but is used by DIALIGN and Lagan to
identify initial alignment matches

Only practical for alignment of large (>10 000
nucleotides) sequences when used in
conjunction with CHAOS .(Brudno et al.,
2004) http://dialign.gobics.de/anchor/

One of the first available tools, now superseded
by AVID

http://genome.lbl.gov/vista/
http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/
http://genome.lbl.gov/vista/

http://genome.lbl.gov/vista/
http://genome.lbl.gov/vista/

Based on BlastZ local alignments but with a
tiling path of aligning segments chosen
(chaining, see main text) and integrated into
multiple sequence alignments. This is the
method used to produce high-resolution
alignments for the UCSC Genome Browser
(http://genome.ucsc.edu/)

Also known as Shuffle-Lagan. Produces glocal
alignments which have relaxed some
constraints of global alignment so
inversions, translocations and duplications
can be detected http://genome.lbl.gov/vista/

A prototype stand-alone tool to produce
threaded blockset multiple sequence
alignment, similar to the output of MultiZ

Readily handles large gaps and can predict the
protein-coding/non-coding status of a
sequence region based in part on the
periodicity of divergent sequences
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Local genomic alignments

All of the local alignment methods commonly applied to genomic sequences
(Table 6.1) employ an index-based search strategy based on the same principle as
that employed in the original BLAST algorithm (Altschul ez al., 1997). Briefly, this
approach produces an index of all k-length words (k-mers) in one of the input se-
quences and searches the other sequence for identical words. When a match is found,
it is extended in both directions to define a maximally scoring segment of alignment.
If that score is above the predefined threshold, the alignment is reported.

Three methods have been applied to genomic local alignment tools that elaborate
this basic procedure to increase the sensitivity and specificity:

1. Requiring two matching words to be separated by a maximum distance from each
other. This is a common approach used by BLASTN and most of the local align-
ment methods in Table 6.1. The principal exception is CHAOS, which identifies
multiple matching words but does not perform alignment extension. Instead, the
matching words are clustered (chained) if they lie in the same orientation and
within a threshold distance of each other. It is this chain of words that is scored
by CHAOS rather than BLAST-like extended initial matches.

2. Using degenerate k-mers, which can tolerate a mismatch in any position of the
k-mer, is a strategy that adds considerably to the computational load in the initial
search step but provides more flexibility in defining word matches. This method
is used by CHAOS in conjunction with the novel chain-of-words approach.

3. Matching k-mers of non-consecutive positions, an idea introduced to the field by
Ma et al. (2002). For example, a k = 8 word could be represented as 11111111,
each number one denoting the position of an identity required for a match; a non-
consecutive k = 8 could be represented as 11011011011. This is distinct from the
degenerate k-mer approach, as a degenerate k-mer can tolerate a mismatch in
any position, whereas the position of possible mismatches is constrained in the
non-consecutive k-mer case.

Such patterns of matches can relate more directly to the underlying biology. The
previous example could be useful to identify matches between coding sequence
given the periodicity of codon conservation, due to the degeneracy of the genetic
code. The non-consecutive k-mer also has a slight statistical advantage over the
consecutive k-mer, as the failure to match overlapping non-consecutive k-mers is
less strongly correlated between k-mers than the failure to match those which are
overlapping and consecutive (Batzoglou, 2005).

Beyond the limits of sensitivity defined by the initial index search, there are many
parameters that can be modified in the available tools to optimize them for a specific
purpose or phylogenetic scope. For such insight, we direct the reader to the primary
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literature and associated web servers (Table 6.1). However, the program BlastZ is
one of the most versatile and widely used in this class of program for comparative
genomic studies and is the basis for a number of publicly available resources; as such,
we consider its use in more detail here.

Developed principally by Scott Schwartz and Webb Miller (Schwartz et al., 2000,
2003), BlastZ is based on the Gapped-BLAST algorithm (Altschul et al, 1997). An
alignment is seeded by a short perfect or defined imperfect match, extended by
dynamic programming, initially without gaps and if score thresholds are achieved,
and then with gaps. Sequence between anchoring alignments is again searched and
alignments extended, but with a lower stringency than in the initial search, the strin-
gency being determined by the separation distance between anchors. BlastZ employs
heuristics to take sequence complexity into account, requiring low-complexity se-
quence to align better than high-complexity sequence, and dynamically to mask any
regions with an unexpectedly large number of matches. As BlastZ is a local alignment
tool, matches may overlap; they can be distributed between both strands and are un-
constrained in their linear order. However, BlastZ has the option of constraining
matches to be co-linear between input sequences (chaining) or to select only a best
match to each region of a reference sequence (single coverage). Both of these op-
tions involve discarding data but can be useful in interpreting results and subsequent
analysis.

Global genomic alignments

The prototypical global alignment method is that of Needleman and Wunsch (1970).
However, this procedure does not scale well to the large alignments commonly re-
quired in comparative genomics. The approach employed by most of the genomic
global alignment tools is to define a series of anchors, high-confidence matches be-
tween a pair of sequences that are constrained to be in the same order and orientation
in both sequences. This is effectively the chaining method optionally employed by
BlastZ, as discussed above. The portion of each sequence between adjacent anchors
is then aligned with lower stringency, defining a new set of anchors, and the process
is reiterated until all sequence is aligned. The strategy effectively breaks the large
alignment down into a series of progressively smaller alignments, with two impor-
tant consequences. First, the total search space is quickly reduced and continues to
be refined with each iteration, allowing the alignments to be produced quickly and
using little memory relative to the length of input sequences. Second, the chain-of-
anchors approach is tolerant of large gaps, which are common in genomic sequence
alignments, but poorly dealt with by gap penalties employed by the purely dynamic
programming methods such as that of Needleman and Wunsch.

Table 6.1 summarizes the global sequence alignment tools that are often applied
to genomic sequences. Of these, AVID (Bray ef al., 2003) and Lagan (Brudno et al.,
2003b) are the most widely used. AVID identifies maximal matches (identical runs
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of nucleotides) and from these selects a chain of non-overlapping alignment anchors
using dynamic programming, iterating the process as described above until all bases
are aligned, or there are no significant matches in the remaining subsequences. The
full Needleman—Wunsch algorithm is applied if the remaining sequences are short
(<4 kb); otherwise, a fully gapped alignment of these regions is returned.

A particularly useful feature of AVID is its ability to perform template-directed
fragment assembly. Provided with a contiguous and a fragmented sequence, AVID
will use high-confidence local matches to order and orient the fragmented sequence
relative to the contiguous one, producing a ‘merged draft, which is then used for
pairwise alignment. Such a utility can be invaluable in the analysis of early-draft
genomic sequences.

Lagan (Brudno et al., 2003b) proceeds in a very similar iterative manner to that
described for AVID, making use of the application CHAOS to produce local align-
ments from which the anchors are defined. In a further development, Brudno et al.
(2003¢) have generalized this approach by relaxing the criteria for co-linearity in the
order of alignment anchors, instead requiring them to be sequentially ordered along
only one of the input sequences, the designated reference sequence. This relaxation
allows the detection of genomic rearrangements such as inversions, translocations
and duplications relative to the reference sequence. This method is implemented
as Shuffle-Lagan (Table 6.1). In recognition of similarities to both local and global
methods, the authors have termed these ‘glocal’ alignments. The approach is inno-
vative and has potential to be developed further, but there are two key drawbacks to
the current implementation. First, because the two input sequences are treated dif-
ferently, the resulting alignment depends on the order sequences are presented. The
second limitation is our current lack of understanding in the frequency of genomic
rearrangements to parameterize appropriately such alignments.

Multiple sequence alignments

The local and global sequence alignment methods we have discussed so far are able
to produce only pairwise alignments. We have seen in Section 6.3, however, that the
combined analysis of multiple sequences provides much greater insight, statistical
power and resolution to comparative genomic studies. Unfortunately, the difficulties
of producing pairwise genomic sequence alignments are exacerbated in the challenge
of producing multiple alignments.

To perform a progressive multiple alignment in this manner, the phylogenetic rela-
tionship between sequences being aligned needs to be established. This either can be
calculated from initial all-versus-all pairwise alignments of the sequences, or, for some
programs, can be provided in the form of a previously established phylogenetic tree.
If the multiple sequence alignment is between orthologous sequences, their relation-
ship is often known in advance; for example, (((man,chimpanzee),(mouse,rat))dog).
Provision of the tree in advance removes uncertainty in the order a program aligns
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the sequences, providing consistency between the alignment of multiple loci and
expediting the alignment process, as well as ensuring that the correct phylogeny is
used. After production of the initial multiple sequence alignment, the location of
gaps can be optimized, making use of the greater information content of multiple
sequences. There are multiple alignment versions of AVID and Lagan, denoted by
the ‘M’ prefix to the name (MAVID and mLagan), both of which use the general
method outlined above to produce the global multiple sequence alignments.

Although MAVID and mLagan produce true multiple sequence alignments, many
visualization tools (Section 6.5.2) display conservation profiles relative to a chosen
reference sequence. A similar approach is frequently used to integrate conservation
measures between multiple pairwise alignments (Schwartz et al., 2000) and to define
multiply conserved sequences (Section 6.5). The reference sequence approach is an
obvious choice if the objective is the annotation or investigation of a particular
sequence. However, increasingly, comparative genomic studies intend to measure
how a locus has evolved in multiple lineages and how selective forces have changed
during that evolution, rather than just detecting regions of the reference sequence
that are selectively constrained. For these analyses, the reference sequence approach
has two major drawbacks. First, any regions conserved between a subset of aligned
sequences, but not the reference, will not be detected. This problem can be overcome
by generating several multiple sequence alignments, one with each of the sequences
under study as the reference. This solution is time-consuming, raises the additional
problem of integrating results between alignments, and exposes the second major
drawback to the reference sequence approach; that s, the potential for inconsistencies
when using alternate sequences as the reference.

A solution to the problems presented by reference sequence-based alignment and
analysis has been proposed in the form of a ‘threaded blockset’ (Blanchette et al.,
2004). Under this proposition, a multiple sequence alignment is represented as a
series of alignment blocks, termed ‘blockset. Within an individual block, each row
corresponds exactly to an input sequence (orits reverse complement) if gap characters
are ignored. That is, no sequence within a block has been rearranged. Additionally,
an individual block need not involve every aligned sequence. From this blockset,
multiple sequence alignments can be produced with any one of the aligned sequences
as the reference sequence, simply by ordering and orienting the blocks according to
the selected reference sequence, a process referred to as threading the blockset. This
approach ensures consistency of alignment when alternate reference sequences are
used and no portions of the alignment are discarded. The threaded blockset aligner
(TBA) (Blanchette ef al., 2004) has been developed as a prototype tool to generate
blocksets.

Many eukaryotic genomes are rich in repetitive sequences (Section 6.2); these
can confuse alignment programs if not treated appropriately. The simplest treat-
ment of interspersed repeats and low complexity regions is to mask the se-
quence prior to alignment, readily achieved with tools such as RepeatMasker
(http://www.repeatmasker.org/) or available precomputed from the UCSC Genome
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Browser for a wide range of whole genome assemblies. However, interspersed re-
peats can be interesting in their own right, and are a useful measure of mutation rate
(Section 6.5). A more satisfactory treatment of repeats is to ignore them in the initial
stages of alignment and then align through them if flanking non-repeat sequence
has been aligned. This is often termed ‘soft-masking), and is implemented in several
alignment tools including LAGAN, Blat and AVID.

Assessing the quality of genomic alignment tools

Which alignment tool is the most accurate? This is an obvious question to ask when
deciding which tool is the most appropriate to use. Unfortunately, this appears to
be impossible to answer definitively. For protein-coding sequences, solved three-
dimensional protein structures provide a reference standard against which align-
ment methods can be scored (Brenner et al., 1998). No such equivalent exists for
non-coding DNA. A possible solution is the in silico simulation of sequence diver-
gence (Stoye et al., 1998), which can provide a population of sequences related to a
common ancestor by a precisely known sequence of mutational events, so that the
true alignment is known.

There is a chance that an evaluation of alignment success based on simulated
data is measuring the similarity of evolutionary models, rather than the sensitivity
and specificity of the alignment methods themselves. Despite this limitation, Pollard
et al. (2004) have performed such an analysis and produced some useful rules of
thumb for genomic sequence alignment. All methods rapidly lost sensitivity with
increasing divergence, with more than 50 per cent of nucleotides not accurately
aligned by all methods with D = 1.0 (divergence, substitutions per site) in the most
realistic simulations. Local aligners were successful at identifying constrained sites,
but performed poorly on neutral sequence with D > 1.0. As would be expected
from their mode of action, global aligners had the highest overall sensitivity to align
orthologous sites accurately in both neutral and selectively constrained sequence.
Lagan (Brudno et al., 2003b) performed particularly well under almost all of the
simulation scenarios. The simulations in this study did not include inversions and
duplications, which would have been detected only by the local alignment methods
considered.

Using whole-genome alignments

As we have seen, there is a good diversity of tools available to produce pairwise
and multiple genomic sequence alignments. Although these tools are optimized for
genomic sequence alignment, the alignment of whole eukaryotic genomes to each
other is still a daunting and specialist task requiring considerable computational
resources. Fortunately, several research groups that specialize in such large-scale
genomic alignments have made their alignments publicly available (Table 6.2). The
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Table 6.2 Precomputed whole eukaryotic genome alignment resources

Resource URL Reference

MultiZ at UCSC http://genome.ucsc.edu/ (Blanchette et al., 2004)

Berkeley Genome Pipeline http://pipeline.lbl.gov/  (Couronne et al., 2003)

GALA http://gala.cse.psu.edu/  (Giardine et al, 2003; Elnitski et al., 2005)

utility of these alignments is not limited to whole-genome analyses, and they represent
an excellent resource for investigations focused on defined loci.

These publicly available alignments have several significant advantages over pro-
prietary alignments produced ad hoc to address specific questions. First, because they
are a public resource, they are used by many members of the research community
to address a multitude of questions; therefore, any systematic problems in their con-
struction are likely to be highlighted, whereas in-house alignments are unlikely to be
as rigorously vetted. Secondly, results based on the same alignments can be directly
compared between research groups, as in the integration of findings in large collabo-
rative projects (Waterston et al., 2002; Gibbs et al., 2004). Finally, it is faster and sim-
pler than producing one’s own alignments, especially in the cases where existing an-
notation has already been mapped to the alignments (http://pipeline.lbl.gov/) or can
bereadily mapped by easily accessible tools (http://pipmaker.bx.psu.edu/piphelper/).

However, there are, of course, limitations to the utility of precomputed align-
ments. The user is restricted by the predefined phylogenetic scope of the alignments;
for example, at the time of writing, the human-based MultiZ alignments available
from UCSC included alignments with chimpanzee, mouse, rat, dog, chicken, puffer-
fish and zebrafish; but assemblies for the genomes of opossum, rhesus macaque,
cow and frog are also publicly available and could add considerably to the infor-
mation content of the multiple sequence alignment. Moreover, for some analyses,
a very specific set of alignment parameters or constraints are required (Keightley
et al., 2005), and these are unlikely to be met by off-the-shelf whole-genome
alignments.

6.5.2 Visualizing genomic alignments

The visual representation of alignment-based data is an important aspect of com-
parative genomics, especially when the focus of the analysis is a locus of specific
interest. One of the most intuitive and logical representations of a pairwise sequence
alignment is a dotplot. Such a representation can summarize all regions of local sim-
ilarity between two sequences, highlighting inversions, translocations, duplications
and deletions. Plotting a sequence against itself is often an excellent first step in the
comparative characterization of a locus, as it can highlight regions that are tandem
repetitive and of low complexity, and that clearly show segmental duplications, all of
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which are potentially confusing to interpret when visualized with the other methods
discussed below. For sequences of up to a few hundred kilobases, the Dotter soft-
ware (Sonnhammer and Durbin, 1995) is able to produce a complete dotplot and
incorporate arbitrary annotation. For sequences above this size, the computation of
a complete dotplot is impractical, but tools such as PipMaker (Schwartz et al., 2003)
can produce dotplot style summaries of local alignments (Figure 6.2), which can be
interpreted in essentially the same way.

The downside to dotplots is that they take up considerable space and are im-
practical when it comes to summarizing the similarity between multiple sequences.
For these reasons, percentage identity plots (PIPs) were introduced (Hardison et al.,
2003) in which the x-axis represents the coordinates of a reference sequence and the
y-axis shows percentage of identity (Figure 6.2). A horizontal bar within the plot then
identifies a gap-free segment of local alignment, the horizontal position and extent
of the bar defining the aligning section of the reference sequence. The position of
the bar in the y-axis shows the percentage nucleotide identity for the ungapped local
alignment. This is a versatile way of displaying pairwise sequence similarity, as it can
be applied to both local and global alignments, and, through stacking of multiple
such plots, can be adapted to show the conservation of a reference sequence aligned
with any number of sequences.

Another intuitive and commonly used representation of nucleotide identity in
sequence alignments is to plot a histogram of conservation (Figure 6.2). As with
PIPs, identity is plotted against the coordinates of a chosen reference sequence. Rather
than calculating the identity from an ungapped segment of alignment, however, it is
calculated from a predefined range of nucleotides in the reference sequence. These
can be discrete consecutive bins of, say, 10 alignment columns, or more commonly
calculated as a sliding window. VISTA (Mayor et al., 2000), for example, uses a
window of 100 columns with sliding increments of 1, by default.

6.5.3 Detecting selection

Any significant departure from the neutral rate of sequence evolution can indicate the
action of selection. If a collection of sequences that are thought a priori to be evolving
in a neutral or nearly neutral manner can be defined, they can serve as a comparator
for a set of test sequences. In a protein-coding sequence, this is often achieved through
measuring the substitution rate at codon positions where a substitution would not
result in an amino-acid change (synonymous sites) and comparing it to the rate at
non-synonymous sites, where a substitution would change the amino acid (Kimura,
1977). In this case, the assumption is that selection is acting principally on the
encoded amino-acid sequence. The ratio of non-synonymous (Ka) and synonymous
(Ks) rates then provides a quantitative measure of net selection (these measures are
also referred to as dn and ds respectively). Ka/Ks > 1 indicates positive selection,
Ka/Ks < 1 is indicative of purifying selection, and a Ka/Ks not significantly different
from 1 is consistent with neutral evolution. Outside the analysis of protein-coding
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sequence, Ks may not be the most appropriate category of sequence to estimate
the neutral rate. Other categories of sequence used for this purpose include ancient
repeats, anonymous sequence and pseudogenes. We consider the advantages and
drawbacks of each of these below.

Fourfold degenerate sites

In the standard genetic code, there are eight instances where substituting the
third codon position for any other nucleotide will not change the encoded amino
acid (CTn=Leu; GTn=Val; TCn=Ser; CCn=Pro; ACn=Thr; GCn=Ala; CGn=Arg;
GGn=QGly); these are synonymous or fourfold degenerate (4D) sites. 4D sites are
readily identified from annotated or well-predicted coding sequences, and because
they are embedded in generally well-conserved coding sequences, they can often be
aligned between even highly divergent sequences with a high degree of confidence.
For these reasons, 4D sites represent an excellent type of sequence from which to
estimate the neutral rate. In general, such sites are readily identified as less conserved
than other coding positions and non-4D third codon positions (Nei and Kumar,
2000). However, that is not to say that they are devoid of function or functional
constraint — such sites may be involved in the regulation of splicing, translational
efficiency, mRNA localization or transcript stability. 4D sites are generally consid-
ered to be good for the calibration of nucleotide substitution rates, and, as discussed
above, they provide an excellent control sequence for the investigation of selection
in a protein-coding sequence. However, they are of no use in measuring the neutral
rate of insertion, deletion or rearrangements.

Ancient repeats

Interspersed repetitive elements (IREs) are widespread through most vertebrate
genomes, and are thought to be free from selective constraint (Section 6.2). Un-
like 4D sites, IREs are free to accumulate insertion, deletion and rearrangement as
well as substitution changes (Petrov and Hartl, 1998). With the tool RepeatMasker
(http://repeatmasker.org/), combined with an appropriate repeat database (Repbase;
http://girinst.org/), IREs can be grouped into families and subfamilies based on se-
quence similarity. Each copy of an IRE subfamily is thought to have been almost
identical at the time of insertion, as they were all produced from one, or a very
small number of ‘parent’ elements in a brief period of activity before mutation
robbed the parent element of its ability to transpose (Lander et al., 2001). Therefore,
an IRE that inserted into a genomic location in the common ancestor of a set of
sequences being compared is expected to accumulate mutational changes indepen-
dently in each of the diverging lineages, and those changes are likely to be invisible to
selection.

This assumption of identity between IRE subfamily members at the time of in-
sertion provides them with additional advantages over other categories of candidate
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neutral sequence. For example, if we use the IRE subfamily consensus sequence as an
out-group, mutational changes can be assigned both a direction and a lineage from
just pairwise comparisons, rather than requiring a minimum three aligned sequences.

For mammalian and other genomes rich in interspersed repeats, IREs appear to be
the ideal means to measure the neutral rate of mutation. However, IREs are typically
defined on the basis of their sequence similarity to previously defined repeats and to
other sequences in the genome. This means that highly diverged members of a repeat
family may not be detected, resulting in underestimation of the mutation rate. The
distribution of IREs is non-random across a genome (Hardison ef al., 2003), some
favouring A/T-rich insertion sites, and others showing preferential retention based
on nucleotide composition. The non-random distribution may result a systematic
bias in mutation rate estimation. The abundance of these elements in the genome
may also lead to non-orthologous recombination between elements (Kazazian, 2004),
resulting in a high frequency of gene conversion within the elements (Roy et al., 2000).

Anonymous sequence

Another possibility is anonymous sequence. In genomes dominated by non-
functional sequence, such as those of mammals (Section 6.2), the background mu-
tation rate can be approximated by simply taking the average rate across the whole
alignment. This estimate can be improved by specifically excluding annotated func-
tional sites such as protein-coding exons and core promoters. The remaining unan-
notated (anonymous) regions of alignment will be enriched for selectively neutral
sites. An interesting variation is to use sequences that align between closely related
species but do not align with a more distant out-group, because the sequence has
been inserted in one lineage or lost from the other (Cooper et al., 2004). Again, it can
be argued that the sequence is less likely to contain important functional elements
and is thus enriched for selectively neutral sites.

Pseudogenes

Pseudogenes (Section 6.2) are particularly interesting for estimation of the neutral
rate because their starting point is a functional gene, with all the associated sequence
biases, periodicity and, in the case of non-processed pseudogenes, introns, splice
junctions and regulatory sites. These are often the features we are most interested in
identifying or investigating in comparative studies. If a gene pseudogenized before
the common ancestor of compared sequences, we can see the effect of mutation and
genetic drift free from the action of selection superimposed upon it. This is the ideal
scenario. Unfortunately, non-processed pseudogenes are too rare — only 37 having
been found in a systematic screen of the human genome (Lander et al., 2001) — to
be of general use in calculating background mutation rates. Processed pseudogenes
have been useful for the investigation of protein-coding sequences (Ophir and Graur,
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1997), but again their uneven distribution limits their use in estimating local muta-
tion rates, and some sequences identified as pseudogenes may still have functional
roles (Podlaha and Zhang, 2004).

Distribution of control and test sequences

For a comparative study that aims to identify highly constrained sequences that are
evolving many times slower than the neutral rate, it might be adequate to estimate
the neutral rate on a genome-wide basis. Such studies include the identification of
protein-coding sequence with distant pairs of sequences, human versus pufferfish,
for example (Davidson et al., 2000, Taylor et al, 2003), and the ultra-conserved
elements (Bejerano et al., 2004) discussed later (Section 6.6.2). For more sensitive
studies, it is necessary to calculate the neutral rate in localized regions, as the rate
of mutation has been found to vary spatially across genomes (Wolfe et al., 1989;
Hardison et al., 2003; Taylor et al., 2006) (Section 6.2).

We have seen that for the Ka/Ks measure in protein-coding sequence, both the test
and neutral control sequences are interleaved. This is an ideal scenario, negating the
confounding influence of regional variation in mutation rates. Regional estimates of
the neutral rate can be calculated in a sliding window manner or by calculating it for
an arbitrarily defined region of interest. The principal problem with this approach is
that sites subject to selection cannot be assumed to be randomly distributed across
the genome. For instance, anonymous sequence around the PAX6 gene (Miles et al.,
1998) is highly enriched in functionally important conserved sites (Section 6.6.2).
An estimate of the neutral rate based on anonymous sequence around this gene
would give an artificially low estimate of the neutral mutation rate in the region. The
larger the window used to estimate the regional neutral rate, the less likely it is to
be dominated by non-neutral sites, but a larger window reduces the resolution for
detecting regional variation in mutation rate. The optimum window size for neutral
rate estimation will be a balance of these two opposing needs. Gaffney et al. (Gaffney
and Keightley, 2005) found that within the rodent lineage, a window of 10 kb is likely
to show a consistent neutral rate across its length, and even windows up to 1 Mb may
havelittle variation in neutral rate across them. However, more recent findings suggest
that these broad-interval analyses may mask considerable fine-grained variation in
the mutation rate, particularly in the primate lineage (Taylor et al, 2006).

Several studies have defined the extent of constrained regions on the basis of
ungapped segments of alignment (Duret et al, 1993; Dermitzakis et al., 2002), a
strategy that lends itself well to analyses based on local rather than global alignments.
Often, these studies use precalibrated thresholds for significant constraint rather
than calculating relative rates directly; for example, 70 per cent identity over 100
ungapped nucleotides is a commonly used parameter for man to rodent alignments
(Dermitzakis et al., 2002).

Sliding windows have been widely used to arbitrarily define the extent of sequences
that are then evaluated for constraint (Mayor et al., 2000; Waterston et al., 2002). The
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approach can accommodate alignment gaps, generally treating them as nucleotide
mismatches (Mayor et al., 2000), but their sensitivity is crucially dependent on the
size of the evaluation window and on how much the window is moved along the
alignment for each evaluation. Analyses based on sliding windows have also been ap-
plied to phylogenetic shadowing (Boffelli et al., 2003). In this case, rather than scoring
conservation or substitution rate directly, the substitution rates for each alignment
column were compared to the rates of sequences known to be evolving neutrally (e.g.,
ancient repeats) or subject to selection (e.g., exons), the final score being a likelihood
ratio of neutral versus constrained evolution for each alignment column. A web server
for phylogenetic shadowing analysis is available (http://bonaire.lbl.gov/shadower/).

An intuitive way of integrating measures of constraint across multiple aligned
sequences is to define multiply conserved sequences (MCS). The common core of
sequence that aligns in all (or most) sequences from a defined scope can then define
the boundaries of the MCS (Margulies et al., 2003; Thomas et al., 2003). For instance,
itis easy to see that exons 2 and 3 of WNT2 can be considered MCS within vertebrates
(Figure 6.2). The MCS definition is versatile, accommodating local or global align-
ments, and can tolerate missing sequence from incompletely sequenced genomes.
This MCS paradigm can incorporate thresholds of alignment quality (identity and
gap frequency), but, more commonly, a simple default of aligned or not-aligned is
used, in which case the sensitivity of the alignment method becomes an arbitrary
threshold score.

Two highly versatile tools, RankVISTA (Martin et al., 2004) and phastCons (Siepel
et al., 2005), have recently been developed that quantify constraint and operate free
of window size and identity thresholds. These tools are also noteworthy because
they quantitatively measure constraint rather than the crude binary discrimination
into constrained or unconstrained that is common to many of the methods dis-
cussed above. RankVISTA integrates pairwise relative rate scores across a multiple
alignment, using a phylogenetic weighting scheme (conservation between distantly
related species scores better than conservation between closely related species). The
neutral rate estimates are derived from anonymous regions in the submitted align-
ment, and the final score is an easily interpretable probability of observing such
conservation in a 10-kb fragment of neutrally evolving sequence. The optimal extent
of constrained sequences is determined with a dynamic programming approach. This
tool is available from the standard VISTA web server (http://genome.lbl.gov/vista/).

The tool phastCons (Siepel et al., 2005) is one of the first practical implementations
of a phylogenetic hidden Markov model (phylo-HMM (Felsenstein and Churchill,
1996)) to score conservation across genomic alignments, in effect scoring how well
the observed pattern of substitution matches its internal model of a constrained
site. The approach is also noteworthy because it takes into account the tendency
for conservation levels to be similar at adjacent sites, and it is an extensible model
that could be adapted to incorporate additional parameters. Regularly updated, pre-
computed phastCons results are available through the UCSC genome browser for
multispecies whole-genome alignments. When interpreting phastCons results, it is
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worth remembering that they are based on genome-wide alignments. It is often the
case that a discrete region is identified as highly conserved, but upon further in-
vestigation the aligning regions prove to be from non-syntenic loci. Many of these
instances can be attributed to alignments involving process-pseudogenes. Consider-
ation of the UCSC browser Netalignment track while interpreting phastCons results
is a useful way of identifying these anomalous signals.

All of the methods described above focus on nucleotide substitution rates. Inser-
tions and deletions (indels) have the potential to help detect constrained regions;
however, estimation of their rate is more sensitive to alignment parameters than is
the case of substitution rate calculations (Keightley and Johnson, 2004), and good
stochastic models of insertion and deletion in non-coding DNA are not currently
available. Alignment gaps are typically treated as either missing data (phastCons) or
nucleotide substitutions (RankVISTA) when assessing selective constraint. Neither
of these is a particularly satisfactory solution, and phastCons leads to artificially high
scores over regions of gapped alignment. Recent work by Lunter et al. (2006) has
shown that indel rates themselves can be a useful measure of selective constraint.
Importantly, the analysis appears to be robust to a range of alignment parameters,
suggesting that an accurate indel model may not be absolutely necessary to extract
useful measures of selection. Indels to detect constrained regions have been used
implicitly before in comparative genomics; for example, in a pip-plot (Figure 6.2,
panel 2), exons clearly stand out as much for the length of the horizontal lines (in-
dicating the absence of indels) as they do for the height of the lines on the y-axis
(indicating nucleotide identity). However, the real advantage of indel-based mea-
sures of selection is that they can be used in conjunction with substitution rate
measures, in the same sequence, allowing discordant selective pressures to be simul-
taneously measured — for example, positive selection driving amino-acid sequence
diversity but purifying selection acting to constrain sequence length, or cases where
the nucleotide sequence between two protein-binding sites is unconstrained but the
spacing between elements is crucial.

6.5.4 Comparative genomics meets population genetics

We have seen that the comparison of sequences between species provides a powerful
method to identify functional elements within genomic sequence. If within-species
genetic variation (polymorphism) data are also available for any of the aligned se-
quences, an additional set of analyses becomes tractable, and this can provide in-
dependent tests of conclusions drawn from interspecies comparisons and open the
door to new biological questions. The prototypical, combined intra- and interspecies
analysis is the McDonald—Kreitman test (McDonald and Kreitman, 1991). The basic
premise of this test is that mildly deleterious mutations will be present in a popula-
tion as polymorphisms. However, as they are deleterious, they are unlikely to drift to
fixation (frequency = 1.0). The vast majority of sequence differences between even
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closely related species are likely to be fixed differences; even the most famous example
of overdominance maintaining polymorphism between man and chimpanzee has re-
cently been shown to be convergent (Wooding et al., 2006). Under neutral evolution,
the Ka/Ks ratio derived from interspecies comparison should equal an analogous
non-synonymous:synonymous (IT,/IT;) ratio derived from polymorphism data, an
excess of interspecies amino-acid substitutions in this test indicating positive selec-
tion. In this test, it is not necessary to have complete ascertainment of variation, and
control regions and the population frequency of polymorphisms used are unimpor-
tant. However, it is crucial that the ascertainment of polymorphism data be unbiased
between test and control sequences. The McDonald—Kreitman test can be adapted to
any pairwise comparison between test and nearly neutral control sequences, just like
the Ka/Ks ratio test. If polymorphism data are available, especially if there are also al-
lele frequency data, a number of measures can be used to reinforce conclusions drawn
initially from interspecies comparative genomic studies and reveal the direction of
recent selection (see .Hahn, in press, for an excellent review of this subject).

6.6 Applications

There have been a huge number of published studies that are either centred on
comparative genomic analysis or utilize comparative genomics to address specific
questions within a wider study. In the next few sections, we highlight a small number
of examples that have given new insight into the general biology of vertebrate genomes
and provide good examples of the application of methods described in this chapter.

6.6.1 How much of the human genome is constrained?

In Section 6.2, we provided a brief overview of the human genomic landscape.
One of the most prominent features of that landscape was the apparent dearth of
identified functional sequences, such as those encoding proteins, and an abundance
of repeat sequences that presumably do not usefully contribute to the biology of the
organism. With publication of both the draft human (Lander et al., 2001) and mouse
(Waterston et al., 2002) genomes, it became possible to apply comparative genomic
methodologies to the entire genome and test these presumptions. In particular,
it became possible to estimate the total proportion of the human genome that is
subject to selective constraint, and so estimate the proportion of the genome that has
conserved function but is not protein coding. A conservation score was calculated for
non-overlapping 50 nucleotide windows of human:mouse whole-genome pairwise
alignments. Two sets of scores were derived, one for the complete alignment and
a second only from aligned ancient repeats. As ancient repeats are thought to be
unconstrained by selection (Section 6.2), the distribution of conservation scores
should reflect the pattern expected under neutral evolution. The distribution of
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scores from the whole-genome alignments substantially overlaps those derived just
from ancient repeats, although a significant shoulder specifically toward higher scores
is evident (Waterston et al., 2002). Subtracting the ancient repeat distribution from
that of the whole genome suggests that approximately 5 per cent of 50 nucleotide
windows are more highly constrained than expected under neutral evolution. Similar
analyses based on human to rat comparisons have supported this conclusion (Gibbs
et al., 2004). These studies are not without their limitations. For example, isolated
regions of constraint that are substantially shorter than the 50-nucleotide window
size used will have gone undetected, suggesting that the estimate of 5 per cent may be
a lower bound for the true value. Generally, similar fractions of 2.6-3.5 per cent of
the human genome were found to show evidence of selective constraint by the indel-
based method (Lunter et al., 2006) described in the previous section. These studies
have led to the important conclusion that much of the functionally constrained
sequence in the human genome does not code for proteins.

If coding sequences are not the singularly dominant functional component of the
genome, the question arises, what are the functions of non-coding sequence? Several
types of non-coding elements are known, such as cis-regulators of transcription and
splicing and RNA structures that influence transcript localization and stability, as
well as transcripts whose functional product is RNA rather than protein (see Mattick
(2004) for review). It is also likely that there are classes of functional elements that we
have yet to discover. This potential naivety is well illustrated by the relatively recent
realization that a major class of non-coding functional elements (microRNAs) has
been almost entirety overlooked (Ambros, 2004; see Chapter 14).

It is one of the great strengths of comparative genomics that no prior assumption
of the function is required to identify a sequence as functionally important. With the
increasing depth of available genomes (Section 6.5) and the methods described above,
we are rapidly approaching the stage where we can confidently identify short regions
and possibly even single nucleotides as constrained. A remaining and significant
challenge is to characterize the function of those sites. Again comparative genomics
can help. We have already seen that there is a characteristic profile of conservation
for protein-coding sequence (Section 6.5.1), and similar profiles may exist for other
categories of functionally important sequence. Dermitzakis et al. (2004) found that
conserved, non-genic sequences (CNGs) accumulated sequence changes in a manner
that can be statistically distinguished from both protein-coding sequences and non-
coding RNA genes. These patterns of sequence change most resembled clusters of
protein-binding sites.

6.6.2 Ultra-conserved regions
The sequences studied by Dermitzakis et al. (2004) were selected, from chromosome

21, on the basis of a simple threshold identity in man to mouse alignment, and also
on the ability to PCR amplify homologous sequences from 14 mammalian species.
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Consequently, these sequences should represent the subset of CNGs that both have
the highest nucleotide identity and are the most constrained through mammalian
evolution. Ironically, a whole-genome analysis of non-coding conservation has since
shown that human chromosome 21 is the only autosome devoid of so-called ultra-
conserved elements (Bejerano et al., 2004). These elements are also defined on the
basis of simple and arbitrary length and identity thresholds, but, in this case, the very
stringent criteria of 200-nucleotide ungapped alignment between human, mouse
and rat, and 100 per cent nucleotide identity in all three species. In total, 481 of these
incredibly well-conserved sequences were found.

Although defined initially on the basis of conservation between man and rodents,
97 per cent of the ultra-conserved elements could be identified in the chicken genome
with, on average, over 95 per cent nucleotide identity, and more than 66 per cent
of them could be aligned with a puffer fish genome (Takifugu rubripes). In contrast,
only 5 per cent could be identified in any of the non-vertebrates Ciona intestinalis
(sea squirt), Drosophila melanogaster (fruit fly) or Caenorhabditis elegans (nematode
worm), and all of these were ultra-conserved elements that overlap protein-coding
exons from known genes. It appears, then, that although these ultra-conserved ele-
ments have been highly constrained for 300-450 million years of vertebrate evolution
(Bejerano et al., 2004), they are largely confined to the vertebrates. A similar study
making use of a recently available whole-genome sequence from multiple insects, has
also identified ultra-conserved regions between fruit flies and the mosquito Anophe-
les gambiae (Glazov et al., 2005). However, the majority of ultra-conserved elements
identified in fruit flies were substantially shorter than the 200-nucleotide threshold
used for the mammalian study, despite similar evolutionary distances, for some of
the analyses, in both studies.

It has been noted in both mammals and fruit flies that ultra-conserved elements
are often located in the introns of, or intergenic regions around, developmentally
important genes (Bejerano et al., 2004; Glazov et al., 2005; Woolfe et al., 2005). These
developmental regulatory genes often encode DNA-binding transcription factors or
RNA-binding proteins (Bejerano et al., 2004) that are likely to be involved in the
regulation of RNA processing and transport. These observations have invoked the
notion of developmental master regulators: regions that integrate multiple signals
coordinating the expression of genes that, in turn, regulate many more genes through
transcription and RNA processing. Some experimental support for this idea has been
provided by Woolfe et al. (2005) in a zebrafish experimental system. Of 25 non-coding
sequence elements that are highly conserved between man and pufferfish, 23 showed
significant transcriptional enhancer activity in one or more tissues during zebrafish
development.

The idea that ultra-conserved elements act as developmental regulators fits well
with the observation that they are highly conserved within phylogenetic clades that
share similar developmental programs, but apparently are not conserved between
more diverse groups. Could the ultra-conserved elements that are common to both
man and pufferfish be the master regulators that define the basic vertebrate body plan:
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skeletal structure, musculature and internal organs, and the developmental programs
to orchestrate their construction? This is an attractive idea, but much more work is re-
quired to establish whether this is even close to accurate. In particular, some genes are
known to be key regulators of developmental programs, and the orthologous genes
in both man and fruit fly are apparently performing the same task in the same tissue.
PAX6, for example, is crucial in the development of eyes in both man and fruit fly
(van Heyningen and Williamson, 2002). The human PAX6locus is one of the richest
in ultra-conserved elements (Bejerano et al, 2004), and six out of seven tested ele-
ments show enhancer activity, four of which directed expression preferentially in the
developing eye (Woolfe et al., 2005). Despite the conserved role of PAX6in eye devel-
opment between man and fruit fly and the demonstrated role of mammalian ultra-
conserved elements in directing that expression, there is no identifiable sequence
similarity between the ultra-conserved elements and the fruit-fly PAX6 locus.

6.6.3 Specific locus studies

In this section, we focus on a small number of disease-related studies that have been
substantially advanced through the application of comparative genomics. We make
several references to Online Mendelian Inheritance in Man (OMIM), a key human
curated resource that brings together published information relating human genetic
diseases and disease genes. Full OMIM records can be obtained with their identifier
number from the Entrez system (http://www.ncbi.nlm.nih.gov/entrez/).
Hirschsprung’s disease is a congenital disorder characterized by intestinal abnor-
malities (OMIM:142623). The genetics of this disease have been well studied, but
the pattern of inheritance is complex. Mutations have been found in eight loci that
contribute to disease susceptibility (OMIM:142623 for review), but these account for
only 30 per cent of cases (Emison et al., 2005). Genetic evidence indicated that one of
those eight loci, the RET gene, harboured additional, previously undetected muta-
tions or variants that account for much of the remaining susceptibility (Gabriel et al.,
2002). All apparent protein-coding sequence of RET had already been screened for
mutations, so the challenge was to identify additional functionally important non-
coding sites within the locus or identify previously missed protein-coding sequence.
Emison et al. (2005) identified more than 30 regions of conserved non-coding
sequence in 350 kb of genomic sequence centred on the RET gene. The analysis used
the multiple conserved sequences paradigm (Section 6.5.3) based on alignment of
12 orthologous loci from vertebrates. Only five of the conserved non-coding regions
were within the region maximally implicated by genetic evidence. The comparative
analysis also indicated that a human single-nucleotide polymorphism (SNP) is lo-
cated within one of the conserved regions, and not withstanding the polymorphism,
the nucleotide has been highly conserved through vertebrate evolution, an obvious
candidate for the functional variant. Emison et al. (2005) were able to show that
this conserved element has enhancer activity and that the level of that activity is
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influenced by the SNP genotype. The comparative alignment allowed the ancestral
and derived alleles to be discriminated, the lower enhancer activity and disease sus-
ceptibility being associated with the more recently derived allele. The non-coding
SNP genotype was shown to account for much of the previously unaccounted for
genetic susceptibility contributed by the RET locus.

The Hirschprung’s disease RET locus is a good recent example of the utility of
comparative genomics and its synergy with genetic studies. It also stands out for sev-
eral of other reasons. The functional variant identified is common in the population,
exceeding 50 per cent in some parts of East Asia, despite being disease-associated.
The effect of the genotype is influenced by sex, demonstrating a form of epistasis, and
the variant is regulatory rather than protein coding. All of these features are likely
to be frequently encountered when searching for the genetic risk factors in common
diseases (Marchini et al., 2005) such as cancer, heart-disease, diabetes and stroke.

The RPGR gene has a similar story to the RET locus. RPGR is known to be a
major locus for X-linked retinitis pigmentosa (OMIM:312610), a form of retinal de-
generation. Several known disease-associated coding sequence mutations had been
found, but it was apparent from genetic studies that many more cases of retinitis
pigmentosa should be attributable to the locus than could be explained by the muta-
tions in the coding sequence (Teague et al., 1994; Vervoort et al., 2000). Comparative
genomics revealed a previously unknown, alternately spliced protein-coding exon
that was specifically expressed in the retina and harboured the missing mutations
(Vervoort et al., 2000). In this case, all of the disease-associated mutations disrupted
the encoded protein. It is likely that such missing mutations are common for even
well-studied genes and that they are simply under-reported in the literature, because
it is seldom practical to screen large genomic intervals for mutations, nor is it easy
to demonstrate their causal role.

Our next example demonstrates over how wide an interval cis-regulatory sites
can act, but also how, even when the region is large and complex, comparative
genomics can allow functional sites to be identified and subsequently characterized.
The mouse Sasquatch (Ssq) mutation was generated serendipitously in trying to insert
a transgene into the genome. The transgene integration led to ectopic expression
of the developmental signalling molecule Sonic Hedgehog (SHH) and resulted in
preaxial polydactyly (extra digits) (Sharpe et al., 1999). Intriguingly, genetic evidence
demonstrated that the effect was specifically in cis (Sharpe et al., 1999), but, as the
integration site was over 1 Mb from Shh and located within the intron of an adjacent
gene, identifying the functional regulatory element remained a challenge.

Multiple sequence alignment between orthologous regions from mouse, man,
chicken and pufferfish identified a 0.8-kb stretch of sequence close to the transgene
insertion site that has been highly conserved throughout vertebrate evolution (Lettice
et al., 2003). It has now been shown that the 0.8-kb element, known as the ZRS, is
a limb bud-specific enhancer of Shh expression (Sagai et al., 2004; Lettice and Hill,
2005) and that even the fish sequence can drive expression in the mouse limb bud.
These studies of the Shhlocus have shown that cis-regulatory elements can be located
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large distances, atleast 1 Mb, alonglinear DNA from the genes theyact to regulate. Not
only can these elements be far from their targets, but they may also be closer to other
genes on which they apparently have no regulatory role — the ZRS islocated in the fifth
intron of the Lmbrl gene, whose expression is unaffected by mutations in the ZRS.

Like the ultra-conserved sequences described above, the striking conservation of
the ZRS throughout vertebrate development indicates that even single nucleotide
substitutions in the region are likely to be detrimental and strongly selected against.
Accordingly, point mutations in the ZRS have been found in four human families and
two mouse lines, and in each case they lead to preaxial polydactyly (see Lettice and
Hill, 2005, for review). In contrast to these point mutations, complete deletion of the
ZRS in the mouse abolishes Shh expression in the limb bud and results in severely
truncated limbs (Sagai et al., 2005), a similar phenotype to human acheiropodia,
which isalso linked to the Shh locus (Ianakiev et al., 2001). Several vertebrate lineages,
such as snake, have substantially reduced or entirely lost limbs, although they were
present in their ancestors. Sagai et al. (2004) have shown that for at least two of these
cases, snakes and limbless newts, this has coincided with the loss of the ZRS, whereas
it remains conserved in lizards and legged newts. Whether loss of the ZRS was a
primary event in the morphological transition of either of these separate lineages,
or whether it represents secondary losses, remains unclear; but it does illustrate two
points rather well. First, the importance of selecting an appropriate phylogenetic
scope for a comparative genomic study (Section 6.3); an analysis utilizing legless
newts and snakes, rather than pufferfish and chickens, would not have revealed the
ZRS in the first place. Second, it demonstrates the apparently modular nature of
conserved non-coding sequence blocks in evolution. The ZRS can be lost without
apparently disrupting the many other functions (OMIM:600725) of Shh during
vertebrate development.

6.7 Challenges and future directions

There has been great progress in understanding the biology and functions encoded
by the human genome since the first draft of a reference sequence was produced in
2001 (Lander et al., 2001; (Venter ef al., 2001), and much of this insight has been
gained by comparison both within and between genomes. However, as with many sci-
entific endeavours, more questions arise with each increment in understanding. For
example, we have now realized that much of the functionally constrained sequence
in the human genome does not encode proteins, and our current understanding
of these elements is poor. They are the dark matter of the genome. A major and
current challenge is to identify each of these elements and to start dissecting their
function. In particular, it is likely that they will harbour polymorphisms that affect
human health, contributing to common disease susceptibility. The integration of
comparative genomics with genetic variation data (IHC, 2005) to identify functional
polymorphisms is likely to be a rapidly expanding field with the combined assets of
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multiple mammalian genome sequences and high-density confirmed polymorphism
data available.

Sequence comparison alone may be able to identify all constrained sites, but it is
unlikely to be able to establish their associated functions. Rather, it is the synergy of
comparative studies with laboratory experiment that provides greatest insight. This
approach is embodied by the Encyclopaedia of DNA elements (ENCODE) project,
an international initiative with the ultimate aim of identifying all functional elements
in the human genome (ENCODE Project Consortium (EPC), 2004), in effect to shed
light on the dark matter of the genome. This is an ambitious and relatively long-term
goal. Asa first step, a pilot project has been undertaken to investigate 30 Mb of the hu-
man genome (approximately 1 per cent of the genome, selected primarily on the basis
of gene density and evolutionary conservation) in great detail, applying a broad spec-
trum of experimental and computational methods to identify functionally impor-
tant sites (_http://genome.gov/10005107). These rigorously annotated regions will be
important training and testing grounds for the development of methods in compar-
ative genomics. The UCSC genome browser (http://genome.ucsc.edu/ENCODE/)
provides a key portal to access the ENCODE pilot project data.

6.8 Conclusion

In the middle of 2000, credible estimates of the total number of human protein-
coding genes plummeted from 80 000—-100 000 to 30 000 or so (Roest Crollius et al,
2000). These lower counts were essentially confirmed by the early analyses of the
human genome (Lander ef al., 2001) and, if anything, the real numbers are likely to
be smaller still (IHGSC, 2004). Although it is difficult, and perhaps even of little value,
to interpret these results within the commonly perceived frameworks of organismal
complexity, the fact remains that they have created a new impetus for looking beyond
protein-coding genes to other classes of functional elements, such as non-coding
RNAs and, in particular, the cis-acting elements regulating gene expression. At the
same time, it is sobering to reflect on how unanticipated these downward revisions of
gene count were, and accordingly to reserve judgement on exactly how many more
functional elements of major relevance we may expect to find. The methods and
early results presented in this review are merely the first steps on a long path to a
broader understanding of the totality of information encoded in the genome.
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